

SYSTEMS ANALYSIS
and DESIGN

This page intentionally left blank

SYSTEMS ANALYSIS
and DESIGN

E I G H T H E D I T I O N

KENNETH E. KENDALL
Rutgers University

School of Business–Camden
Camden, New Jersey

JULIE E. KENDALL
Rutgers University

School of Business–Camden
Camden, New Jersey

Prentice Hall
Boston Columbus Indianapolis New York San Francisco

Upper Saddle River Amsterdam Cape Town Dubai London Madrid

Milan Munich Paris Montreal Toronto Delhi Mexico City

Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

To the memory of Julia A. Kendall and the memory of Edward J. Kendall,

whose lifelong example of working together will inspire us forever.

Editorial Director: Sally Yagan
Editor in Chief: Eric Svendsen
Executive Editor: Bob Horan
Editorial Project Manager: Kelly Loftus
Editorial Assistant: Jason Calcano
Director of Marketing: Patrice Lumumba Jones
Senior Marketing Manager: Anne Fahlgren
Senior Managing Editor: Judy Leale
Associate Production Project Manager: Ana Jankowski
Senior Operations Supervisor: Arnold Vila
Senior Art Director: Steve Frim

Text and Cover Designer: Jill Lehan
Cover Art: Richard Kalina, “Carthage” collage,
acrylic, flashe on linen: © 2006
Media Project Manager: Lisa Rinaldi
Media Editor: Denise Vaughn
Full-Service Project Management/Composition: S4Carlisle
Publishing Services, Inc.
Printer/Binder: Courier/Kendallville
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: 10/12 Times

Library of Congress Cataloging-in-Publication Data
Kendall, Kenneth E.
Systems analysis and design / Kenneth E. Kendall, Julie E. Kendall. — 8th ed.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-13-608916-2
ISBN-10: 0-13-608916-X
1. System design. 2. System analysis. 3. Systems programming (Computer science)
I. Kendall, Julie E., II. Title.

QA76.9.S88K45 2010
005.4’2—dc22 2009031275

“Carthage” © 2006 Richard Kalina, used with permission from the artist.
Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on
appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screen
shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or
affiliated with the Microsoft Corporation.

Copyright © 2011, 2008, 2005 by Pearson Education, Inc., publishing as Prentice Hall, One Lake Street, Upper Saddle
River, New Jersey 07458. All rights reserved. Manufactured in the United States of America. This publication is protected
by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

10 9 8 7 6 5 4 3 2 1
ISBN-10: 0-13-608916-X
ISBN-13: 978-0-13-608916-2

COMPANY
TRADEMARKS

Apple and Macintosh are registered trademarks of Apple Computer. 1Password is a registered
trademark of Agile Web Solutions. Bento is a registered trademark of FileMaker. Dragon
NaturallySpeaking is a registered trademark of Nuance. Dreamweaver, Adobe Flash, and
FormFlow are registered trademarks of Adobe Systems Incorporated. DEVONagent and
DEVONthink Professional Office are registered trademarks of DEVONtechnologies. Firefox is
a trademark of the Mozilla Foundation. Freeway Pro is a registered trademark of Softpress
Systems. HyperCase is a registered trademark of Raymond J. Barnes, Richard L. Baskerville,
Julie E. Kendall, and Kenneth E. Kendall. Microsoft Windows, Microsoft Access, Microsoft
Word, Microsoft PowerPoint, Microsoft Project, Microsoft Excel, and Microsoft Visio are regis-
tered trademarks of Microsoft Corporation. OmniFocus is a registered trademark of The Omni
Group. OmniGraffle and OmniPlan are registered trademarks of The Omni Group. OmniPage
is a trademark of Nuance. Palm is a registered trademark of Palm, Inc. ProModel and Service
Model are registered trademarks of ProModel Corporation. Things is a registered trademark of
Cultured Code. VMware Fusion is a registered trademark of VMware. Visible Analyst is a regis-
tered trademark of Visible Systems Corporation. WinFax Pro and Norton Internet Security are
registered trademarks of Symantec. Yojimbo is a registered trademark of Bare Bones Software.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Companies, names, and/or data used in screens and sample output are fictitious unless
otherwise noted.

v

BRIEF
CONTENTS

PART I SYSTEMS ANALYSIS FUNDAMENTALS
1 SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 1
2 UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 24
3 PROJECT MANAGEMENT 56

PART II INFORMATION REQUIREMENTS ANALYSIS
4 INFORMATION GATHERING: INTERACTIVE METHODS 103
5 INFORMATION GATHERING: UNOBTRUSIVE METHODS 131
6 AGILE MODELING AND PROTOTYPING 155

PART III THE ANALYSIS PROCESS
7 USING DATA FLOW DIAGRAMS 193
8 ANALYZING SYSTEMS USING DATA DICTIONARIES 228
9 PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 259

10 OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 281

PART IV THE ESSENTIALS OF DESIGN
11 DESIGNING EFFECTIVE OUTPUT 329
12 DESIGNING EFFECTIVE INPUT 371
13 DESIGNING DATABASES 403
14 HUMAN-COMPUTER INTERACTION 441

PART V QUALITY ASSURANCE AND IMPLEMENTATION
15 DESIGNING ACCURATE DATA ENTRY PROCEDURES 485
16 QUALITY ASSURANCE AND IMPLEMENTATION 515

GLOSSARY 557
ACRONYMS 565
INDEX 566

vi

CONTENTS

PART I SYSTEMS ANALYSIS FUNDAMENTALS

1 SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 1

Types of Systems 2
Transaction Processing Systems 2 / Office Automation Systems and Knowledge Work
Systems 2 / Management Information Systems 3 / Decision Support Systems 3 / Artificial
Intelligence and Expert Systems 3 / Group Decision Support Systems and Computer-
Supported Collaborative Work Systems 3 / Executive Support Systems 4

Integrating Technologies for Systems 4
Ecommerce Applications and Web Systems 4 / Enterprise Systems 5 / Systems for Wireless
and Mobile Devices 5 / Open Source Software 5

Need for Systems Analysis and Design 6

Roles of the Systems Analyst 6
Systems Analyst as Consultant 6 / Systems Analyst as Supporting Expert 6

Consulting Opportunity 1.1 Healthy Hiring: Ecommerce Help Wanted 7
Systems Analyst as Agent of Change 7 / Qualities of the Systems Analyst 8

The Systems Development Life Cycle 8
Incorporating Human-Computer Interaction Considerations 9 / Identifying Problems,
Opportunities, and Objectives 9 / Determining Human Information Requirements 10 /
Analyzing System Needs 10 / Designing the Recommended System 11 / Developing and
Documenting Software 11 / Testing and Maintaining the System 11 / Implementing and
Evaluating the System 11

MAC APPEAL 12
The Impact of Maintenance 12

Using Case Tools 14

The Agile Approach 14
Developmental Process for an Agile Project 15

Object-Oriented Systems Analysis and Design 17

Choosing Which Systems Development Method to Use 19
SUMMARY 19
HYPERCASE® EXPERIENCE 1 20
KEYWORDS AND PHRASES 21
REVIEW QUESTIONS 21
SELECTED BIBLIOGRAPHY 21

CPU CASE EPISODE 1: The Case Opens 23
vii

2 UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 24

Organizations as Systems 24
Interrelatedness and Interdependence of Systems 25

Consulting Opportunity 2.1 The E in Vitamin E Stands for Ecommerce 26
Virtual Organizations and Virtual Teams 26 / Taking a Systems Perspective 27 / Enterprise
Systems: Viewing the Organization as a System 28

Depicting Systems Graphically 29
Systems and the Context-Level Data Flow Diagram 29 / Systems and the Entity-
Relationship Model 30

MAC APPEAL 35

Use Case Modeling 35
Use Case Symbols 36 / Use Case Relationships 36 / Developing System Scope 38 /
Developing Use Case Diagrams 38 / Developing Use Case Scenarios 38 / Use Case
Levels 39 / Creating Use Case Descriptions 43 / Why Use Case Diagrams Are Helpful 43

Levels of Management 43

Consulting Opportunity 2.2 Where There’s Carbon, There’s a Copy 44
Implications for Information Systems Development 45

Organizational Culture 45

Consulting Opportunity 2.3 Pyramid Power 46
SUMMARY 46
HYPERCASE® EXPERIENCE 2 47
KEYWORDS AND PHRASES 48
REVIEW QUESTIONS 48
PROBLEMS 48
GROUP PROJECTS 49
SELECTED BIBLIOGRAPHY 50

CPU CASE EPISODE 2: Picturing the Relationships 51

3 PROJECT MANAGEMENT 56

Project Initiation 56
Problems in the Organization 57 / Defining the Problem 57

Consulting Opportunity 3.1 The Sweetest Sound I’ve Ever Sipped 58
Selection of Projects 61

Determining Feasibility 62
Determining Whether It Is Possible 62

Ascertaining Hardware and Software Needs 63
Inventorying Computer Hardware 64 / Estimating Workloads 64 / Evaluating Computer
Hardware 65 / Acquisition of Computer Equipment 66 / Software Evaluation 68

Consulting Opportunity 3.2 Veni, Vidi, Vendi, or, I Came, I Saw, I Sold 70

Identifying, Forecasting, and Comparing Costs and Benefits 72
Forecasting 72 / Identifying Benefits and Costs 72

Consulting Opportunity 3.3 We’re Off to See the Wizards 73
Comparing Costs and Benefits 74

Activity Planning and Control 77
Estimating Time Required 77

viii CONTENTS

Consulting Opportunity 3.4 Food for Thought 78
Using Gantt Charts for Project Scheduling 79 / Using PERT Diagrams 80

Managing the Project 82
Addressing System Complexity 82

MAC APPEAL 83

Managing Analysis and Design Activities 83
Assembling a Team 83
HYPERCASE® EXPERIENCE 3.1 84
Communication Strategies for Managing Teams 84

Consulting Opportunity 3.5 Goal Tending 85
Setting Project Productivity Goals 85 / Motivating Project Team Members 86 / Managing
Ecommerce Projects 86 / Creating the Project Charter 87 / Avoiding Project Failures 87

The Systems Proposal 88
Organizing the Systems Proposal 88 / Using Figures for Effective
Communication 89
SUMMARY 91
HYPERCASE® EXPERIENCE 3.2 92
KEYWORDS AND PHRASES 93
REVIEW QUESTIONS 93
PROBLEMS 94
GROUP PROJECTS 98
SELECTED BIBLIOGRAPHY 98

CPU CASE EPISODE 3: Getting to Know U 100

PART II INFORMATION REQUIREMENTS ANALYSIS

4 INFORMATION GATHERING: INTERACTIVE METHODS 103

Interviewing 103
Five Steps in Interview Preparation 104 / Question Types 105 / Arranging Questions in a
Logical Sequence 107

Consulting Opportunity 4.1 Strengthening Your Question Types 108
Writing the Interview Report 109

Consulting Opportunity 4.2 Skimming the Surface 110

Joint Application Design 111
Conditions That Support the Use of JAD 111 / Who Is Involved? 111
HYPERCASE® EXPERIENCE 4.1 112
Where to Hold JAD Meetings 112

Consulting Opportunity 4.3 A Systems Analyst, I Presume? 113
Accomplishing a Structured Analysis of Project Activities 113 / Potential Benefits of Using
JAD in Place of Traditional Interviewing 113 / Potential Drawbacks of Using JAD 113

Using Questionnaires 114
Planning for the Use of Questionnaires 114 / Writing Questions 115 / Using Scales in
Questionnaires 118 / Designing the Questionnaires 119

Consulting Opportunity 4.4 The Unbearable Questionnaire 120

Consulting Opportunity 4.5 Order in the Courts 121
Administering Questionnaires 122
SUMMARY 122

CONTENTS ix

HYPERCASE® EXPERIENCE 4.2 123
KEYWORDS AND PHRASES 123
REVIEW QUESTIONS 124
PROBLEMS 124
GROUP PROJECTS 127
SELECTED BIBLIOGRAPHY 127

CPU CASE EPISODE 4: I’ll Listen Now, Ask Questions Later 128

5 INFORMATION GATHERING: UNOBTRUSIVE METHODS 131

Sampling 131
The Need for Sampling 132 / Sampling Design 132 / The Sample Size Decision 134

Consulting Opportunity 5.1 Trapping a Sample 135

Investigation 136
Analyzing Quantitative Documents 136

Consulting Opportunity 5.2 A Rose by Any Other Name . . . Or Quality, Not
Quantities 137
Analyzing Qualitative Documents 140
HYPERCASE® EXPERIENCE 5.1 141

Observing a Decision Maker’s Behavior 142
Observing a Typical Manager’s Decision-Making Activities 142

Observing the Physical Environment 142
Structured Observation of the Environment (STROBE) 142

Consulting Opportunity 5.3 Don’t Bank on Their Self-Image or Not Everything
Is Reflected in a Mirror 145
Applying Strobe 146

MAC APPEAL 147
SUMMARY 148
HYPERCASE® EXPERIENCE 5.2 149
KEYWORDS AND PHRASES 150
REVIEW QUESTIONS 150
PROBLEMS 150
GROUP PROJECTS 152
SELECTED BIBLIOGRAPHY 153

CPU CASE EPISODE 5: Seeing Is Believing 154

6 AGILE MODELING AND PROTOTYPING 155

Prototyping 156
Kinds of Prototypes 156 / Prototyping as an Alternative to the SDLC 157

Developing a Prototype 158

Consulting Opportunity 6.1 Is Prototyping King? 159
Guidelines for Developing a Prototype 159

Consulting Opportunity 6.2 Clearing the Way for Customer Links 160
Disadvantages of Prototyping 160

Consulting Opportunity 6.3 To Hatch a Fish 161
Advantages of Prototyping 161 / Prototyping Using COTS Software 161

Consulting Opportunity 6.4 This Prototype Is All Wet 162
Users’ Role in Prototyping 162

x CONTENTS

Rapid Application Development 163
Phases of RAD 164 / Comparing RAD to the SDLC 165

Agile Modeling 166
Values and Principles of Agile Modeling 166 / Activities, Resources, and Practices of Agile
Modeling 168 / The Agile Development Process 171

MAC APPEAL 173
Lessons Learned from Agile Modeling 175

Comparing Agile Modeling and Structured Methods 176
Improving Efficiency in Knowledge Work: SDLC Versus Agile 177 / Risks Inherent in
Organizational Innovation 179
SUMMARY 181
HYPERCASE® EXPERIENCE 6 182
KEYWORDS AND PHRASES 183
REVIEW QUESTIONS 183
PROBLEMS 183
GROUP PROJECTS 185
SELECTED BIBLIOGRAPHY 185

CPU CASE EPISODE 6: Reaction Time 186

PART III THE ANALYSIS PROCESS

7 USING DATA FLOW DIAGRAMS 193

The Data Flow Approach to Human Requirements Determination 193
Advantages of the Data Flow Approach 193 / Conventions Used in Data Flow
Diagrams 194

Developing Data Flow Diagrams 195
Creating the Context Diagram 195 / Drawing Diagram 0 (The Next Level) 196 /
Creating Child Diagrams (More Detailed Levels) 198 / Checking the Diagrams
for Errors 198

Logical and Physical Data Flow Diagrams 200
Developing Logical Data Flow Diagrams 202 / Developing Physical Data Flow
Diagrams 203 / Partitioning Data Flow Diagrams 206

A Data Flow Diagram Example 207
Developing the List of Business Activities 207 / Creating a Context-Level Data Flow
Diagram 208 / Drawing Diagram 0 210 / Creating a Child Diagram 211 / Creating a
Physical Data Flow Diagram from the Logical DFD 212 / Partitioning the Physical
DFD 213

Partitioning Web Sites 213

Consulting Opportunity 7.1 There’s No Business Like Flow Business 216

Communicating Using Data Flow Diagrams 217
SUMMARY 217
HYPERCASE® EXPERIENCE 7 218
KEYWORDS AND PHRASES 218
REVIEW QUESTIONS 219
PROBLEMS 219
GROUP PROJECTS 221
SELECTED BIBLIOGRAPHY 221

CPU CASE EPISODE 7: Just Flowing Along 222

CONTENTS xi

8 ANALYZING SYSTEMS USING DATA DICTIONARIES 228

The Data Dictionary 228
Need for Understanding the Data Dictionary 229

The Data Repository 229
Defining the Data Flows 230 / Describing Data Structures 231 / Logical and Physical Data
Structures 233 / Data Elements 234 / Data Stores 236

Creating the Data Dictionary 238
Analyzing Input and Output 239

Consulting Opportunity 8.1 Want to Make It Big in the Theatre? Improve Your
Diction(ary)! 240
Developing Data Stores 241

Using the Data Dictionary 242
Using Data Dictionaries to Create XML 243 / XML Document Type Definitions 244 /
XML Schemas 246
HYPERCASE® EXPERIENCE 8 247
SUMMARY 248
KEYWORDS AND PHRASES 248
REVIEW QUESTIONS 248
PROBLEMS 249
GROUP PROJECTS 251
SELECTED BIBLIOGRAPHY 251

CPU CASE EPISODE 8: Defining What You Mean 252

9 PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 259

Overview of Process Specifications 259
Process Specification Format 260

Structured English 261
Writing Structured English 261

Consulting Opportunity 9.1 Kit Chen Kaboodle, Inc. 263

Consulting Opportunity 9.2 Kneading Structure 264
Data Dictionary and Process Specifications 265

Decision Tables 266
Developing Decision Tables 267

Consulting Opportunity 9.3 Saving a Cent on Citron Car Rental 269
Checking for Completeness and Accuracy 270

Decision Trees 271

Consulting Opportunity 9.4 A Tree for Free 272
Drawing Decision Trees 272

Choosing a Structured Decision Analysis Technique 273
SUMMARY 273
HYPERCASE® EXPERIENCE 9 274
KEYWORDS AND PHRASES 274
REVIEW QUESTIONS 274
PROBLEMS 274
GROUP PROJECTS 276
SELECTED BIBLIOGRAPHY 276

CPU CASE EPISODE 9: Tabling a Decision 277

xii CONTENTS

10 OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 281

Object-Oriented Concepts 282
Objects 282 / Classes 282 / Inheritance 283

Consulting Opportunity 10.1 Around the World in 80 Objects 284

CRC Cards and Object Think 284
Interacting During a CRC Session 284

The Unified Modeling Language (UML) Concepts and Diagrams 286

Use Case Modeling 287

Activity Diagrams 290
Creating Activity Diagrams 292

Consulting Opportunity 10.2 Recycling the Programming Environment 293
Repository Entries for an Activity Diagram 294

Sequence and Communication Diagrams 294
Sequence Diagrams 294 / Communication Diagrams 296

Class Diagrams 297
Method Overloading 298 / Types of Classes 299 / Defining Messages and Methods 300

Enhancing Sequence Diagrams 300
A Class Example for the Web 300 / Presentation, Business, and Persistence Layers in
Sequence Diagrams 302

Enhancing Class Diagrams 303
Relationships 304 / Generalization/Specialization (Gen/Spec) Diagrams 306

Statechart Diagrams 309
A State Transition Example 310

Packages and Other UML Artifacts 311

Consulting Opportunity 10.3 Developing a Fine System That Was Long Overdue:
Using Object-Oriented Analysis for the Ruminski Public Library System 313

Putting UML to Work 313

Consulting Opportunity 10.4 C-Shore�� 315

The Importance of Using UML for Modeling 315

SUMMARY 316
HYPERCASE® EXPERIENCE 10 317
KEYWORDS AND PHRASES 317
REVIEW QUESTIONS 318
PROBLEMS 318
SELECTED BIBLIOGRAPHY 319

CPU CASE EPISODE 10: Classy Objects 320

PART IV THE ESSENTIALS OF DESIGN

11 DESIGNING EFFECTIVE OUTPUT 329

Output Design Objectives 329
Designing Output to Serve the Intended Purpose 329 / Designing Output to Fit the
User 330 / Delivering the Appropriate Quantity of Output 330 / Making Sure the Output Is
Where It Is Needed 330 / Providing the Output on Time 330 / Choosing the Right Output
Method 330

CONTENTS xiii

Relating Output Content to Output Method 330
Output Technologies 331

Consulting Opportunity 11.1 Your Cage or Mine? 335
Factors to Consider When Choosing Output Technology 336

Consulting Opportunity 11.2 A Right Way, a Wrong Way, and a Subway 339

Realizing How Output Bias Affects Users 340
Recognizing Bias in the Way Output Is Used 340 / Avoiding Bias in the
Design of Output 341 / Designing Printed Output 341 / Guidelines for
Printed Report Design 341

Consulting Opportunity 11.3 Should This Chart Be Barred? 342

Designing Output for Displays 344
Guidelines for Display Design 344 / Using Graphical Output in Screen Design 345 /
Dashboards 346 / Widgets and Gadgets—Changing the Desktop Metaphor 347

Consulting Opportunity 11.4 Is Your Work a Grind? 348

Designing a Web Site 348
General Guidelines for Designing Web Sites 348

MAC APPEAL 351

Consulting Opportunity 11.5 A Field Day 356
Maintaining Web Sites 356 / Creating Blogs (Web Logs) 357

Output Production and XML 357
Ajax 358
HYPERCASE® EXPERIENCE 11 360
SUMMARY 360
KEYWORDS AND PHRASES 361
REVIEW QUESTIONS 361
PROBLEMS 362
GROUP PROJECTS 365
SELECTED BIBLIOGRAPHY 365

CPU CASE EPISODE 11: Reporting on Outputs 366

12 DESIGNING EFFECTIVE INPUT 371

Good Form Design 371
Making Forms Easy to Fill In 372 / Meeting the Intended Purpose 374 / Ensuring Accurate
Completion 375 / Keeping Forms Attractive 375 / Controlling Business Forms 376

Good Display and Web Forms Design 376
Keeping the Display Simple 376

Consulting Opportunity 12.1 This Form May Be Hazardous to Your Health 377
Keeping the Display Consistent 378 / Facilitating Movement 378 / Designing an Attractive
and Pleasing Display 378 / Using Icons in Display Design 378

Consulting Opportunity 12.2 Squeezin’ Isn’t Pleasin’ 379
Graphical User Interface Design 379 / Form Controls and Values 381 / Hidden Fields 382 /
Event-Response Charts 382 / Dynamic Web Pages 383 / Three-Dimensional Web Pages
385 / Ajax (Asynchronous JavaScript and XML) 387 / Using Color in Display Design 389

Intranet and Internet Page Design 389

Consulting Opportunity 12.3 It’s Only Skin Deep 390

MAC APPEAL 392

xiv CONTENTS

SUMMARY 392
HYPERCASE® EXPERIENCE 12 393
KEYWORDS AND PHRASES 394
REVIEW QUESTIONS 394
PROBLEMS 395
GROUP PROJECTS 397
SELECTED BIBLIOGRAPHY 398

CPU CASE EPISODE 12: Forming Screens and Screening Forms 399

13 DESIGNING DATABASES 403

Databases 403

Consulting Opportunity 13.1 Hitch Your Cleaning Cart to a Star 404

Data Concepts 404
Reality, Data, and Metadata 404 / Files 410 / Relational Databases 411

Normalization 413
The Three Steps of Normalization 413 / A Normalization Example 414 / Using the Entity-
Relationship Diagram to Determine Record Keys 421 / One-to-Many Relationship 422 /
Many-to-Many Relationship 423

Guidelines for Master File/Database Relation Design 424
Integrity Constraints 424

MAC APPEAL 425
Anomalies 425

Making Use of the Database 426
Steps in Retrieving and Presenting Data 426

Denormalization 426

Data Warehouses 429
Online Analytic Processing 429 / Data Mining 429

Consulting Opportunity 13.2 Storing Minerals for Health, Data for Mining 430

Consulting Opportunity 13.3 Losing Prospects 431
SUMMARY 432
HYPERCASE® EXPERIENCE 13 433
KEYWORDS AND PHRASES 433
REVIEW QUESTIONS 434
PROBLEMS 434
GROUP PROJECT 436
SELECTED BIBLIOGRAPHY 436

CPU CASE EPISODE 13: Back to Data Basics 437

14 HUMAN-COMPUTER INTERACTION 441

Understanding Human-Computer Interaction 441
How Fit Affects Performance and Well-Being 442 / The Technology Acceptance Model
and Attitude 443

Usability 444
Designing for the Cognitive Styles of Individual Users 444 / Physical Considerations in
HCI Design 448 / Considering Human Limitations, Disabilities, and Design 449

Consulting Opportunity 14.1 School Spirit Comes in Many Sizes 450
Implementing Good HCI Practices 450

CONTENTS xv

Types of User Interface 451
Natural-Language Interfaces 451 / Question-and-Answer Interfaces 452 / Menus 453

Consulting Opportunity 14.2 I’d Rather Do It Myself 454
Form-Fill Interfaces (Input/Output Forms) 454 / Command-Language Interfaces 455

Consulting Opportunity 14.3 Don’t Slow Me Down 456
Graphical User Interfaces 456

Consulting Opportunity 14.4 That’s Not a Lightbulb 457
Other User Interfaces 457

Guidelines for Dialog Design 458
Meaningful Communication 459 / Minimal User Action 459

Consulting Opportunity 14.5 Waiting to Be Fed 461
Standard Operation and Consistency 461

Feedback for Users 461
Types of Feedback 462 / Including Feedback in Design 464

Special Design Considerations for Ecommerce 465
Soliciting Feedback from Ecommerce Web Site Customers 465 / Easy Navigation for
Ecommerce Web Sites 465

Consulting Opportunity 14.6 When You Run a Marathon,It Helps to Know Where
You’re Going 466

MAC APPEAL 467

Mashups 468

Designing Queries 468
Query Types 469 / Query Methods 471

Consulting Opportunity 14.7 Hey, Look Me Over (Reprise) 472
SUMMARY 474
KEYWORDS AND PHRASES 474
HYPERCASE® EXPERIENCE 14 475
REVIEW QUESTIONS 476
PROBLEMS 476
GROUP PROJECTS 477
SELECTED BIBLIOGRAPHY 478

CPU CASE EPISODE 14: Up to the Users 479

PART V QUALITY ASSURANCE AND IMPLEMENTATION

15 DESIGNING ACCURATE DATA ENTRY PROCEDURES 485

Effective Coding 485
Keeping Track of Something 486 / Classifying Information 487 / Concealing Information
488 / Revealing Information 488 / Unicode 490 / Requesting Appropriate Action 491 /
General Guidelines for Coding 491

Consulting Opportunity 15.1 It’s a Wilderness in Here 492

Consulting Opportunity 15.2 Catching a Summer Code 494

Effective and Efficient Data Capture 494
Deciding What to Capture 494 / Letting the Computer Do the Rest 495 / Avoiding
Bottlenecks and Extra Steps 496 / Starting with a Good Form 496 / Choosing a Data Entry
Method 496

xvi CONTENTS

Consulting Opportunity 15.3 To Enter or Not to Enter: That Is the Question 499

Ensuring Data Quality Through Input Validation 499
Validating Input Transactions 500 / Validating Input Data 500

Consulting Opportunity 15.4 Do You Validate Parking? 504
The Process of Validation 505

Accuracy Advantages in Ecommerce Environments 506
Customers Keying Their Own Data 506 / Storing Data for Later Use 506 / Using Data
Through the Order Fulfillment Process 506 / Providing Feedback to Customers 506
HYPERCASE® EXPERIENCE 15 507
SUMMARY 507
KEYWORDS AND PHRASES 508
REVIEW QUESTIONS 508
PROBLEMS 509
GROUP PROJECTS 511
SELECTED BIBLIOGRAPHY 511

CPU CASE EPISODE 15: Entering Naturally 512

16 QUALITY ASSURANCE AND IMPLEMENTATION 515

The Total Quality Management Approach 516
Six Sigma 516 / Responsibility for Total Quality Management 516 / Structured
Walkthrough 517

Consulting Opportunity 16.1 The Quality of MIS Is Not Strained 518
Top-Down Systems Design and Development 518

MAC APPEAL 520
Using Structure Charts to Design Modular Systems 520 / Service-Oriented Architecture
(SOA) 522

Documentation Approaches 523
Procedure Manuals 523 / The FOLKLORE Method 523

Consulting Opportunity 16.2 Write Is Right 524
HYPERCASE® EXPERIENCE 16.1 525
Choosing a Design and Documentation Technique 526

Testing, Maintenance, and Auditing 526
The Testing Process 526

Consulting Opportunity 16.3 Cramming for Your Systems Test 528
Maintenance Practices 528 / Auditing 529

Implementing Distributed Systems 529
Client-Server Technology 529 / Cloud Computing 531 / Network Modeling 533

Training Users 536
Training Strategies 537 / Guidelines for Training 537

Consulting Opportunity 16.4 You Can Lead a Fish to Water . . . But You Can’t Make
It Drink 538

Conversion to a New System 539
Conversion Strategies 539 / Other Conversion Considerations 540 / Organizational
Metaphors and Their Relationship to Successful Systems 541

Security Concerns for Traditional and Web-Based Systems 542
Physical Security 542 / Logical Security 542 / Behavioral Security 543 / Special Security
Considerations for Ecommerce 543 / Privacy Considerations for Ecommerce 544 / Disaster
Recovery Planning 544

CONTENTS xvii

Consulting Opportunity 16.5 The Sweet Smell of Success 546

Evaluation 546
Evaluation Techniques 546 / The Information System Utility Approach 546

Consulting Opportunity 16.6 Mopping Up with the New System 548

Evaluating Corporate Web Sites 548
SUMMARY 550
HYPERCASE® EXPERIENCE 16.2 551
KEYWORDS AND PHRASES 551
REVIEW QUESTIONS 551
PROBLEMS 552
GROUP PROJECTS 554
SELECTED BIBLIOGRAPHY 554

CPU CASE EPISODE 16: Semper Redundate 555

GLOSSARY 557

ACRONYMS 565

INDEX 566

xviii CONTENTS

PREFACE

NEW TO THIS EDITION
The eighth edition of Kendall & Kendall: Systems Analysis and Design includes substantial
changes mandated by the rapid changes in the IS field in the last three years, and they are included
as a response to the input of our adopters, students, and reviewers. Many new and updated fea-
tures are integrated throughout. In particular:

� Early introduction of three methodologies: SDLC, agile approaches, and object-oriented
systems analysis and design with UML, along with reasons and situations for when to
use them (Chapter 1)

� Expanded coverage of COTS due to their increasing use in organizations (Chapter 3)
� Object-oriented analysis and design expanded and featured in the center of the text so it

can be more easily incorporated into term projects (Chapter 10)
� New object-oriented analysis and design problems included in the O-O CPU Episode

(Chapter 10)
� New feature throughout the text called Mac Appeal, which discusses innovative soft-

ware available on Macs
� New coverage of cloud computing (Chapter 16)
� New section on SOA (service-oriented architecture) (Chapter 16)
� New end-of-chapter Review Questions, Problems, and Group Exercises
� Reorganized, updated, and strengthened chapter on agile methods (Chapter 6)
� Strengthened project management by introducing the project charter early in the process

(Chapter 3)
� Early introduction of how to prepare the systems proposal (Chapter 3)
� Updated and streamlined CPU Case Episodes, the case that runs throughout the text.

Students can use Microsoft Access, Microsoft Visio, or Visible Analyst to complete new
assignments throughout the text

� Updated scenarios, problems, and graphics throughout the text to accompany
HyperCase 2.8, a graphical simulation for the Web that allows students to apply their
new skills

DESIGN FEATURES
Figures take on a stylized look in order to help students
more easily grasp the subject matter.

Conceptual diagrams are used to introduce the many
tools that systems analysts have at their disposal. This ex-
ample shows the differences between logical data flow di-
agrams and physical data flow diagrams. Conceptual
diagrams are color coded so that students can distinguish
easily among them, and their functions are clearly indicated.
Many other important tools are illustrated, including use
case diagrams, sequence diagrams, and class diagrams.

xix

Items and Prices

Customer

Identify
Item

1

D1 Prices

Items to
Purchase

Prices

Look Up
Prices

2

Item ID Amount to Be PaidCompute
Total

Cost of
Order

3

Receipt

Settle
Transaction
and Issue
Receipt

4

Customer

Payment

Logical Data Flow Diagram

Item Codes and Prices

Customer

Pass
Items Over
Scanner
(Manual)

1

D1 UPC Price File Temporary
Trans. File

Items Brought
to Checkout

Item Description
and Prices

Look Up
Code and

Price
in File

2

UPC Bar Code
Calculated

Amount to Be PaidCompute
Total
Cost

3

Cash Register
Receipt

Collect Money
and Give
Receipt

(Manual)

4

Customer

Cash, Check,
or Debit Card

Physical Data Flow Diagram

UPC Code

D2

Items, Prices,
and Subtotals

Items and
Prices

Computer displays demonstrate important software
features that are useful to the analyst. This example
shows how a Web site can be evaluated for broken links
by using a package such as Microsoft Visio. Actual screen
shots show important aspects of design. Analysts are con-
tinuously seeking to improve the appearance of the
screens and Web pages they design. Colorful examples
help to illustrate why some screen designs are particu-
larly effective.

Paper forms are used throughout to show input and
output design as well as the design of questionnaires.

Blue ink is always used to show writing or data input,
thereby making it easier to identify what was filled in by
users. Although most organizations have computeriza-
tion of manual processes as their eventual goal, much
data capture is still done using paper forms. Improved
form design enables analysts to ensure accurate and com-
plete input and output. Better forms can also help stream-
line new internal workflows that result from newly auto-
mated business-to-consumer (B2C) applications for
ecommerce on the Web.

Tables are used when an important list needs special
attention, or when information needs to be organized or
classified. In addition, tables are used to supplement the
understanding of the reader in a way that departs from

how material is organized in the narrative portion of the text. Most analysts find tables a useful
way to organize numbers and text into a meaningful “snapshot.”

This example of a table from Chapter 3 shows how analysts can refine their activity plans for
analysis by breaking them down into smaller tasks and then estimating how much time it will take
to complete them. The underlying philosophy of our book
is that systems analysis and design is a process that inte-
grates the use of many tools with the unique talents of the
systems analyst to systematically improve business
through the implementation or modification of computer-
ized information systems. Systems analysts can grow in
their work by taking on new IT challenges and keeping
current in their profession through the application of new
techniques and tools.

A BRIEF TOUR OF THE EIGHTH EDITION

xx PREFACE

8

then estimate

time required.

Conduct interviews
Administer questionnaires
Read company reports
Introduce prototype
Observe reactions to prototype

Analyze data flow

Perform cost-benefit analysis
Prepare proposal
Present proposal

Data gathering

Data flow and decision analysis

Proposal preparation

3
4
4
5
3

3
2
2

Weeks
RequiredDetailed ActivityActivity

Break thesedown further,

PAYMENT RECORD: Tot. 31175/0 + 81299 + Rent =
TOTAL INITIAL PAYMENT REQUIRED:

855 55
910

H/S dep.
4

Date Date Receipt Paid to Total Secur- Clean- 31700 81299 Other Amount Balance

Due Paid Number Noon Rent ity ing Tax Dates Amt. Descr. Amt. Paid Due

TV 10/3 MO! 8/28 8/28 106642 9/30 1031.32 202 115 44.20 25 414.82 15 1430.52 0

10/1 10/3 107503 10/31 910

910 0

11/1 11/1 10935 11/16 485.28

485.28 0

C1H/S9-16 11/17 11/8 11200 11/23 212.31

212.31 0

Bill 1 MO 11/24Prorated
H/S should becreated towardrefund deposit

BLDG. #

NAME

Orig. Move-in Date
d

Exp.

x #

Base Refrig- Furni-
Total Secur- Clean-

31700
Daily

Rent erator ture
Rent ity ing

Tax
Rate

8-28
same

1Kendall
1st

PROJ. NAME
#

KEY SIGNATURE
RENT POTENTIAL

1175/0 81299

PRORATE
A/C Util. HMSR T.V. Maid

31175/0 81299 Days
Totals

DEPOSITPOTENTIAL

Deposits
Memo Only

31175/0

OAK. FC 562

H/S
rent 30.33

1.30 910
39

200 115
31.63 340

910

1430.52

15.00
121.32

5.20

Watch for places

the computer can

simplify the work.

Observe the

number and type

of transactions.

Check for errors.
Look foropportunitiesfor improvementin design.

Part I:
Systems Analysis

Fundamentals

Part II:
Information

Requirements
Analysis

Part V:
Quality

Assurance and
Implementation

Part III:
The Analysis

Process

Part IV:
The Essentials

of Design

Systems analysis and design is typically taught in one or two semesters. Our book may be used
in either situation. The text is appropriate for undergraduate (junior or senior) curricula at a four-
year university, graduate school, or community college. The level and length of the course can be
varied and supplemented by using real-world projects, HyperCase, or other materials available
on the Instructor Resource Center.

The text is divided into five major parts: Systems Analysis Fundamentals (Part I),
Information Requirements Analysis (Part II), The Analysis Process (Part III), The Essentials of
Design (Part IV), and Quality Assurance and Implementation (Part V).

Part I (Chapters 1–3) stresses the basics that students need to know about what an analyst
does and introduces the three main methodologies of the systems development life cycle
(SDLC), agile approaches, and object-oriented analysis
with UML, along with reasons and situations for when to
use them. Part I shows how a variety of emerging infor-
mation systems, including mobile and wireless technolo-
gies, and enterprise systems integrate IT and fit into or-
ganizations; how to determine whether a systems project
is worthy of commitment; ecommerce project manage-
ment; and how to manage a systems project using special
software tools. The three roles of the systems analyst as
consultant, supporting expert, and agent of change are in-
troduced, and ethical issues and professional guidelines
for serving as a systems consultant are covered. There is
also material on virtual teams and virtual organizations,
and the concept of HCI is introduced. The use of open source software (OSS) is also introduced.
Chapter 2 includes how to initially approach an organization by drawing context-level data flow
diagrams, using entity-relationship models, and developing use cases and use case scenarios.
Chapter 3 introduces expanded material on creating the project charter and introduces writing
the systems proposal early in the process, no matter what method of analysis and design has been
chosen. Expanded coverage of evaluating software and hardware, and when to use COTS (com-
mercial off-the-shelf software), is included. This chapter teaches several methods for forecast-
ing costs and benefits, which are necessary to the discussion of acquiring software and hardware.
Chapter 3 helps students evaluate software by assessing trade-offs among creating custom soft-
ware, purchasing commercial-off-the-shelf (COTS) software, or outsourcing to an application
service provider (ASP). Creating a problem definition and determining feasibility are also cov-
ered. Chapter 3 guides students in professionally writing and presenting an effective systems
proposal, one that incorporates figures and graphs to communicate with users.

Part II (Chapters 4–6) emphasizes the use of systematic and structured methodologies for
performing information requirements analysis. Attention to analysis helps analysts ensure that
they are addressing the correct problem before designing
the system. Chapter 4 introduces a group of interactive
methods, including interviewing, joint application design
(JAD), and constructing questionnaires. Chapter 5 intro-
duces a group of unobtrusive methods for ascertaining in-
formation requirements of users. These methods include
sampling, investigating hard and archival data, and ob-
servation of decision makers’ behavior and their physical
environment. Chapter 6 on agile modeling and prototyp-
ing is innovative in its treatment of prototyping as another
data-gathering technique that enables the analyst to solve
the right problem by getting users involved from the start.
Agile approaches have their roots in prototyping, so this
chapter begins with prototyping to provide a proper context for understanding, and then takes up
the agile approach. The values and principles, activities, resources, practices, processes, and tools
associated with agile methodologies are presented. This chapter also includes material on rapid
application development (RAD) for human information-requirements gathering and interface
design.

PREFACE xxi

Modify Diagrams and
Complete

Specifications

 Develop and
Document the

System

Draw Use Case
Diagrams

Write Use Case
Scenarios

Derive Activity
Diagrams from Use

Cases

Develop Sequence
Diagrams

Draw Statechart
Diagrams

Create Class
Diagrams

Systems Analysis
Phase

Systems Design
Phase

Problem Identification
Phase

Begin Object-Oriented
Analysis and Design

Observer Name

DateSystem or Project Name
Company or Location

Program Name or Number
VersionUser 1 User 2 User 3 User 4

User Name
Period Observed
User Reactions

User Suggestions

Innovations

Revision Plans

Michael Cerveris
1/06/2010Cloud Computing Data Center Aquarius Water FiltersPrev. Maint.

1
Andy H. Pam H.1/06/2010 1/06/2010Generally

favorable,
got excited
about project

Excellent!

Add the date
when maintenance
was performed.

Place a form
number on top
for reference.
Place word
WEEKLY in title.

Modify on
1/08/2010
Review with
Andy and Pam.

Prototype Evaluation Form

Part III (Chapters 7–10) details the analysis
process. It builds on the previous two parts to move stu-
dents into analysis of data flows as well as structured and
semistructured decisions. It provides step-by-step details
on how to use structured techniques to draw data flow di-
agrams (DFDs). Chapter 7 provides coverage of how to
create child diagrams; how to develop both logical and
physical data flow diagrams; and how to partition data
flow diagrams. Chapter 8 features material on the data
repository and vertical balancing of data flow diagrams.
Chapter 8 also includes extensive coverage of extensible
markup language (XML) and demonstrates how to use
data dictionaries to create XML. Chapter 9 includes ma-
terial on developing process specifications. A discussion
of both logical and physical process specifications shows
how to use process specifications for horizontal balanc-
ing. Chapter 9 also covers how to diagram structured de-
cisions with the use of structured English, decision ta-
bles, and decision trees. In addition, the chapter covers how to choose an appropriate decision
analysis method for analyzing structured decisions and creating process specifications. Push tech-
nologies are also introduced.

Part III concludes with Chapter 10 on object-oriented systems analysis and design. This chap-
ter includes an in-depth section on using unified modeling language (UML). There is detailed cov-
erage of the use case model, creating the class model diagram with UML, sequence diagrams, cre-
ating gen/spec diagrams, use case scenarios, and activity diagrams. Through several examples and
Consulting Opportunities, this chapter demonstrates how to use an object-oriented approach.
Consulting Opportunities, diagrams, and problems enable students to learn and use UML to model
systems from an object-oriented perspective. Students learn the appropriate situations for using an
object-oriented approach. This chapter helps students to decide whether to use the SDLC, the agile
approach, or object-oriented systems analysis and design to develop a system.

Part IV (Chapters 11–14) covers the essentials of
design. It begins with designing output, because many
practitioners believe systems to be output driven. The de-
sign of Web-based forms is covered in detail. Particular
attention is paid to relating output method to content, the
effect of output on users, and designing good forms and
screens. Chapter 11 compares advantages and disadvan-
tages of output, including Web displays, audio, DVD, and
electronic output such as email and RSS feeds. Designing
a Web site for ecommerce purposes is emphasized, and output production and XML is covered.
Chapter 12 includes innovative material on designing Web-based input forms, as well as other
electronic forms design. Also included is computer-assisted forms design.

Chapter 12 features in-depth coverage of Web site design, including guidelines on when de-
signers should add video, audio, and animation to Web site designs. The chapter also covers uses
of Web push and pull technologies for output designs. There is detailed consideration of how to
create effective graphics for corporate Web sites and ways to design effective onscreen naviga-
tion for Web site users.

Coverage of intranet and extranet page design is also included. Consideration of database in-
tegrity constraints has been included as well, in addition to how the user interacts with the com-
puter and how to design an appropriate interface. The importance of user feedback is also found
in Part IV. How to design accurate data entry procedures that take full advantage of computer and
human capabilities to assure entry of quality data is emphasized here.

Chapter 13 demonstrates how to use the entity-relationship diagram to determine record
keys, as well as providing guidelines for file/database relation design. Students are shown the rel-
evance of database design for the overall usefulness of the system, and how users actually use
databases.

xxii PREFACE

method(Parameter)

return

asynchronousSignal()

::Class Object::Class

Web site logo Feature storyjpeg image

Video
subscription

Quick links Main
stories

Chat roomsAdvertisements Email contact link

RSS feeds

Banner ads

Links to
sub-Webs

Search engine

Chapter 14 emphasizes Human–Computer Interaction (HCI), especially as it relates to inter-
face design. It introduces HCI, discussing its importance in designing systems that suit individu-
als and assisting them in achieving personal and organizational goals through their use of infor-
mation technology. The concepts of usability, fit, perceived usefulness, and perceived ease of use
are introduced, as is the Technology Acceptance Model (TAM), so that systems students can
knowledgeably incorporate HCI practices into their designs. Chapter 14 also features material on
designing easy onscreen navigation for Web site visitors. The chapter presents innovative ap-
proaches to searching on the Web, highlights material on GUI design, and provides innovative
approaches to designing dialogs. Chapter 14 articulates specialized design considerations for
ecommerce Web sites. Mashups, new applications created by combining two or more Web-based
application programming interfaces, are also introduced. Chapter 14 also includes extensive
coverage on how to formulate queries, all within the framework of HCI.

Part V (Chapters 15 and 16) concludes the book.
Chapter 15 focuses on designing accurate data entry pro-
cedures and includes material on managing the supply
chain through the effective design of business-to-busi-
ness (B2B) ecommerce. Chapter 16 emphasizes taking a
total quality approach to improving software design and
maintenance. In addition, material on system security
and firewalls is included. Testing, auditing, and mainte-
nance of systems are discussed in the context of total
quality management. This chapter helps students under-
stand how service-oriented architecture (SOA) and cloud
computing are changing the nature of information sys-
tems design. In addition, students learn how to design ap-
propriate training programs for users of the new system,
how to recognize the differences among physical conver-
sion strategies, and how to be able to recommend an ap-
propriate one to a client. Chapter 16 also presents techniques for modeling networks, which can
be done with popular tools such as Microsoft Visio.

Material on security and privacy in relation to designing ecommerce applications is included.
Coverage of security, specifically firewalls, gateways, public key infrastructure (PKI), secure
electronic translation (SET), secure socket layering (SSL), virus protection software, URL filter-
ing products, email filtering products, and virtual private networks (VPN), is included.
Additionally, current topics of interest to designers of ecommerce applications, including the
development and posting of corporate privacy policies, are covered.

Important coverage of how the analyst can promote and then monitor a corporate Web site is
included in this section, which features Web activity monitoring, Web site promotion, Web traf-
fic analysis, and audience profiling to ensure the effectiveness of new ecommerce systems.
Techniques for evaluating the completed information systems project are covered systematically
as well.

The eighth edition contains an updated Glossary of terms and a separate list of updated
Acronyms used in the book and in the systems analysis and design field.

PEDAGOGICAL FEATURES
Chapters in the eighth edition contain:

� Learning Objectives at the beginning of each chapter
� Summaries that tie together the salient points of each chapter while providing an excel-

lent source of review for exams
� Keywords and Phrases
� Review Questions
� Problems
� Group Projects that help students work together in a systems team to solve important

problems that are best solved through group interaction
� Consulting Opportunities—now more than 60 minicases throughout the book

PREFACE xxiii

Web Services Application ServicesDatabase Services

Client Computers

� Mac Appeal columns that update students on design software available on the Mac and
iPhone

� HyperCase Experiences
� CPU Case Episodes—parts of an ongoing case threaded throughout the book

CONSULTING OPPORTUNITIES
The eighth edition presents more than 60 Consulting
Opportunities, and many of them address relevant and
emerging topics that have arisen in the field, including de-
signing systems from an HCI perspective, ecommerce ap-
plications for the Web, COTS software, and using UML
to model information systems from an object-oriented
perspective. Consulting Opportunities can be used for
stimulating in-class discussions, or assigned as home-
work or take-home exam questions.

Because not all systems are extended two- or three-
year projects, our book contains many Consulting Opportunities that can be solved quickly in 20
to 30 minutes of group discussion or individual writing. These minicases, written in a humorous
manner to enliven the material, require students to synthesize what they have learned up to that
point in the course, ask students to mature in their professional and ethical judgment, and expect
students to articulate the reasoning that led to their systems decisions.

HYPERCASE EXPERIENCES
HyperCase® Experiences that pose challenging student ex-
ercises are present in each chapter. New scenarios, graph-
ics, and problems to accompany HyperCase version 2.8
are included in the eighth edition. HyperCase has organi-
zational problems featuring state-of-the-art technological
systems. HyperCase represents an original virtual organi-
zation that allows students who access it to become imme-
diately immersed in organizational life. Students will in-
terview people, observe office environments, analyze their
prototypes, and review the documentation of their existing
systems. HyperCase 2.8 is Web-based, interactive soft-
ware that presents an organization called Maple Ridge
Engineering (MRE) in a colorful, three-dimensional
graphics environment. HyperCase permits professors to
begin approaching the systems analysis and design class with exciting multimedia material.
Carefully watching their use of time and managing multiple methods, students use the hypertext
characteristics of HyperCase on the Web to create their own individual paths through the
organization.

Maple Ridge Engineering is drawn from the actual consulting experiences of the authors of
the original version (Raymond Barnes, Richard Baskerville, Julie E. Kendall, and Kenneth E.
Kendall). Allen Schmidt joined the project for version 2.0 and has remained with it. Peter Schmidt
was the HTML programmer, and Jason Reed created the images for the initial Web version.

In each chapter, there are newly updated HyperCase Experiences that include assignments
(and even some clues) to help students solve the difficult organizational problems including de-
veloping new systems, merging departments, hiring of employees, security, ecommerce, and dis-
aster recovery planning they encounter at MRE. HyperCase has been fully tested in classrooms,
and was an award winner in the Decision Sciences Institute Innovative Instruction competition.

CPU CASE EPISODES
In keeping with our belief that a variety of approaches are important, we have once again inte-
grated the Central Pacific University (CPU) case into every chapter of the eighth edition. The

xxiv PREFACE

Patient Last Name First Middle Initial
Examining Station Date of Exam
Patient Number Social Security Number
First Exam Claim number

SPEECH AUDIOMETRY SECT. Comments [
SPEECH RECEP. THRESHOLD
Right Ear []
Left Ear [] Referred by []
RIGHT EAR DISCR. Reason for referral
% [] Masking []

% [] Masking []

Examining Audiologist
LEFT EAR DISCRIM. Exam. Audiologist’s No.

Next Appt.

AUDIOLOGICAL EXAMINATION REPORT

AIR CONDUCTION

BONE CONDUCTION

500 1000 2000 4000 6000
Right ear

500 1000 2000 4000 6000
Left ear

500 1000 2000 4000 6000
Right ear

500 1000 2000 4000 6000
Left ear

H Y P E R C A S E ® E X P E R I E N C E 3 . 2

“Sometimes the people who have been here for some time are
surprised at how much we have actually grown. Yes, I do admit that
it isn’t easy to keep track of what each person is up to or even what
purchases each department has made in the way of hardware and
software. We’re working on it, though. Snowden would like to see
more accountability for computer purchases. He wants to make sure
we know what we have, where it is, why we have it, who’s using it,
and if it’s boosting MRE productivity, or, as he so delicately puts it,
‘to see whether it’s just an expensive toy’ that we can live without.”

HYPERCASE Questions
1. Complete a computer equipment inventory for the Training

and Management Systems Unit, describing all the systems

you find. Hint: Create an inventory form to simplify your
task.

2. Using the software evaluation guidelines given in the text, do
a brief evaluation of GEMS, a software package used by the
Management Systems employees. In a paragraph, briefly
critique this custom software by comparing it with
commercial off-the-shelf software such as Microsoft Project.

3. List the intangible costs and benefits of GEMS as reported by
employees of MRE.

4. Briefly describe the two alternatives Snowden is considering
for the proposed project tracking and reporting system.

5. What organizational and political factors should Snowden
consider in proposing his new system at MRE? (In a brief
paragraph, discuss three central conflicts.)

FIGURE 3.HC1
The reception room resembles a typical corporation. While you are in this HyperCase
screen, find the directory if you want to visit someone.

CPU case makes use of Microsoft Access, Microsoft
Visio, and the popular CASE tool Visible Analyst by
Visible Systems, Inc., for the example screen shots and the
student exercises.

The CPU case takes students through all phases of the
systems development life cycle. This running case gives
students an opportunity to solve problems on their own,
using a variety of tools and data that users of the book can
download from the Web containing Microsoft Visio,
Microsoft Access, and Visible Analyst exercises specifi-
cally keyed to each chapter of the book. Additionally, par-
tially completed exercises in Microsoft Access files are
available for student use on the Web. The CPU case has
been fully tested in classrooms around the world with a va-
riety of students over numerous terms. The case is de-
tailed, rigorous, and rich enough to stand alone as a sys-
tems analysis and design project spanning one or two terms. Alternatively, the CPU case can be
used as a way to teach the use of CASE tools in conjunction with the assignment of a one- or two-
term, real-world project outside the classroom.

EXPANDED WEB SUPPORT
Kendall & Kendall’s Systems Analysis and Design,
Eighth Edition, features Web-based support for solid but
lively pedagogical techniques in the information systems
field.

� The Web site, located at
www.pearsonhighered.com/kendall, contains a
wealth of critical learning and support tools, which
keep class discussions exciting.

� HyperCase 2.8, is an award-winning, virtually in-
teractive organization game. Students are encour-
aged to interview people in the organization, ana-
lyze problems, modify data flow diagrams and data
dictionaries, react to prototypes, and design new
input and output. HyperCase now has a distinctive
3-D look.

� Student Exercises based on the ongoing CPU
case, with partially solved problems and examples
stored in Microsoft Access and Visible Analyst
files, allow students to develop a Web-based com-
puter management system.

EXPANDED INSTRUCTOR SUPPLEMENTAL WEB SUPPORT
Extended support for instructors using this edition can be found at the official Web site located at
www.pearsonhighered.com/kendall. Resources include:

� A complete set of PowerPoint presentation slides for use in lectures
� Image Library, a collection of all text art organized by chapter
� Instructor’s Manual with answers to problems, solutions to cases, and suggestions for

approaching the subject matter
� Test Item File in Microsoft Word and TestGen with WebCT- and Blackboard-ready

conversions
� Solutions to Student Exercises based on the ongoing CPU case, with solutions and ex-

amples stored in Visible Analyst files and Microsoft Access files.

PREFACE xxv

Contains

Installed On

Hardware Inventory Number +
Brand Name +
Model +
Serial Number +
Date Purchased +
Purchase Cost +
Replacement Cost +
Memory Size +
Hard Drive Capacity +
Second Hard Drive Capacity +
Optical Drive +
Operating System +
Refresh Interval +
Warranty Length +
Campus Description +
Room Location +
{Software Inventory Number}

Software Inventory Number +
Title +
Operating System Name +
Version Number +
Publisher +
Software Category Description +
Computer Brand +
Computer Model +
Memory Required +
Site License +
Number of Copies +
Expert Last Name +
Expert First Name +
Office Phone

SoftwareComputer

FIGURE E13.1
Unnormalized entity-relationship
diagram for the computer system.
The many-to-many relationship
will have to be defined as an
associative entity.

E P I S O D E 13
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Back to Data Basics
After numerous interviews, prototypes, data flow diagrams, data dictionary entries, and UML diagrams
have been completed, Anna and Chip both start work on the entity-relationship model. “I’ll be responsi-
ble for creating the Microsoft Access table relationships,” Anna promises. Chip volunteers to complete
an entity-relationship diagram. “Let’s compare the two diagrams for accuracy and consistency when
we’re done,” Anna suggests, and so they do.

Figure E13.1 shows the entity-relationship diagram for the computer inventory system. Visible Analyst
calls each of the rectangles an entity. Each entity represents a database table of information stored in the sys-
tem, corresponding to a data store on the data flow diagram or an entity class on a sequence or class dia-
gram. Each of the diamond rectangles represents an associative entity representing a relationship between
the data entities. A rectangle with an oval in it represents an associative entity that cannot exist without the
connecting entity. These are usually repeating elements. Microsoft Visio uses rectangles to represent both
an associative and an attributive entity.

“I’ve created the entity-relationship diagram, starting with the simplest portions of the system,” Chip
tells Anna. “The first data entities created are SOFTWARE and COMPUTER. The relationship is that soft-
ware is installed on the computer. Next I determined the cardinality of the relationship. Because one soft-
ware package could be installed on many computers, this relationship is one-to-many. Each computer may
also have many different software packages installed on it so that it also provides a one-to-many relation-
ship. Because there is a one-to-many relationship for each of the data entities, the full relationship between
them becomes many-to-many.”

Chip continues by saying, “This first view is far from normalized. Notice that the SOFTWARE IN-
VENTORY NUMBER is a repeating element on the HARDWARE entity. I will have to create several enti-
ties for each of them.” A bit later Chip reviews his work with Anna. The SOFTWARE INVENTORY
NUMBER has been removed and placed in a relational entity. Refer to the entity-relationship diagram illus-
trated in Figure E13.2. “This places the data in the first normal form,” remarks Chip. “Also, there are no el-
ements that are dependent on only a part of the key, so the data are also in the second normal form. There
are, however, elements that are not part of the entity that is represented on the diagram, and they will have
to be removed. For example, look at the OPERATING SYSTEM and CAMPUS BUILDING. These ele-
ments are not a part of the computer hardware but are installed on the computer or the computer is installed
in a campus room. They should have their own entity. That makes it easier to change the version of an op-
erating system. Rather than having to change the version of the operating system on many of the COM-
PUTER records, it would only have to be changed once.”

www.pearsonhighered.com/kendall
www.pearsonhighered.com/kendall

This page intentionally left blank

ACKNOWLEDGMENTS

Rapid and dramatic changes in IT occurred as we were writing the eighth edition of Systems
Analysis and Design. We are delighted that this edition is being published at the right time
for us to capture many of these changes in systems development.

One major change is that three primary approaches to development are emerging the
SDLC, agile approaches, and object-oriented systems analysis and design—and we are able
to show where and in what situations each is useful to you as a systems analyst.

Another big change is the rapidly increasing use of the Web as a platform for informa-
tion systems. Service-oriented architecture and cloud computing both change the way that
the analyst approaches designing systems solutions. Along with the Web, analysts are being
pushed to design for a wide spectrum of emerging information technologies such as wireless
and mobile technologies, enterprise systems, and virtual contexts such as virtual teams and
virtual organizations.

Another major change addressed in this edition is the ability of users to personalize and
customize their desktops, workspaces, and Web pages, and even for users to alter the profes-
sional designs of systems analysts. Analysts see the big picture that users cannot see, and they
must always be aware of the organizational impacts of changing systems.

Throughout the book you will learn and apply numerous techniques, methods, tools, and
approaches. But when the time comes to interpret what is happening in the organization and
to develop meaningful information systems from the application of rules to your analysis,
your training combines with creativity to produce a system that is in some ways a surprise:
It is structured, yet intuitive; multilayered and complex, in keeping with the character of the
organization and uniquely reflective of you as a systems analyst and a human being.

Our students deserve credit for this new edition by providing feedback and suggestions
for improvements and asking for increased depth in certain topics. Students told us that they
rapidly put to use the new material on object-oriented systems analysis and design as well as
that on agile modeling. Their eagerness to teach us new things keeps the book fresh. We want
to thank our coauthor, Allen Schmidt, who once again worked with us on the CPU Case
Episodes and HyperCase 2.8, for all of his hard work, dedication, and humor during our col-
laboration. He is a wonderful person. Our appreciation also goes to Peter Schmidt and Jason
Reed for their improvements to the early HyperCase. We also want to thank the other two
original authors of HyperCase, Richard Baskerville and Raymond Barnes, who contributed
so much.

We would like to thank our eighth edition production team, especially our executive ed-
itor, Bob Horan, whose wisdom and calm demeanor are always inspiring. We are also grate-
ful to Kelly Loftus, our extremely capable assistant editor, for her unruffled competency and
for her optimism in keeping the project going. Ana Jankowski, our production editor, also
deserves thanks for helping us succeed in making this a strong, complete, and accurate revi-
sion. Their help and enthusiasm facilitated the completion of the project in a smooth and
timely manner.

xxvii

We are also grateful for the encouragement and support of the entire Rutgers commu-
nity, including our Chancellor Wendell Prittchett, our colleagues in the School of Business-
Camden and throughout all of Rutgers, our staff, and our Board of Governors. They have
been very enthusiastic about this edition as well as the many translations of Systems Analysis
and Design available in Spanish, Chinese, and Indonesian.

All the reviewers for the eighth edition deserve our thanks as well. Their thoughtful com-
ments and suggestions helped to strengthen the book. They are:

Stephen T. Brower, Raritan Valley Community College
Robert F. Cope III, Southeastern Louisiana University
Junhua Ding, East Carolina University
Jon Gant, University of Illinois
Cliff Layton, Rogers State University
Keng Siau, University of Nebraska–Lincoln

Many of our colleagues and friends have encouraged us through the process of writing
this book. We thank them for their comments on our work. They include: Ayman Abu
Hamdieh; Macedonio Alanis; Michel Avital; the Ciupeks; Charles J. Coleman; Roger T.
Danforth; Gordon Davis; EgoPo; Paul Gray; Nancy V. Gulick; Andy and Pam Hamingson;
Blake Ives; Richard Kalina; Carol Latta; Ken and Jane Laudon; Richard Levao; Joel and
Bobbie Porter; Caryn Schmidt; Marc and Jill Schniederjans; Gabriel Shanks; Detmar W.
Straub, Jr.; the Vargos; Merrill Warkentin; Jeff and Bonnie Weil; Ping Zhang, and all of our
friends and colleagues in the Association for Information Systems, the Decision Sciences
Institute, IFIP Working Group 8.2, and all those involved in the PhD Project (founded by the
KPMG Foundation), which serves minority doctoral students in information systems.

Our heartfelt thanks go to the memory of Julia A. Kendall and to the memory of Edward
J. Kendall. Their belief that love, goals, and hard work are an unbeatable combination con-
tinues to infuse our every endeavor.

xxviii ACKNOWLEDGMENTS

Julie and Ken Kendall personally thank Shrek (Brian d’Arcy James) and all of our dear friends in the
theatre and the performing arts.

1

C H A P T E R 1

Systems, Roles, and
Development Methodologies

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Recall the basic types of computer-based systems that a systems analyst needs to address.

2. Understand how users working in context with new technologies change the dynamics of a
system.

3. Realize what the many roles of a systems analyst are.

4. Comprehend the fundamentals of three development methodologies: SDLC, the agile
approach, and object-oriented systems analysis and design.

5. Understand what CASE tools are and how they help a systems analyst.

Organizations have long recognized the importance of managing key re-
sources such as people and raw materials. Information has now moved to
its rightful place as a key resource. Decision makers now understand that
information is not just a by-product of conducting business; rather, it fuels
business and can be the critical factor in determining the success or failure

of a business.
To maximize the usefulness of information, a business must manage it correctly, just as it

manages other resources. Managers need to understand that costs are associated with the pro-
duction, distribution, security, storage, and retrieval of all information. Although information is
all around us, it is not free, and its strategic use for positioning a business competitively should
not be taken for granted.

The ready availability of networked computers, along with access to the Internet and
the Web, has created an information explosion throughout society in general and business
in particular. Managing computer-generated information differs in significant ways from
handling manually produced data. Usually there is a greater quantity of computer informa-
tion to administer. Costs of organizing and maintaining it can increase at alarming rates,
and users often treat it less skeptically than information obtained in different ways. This
chapter examines the fundamentals of different kinds of information systems, the varied
roles of systems analysts, and the phases in the systems development life cycle (SDLC) as
they relate to Human–Computer Interaction (HCI) factors; it also introduces Computer-
Aided Software Engineering (CASE) tools.

PA R T I

Systems Analysis
Fundamentals

2 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

TYPES OF SYSTEMS
Information systems are developed for different purposes, depending on the needs of human users
and the business. Transaction processing systems (TPS) function at the operational level of the
organization; office automation systems (OAS) and knowledge work systems (KWS) support
work at the knowledge level. Higher-level systems include management information systems
(MIS) and decision support systems (DSS). Expert systems apply the expertise of decision mak-
ers to solve specific, structured problems. On the strategic level of management we find execu-
tive support systems (ESS). Group decision support systems (GDSS) and the more generally
described computer-supported collaborative work systems (CSCWS) aid group-level decision
making of a semistructured or unstructured variety.

The variety of information systems that analysts may develop is shown in Figure 1.1. Notice
that the figure presents these systems from the bottom up, indicating that the operational, or low-
est, level of the organization is supported by TPS, and the strategic, or highest, level of semistruc-
tured and unstructured decisions is supported by ESS, GDSS, and CSCWS at the top. This text uses
the terms management information systems, information systems (IS), computerized information
systems, and computerized business information systems interchangeably to denote computerized
information systems that support the broadest range of user interactions with technologies and busi-
ness activities through the information they produce in organizational contexts.

Transaction Processing Systems
Transaction processing systems (TPS) are computerized information systems that were developed
to process large amounts of data for routine business transactions such as payroll and inventory. A
TPS eliminates the tedium of necessary operational transactions and reduces the time once required
to perform them manually, although people must still input data to computerized systems.

Transaction processing systems are boundary-spanning systems that permit the organization
to interact with external environments. Because managers look to the data generated by the TPS
for up-to-the-minute information about what is happening in their companies, it is essential to the
day-to-day operations of business that these systems function smoothly and without interruption.

Office Automation Systems and Knowledge Work Systems
At the knowledge level of the organization are two classes of systems. Office automation systems
(OAS) support data workers, who do not usually create new knowledge but rather analyze infor-
mation to transform data or manipulate it in some way before sharing it with, or formally dissem-
inating it throughout, the organization and, sometimes, beyond. Familiar aspects of OAS include

ESS

GDSS

CSCWS

Expert Systems

Decision Support Systems

Management Information Systems

Knowledge Work Systems

Office Automation Systems

Transaction Processing Systems

FIGURE 1.1
A systems analyst may be
involved with any or all of these
systems.

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 3

word processing, spreadsheets, desktop publishing, electronic scheduling, and communication
through voice mail, email (electronic mail), and teleconferencing.

Knowledge work systems (KWS) support professional workers such as scientists, engineers,
and doctors by aiding them in their efforts to create new knowledge (often in teams) and by al-
lowing them to contribute it to their organization or to society at large.

Management Information Systems
Management information systems (MIS) do not replace transaction processing systems; rather,
all MIS include transaction processing. MIS are computerized information systems that work be-
cause of the purposeful interaction between people and computers. By requiring people, software,
and hardware to function in concert, management information systems support users in accom-
plishing a broader spectrum of organizational tasks than transaction processing systems, includ-
ing decision analysis and decision making.

To access information, users of the management information system share a common data-
base. The database stores both data and models that help the user interact with, interpret, and ap-
ply that data. Management information systems output information that is used in decision
making. A management information system can also help integrate some of the computerized in-
formation functions of a business.

Decision Support Systems
A higher-level class of computerized information systems is decision support systems (DSS). DSS
are similar to the traditional management information system because they both depend on a data-
base as a source of data. A decision support system departs from the traditional management infor-
mation system because it emphasizes the support of decision making in all its phases, although the
actual decision is still the exclusive province of the decision maker. Decision support systems are
more closely tailored to the person or group using them than is a traditional management informa-
tion system. Sometimes they are discussed as systems that focus on business intelligence.

Artificial Intelligence and Expert Systems
Artificial intelligence (AI) can be considered the overarching field for expert systems. The gen-
eral thrust of AI has been to develop machines that behave intelligently. Two avenues of AI re-
search are (1) understanding natural language and (2) analyzing the ability to reason through a
problem to its logical conclusion. Expert systems use the approaches of AI reasoning to solve the
problems put to them by business (and other) users.

Expert systems are a very special class of information system that has been made practica-
ble for use by business as a result of widespread availability of hardware and software such as
personal computers (PCs) and expert system shells. An expert system (also called a knowledge-
based system) effectively captures and uses the knowledge of a human expert or experts for solv-
ing a particular problem experienced in an organization. Notice that unlike DSS, which leave the
ultimate judgment to the decision maker, an expert system selects the best solution to a problem
or a specific class of problems.

The basic components of an expert system are the knowledge base, an inference engine con-
necting the user with the system by processing queries via languages such as structured query lan-
guage (SQL), and the user interface. People called knowledge engineers capture the expertise of
experts, build a computer system that includes this expert knowledge, and then implement it.

Group Decision Support Systems and Computer-Supported
Collaborative Work Systems
Organizations are becoming increasingly reliant on groups or teams to make decisions together.
When groups make semistructured or unstructured decisions, a group decision support system may
afford a solution. Group decision support systems (GDSS), which are used in special rooms
equipped in a number of different configurations, permit group members to interact with electronic
support—often in the form of specialized software—and a special group facilitator. Group decision
support systems are intended to bring a group together to solve a problem with the help of various
supports such as polling, questionnaires, brainstorming, and scenario creation. GDSS software can
be designed to minimize typical negative group behaviors such as lack of participation due to fear

4 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

of reprisal for expressing an unpopular or contested viewpoint, domination by vocal group mem-
bers, and “group think” decision making. Sometimes GDSS are discussed under the more general
term computer-supported collaborative work systems (CSCWS), which might include software sup-
port called groupware for team collaboration via networked computers. Group decision support sys-
tems can also be used in a virtual setting.

Executive Support Systems
When executives turn to the computer, they are often looking for ways to help them make deci-
sions on the strategic level. Executive support systems (ESS) help executives organize their in-
teractions with the external environment by providing graphics and communications technologies
in accessible places such as boardrooms or personal corporate offices. Although ESS rely on the
information generated by TPS and MIS, executive support systems help their users address un-
structured decision problems, which are not application specific, by creating an environment that
helps them think about strategic problems in an informed way. ESS extend and support the capa-
bilities of executives, permitting them to make sense of their environments.

INTEGRATING TECHNOLOGIES FOR SYSTEMS
As users adopt new technologies, some of the systems analyst’s work will be devoted to integrat-
ing traditional systems with new ones to ensure a useful context, as shown in Figure 1.2. This sec-
tion describes some of the new information technologies systems analysts will be using as people
work to integrate their ecommerce applications into their traditional businesses or as they begin
entirely new ebusinesses.

Ecommerce Applications and Web Systems
Many of the systems discussed here can be imbued with greater functionality if they are migrated
to the World Wide Web or if they are originally conceived and implemented as Web-based tech-
nologies. There are many benefits to mounting or improving an application on the Web:

1. Increasing user awareness of the availability of a service, product, industry, person, or group.
2. The possibility of 24-hour access for users.

FIGURE 1.2
Systems analysts need to be aware
that integrating technologies affect
all types of users and systems.

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 5

3. Improving the usefulness and usability of the interface design.
4. Creating a system that can extend globally rather than remain local, thus reaching people in

remote locations without worry of the time zone in which they are located.

Enterprise Systems
Many organizations envision potential benefits from the integration of many information systems
existing on different management levels and within different functions. Some authors discuss in-
tegration as service-oriented architecture (SOA), which exists in layers. Enterprise systems would
comprise the top layer. Enterprise systems, also called enterprise resource planning (ERP) sys-
tems, are designed to perform this integration. Instituting ERP requires enormous commitment
and organizational change. Often systems analysts serve as consultants to ERP endeavors that use
proprietary software. Popular ERP software includes that from SAP and Oracle. Some of these
packages are targeted toward moving enterprises onto the Web. Typically, analysts as well as
some users require vendor training, support, and maintenance to be able to properly design, in-
stall, maintain, update, and use a particular ERP package.

Systems for Wireless and Mobile Devices
Analysts are being asked to design a plethora of new systems and applications for adventurous
users, including many for wireless and mobile devices such as the Apple iPhone, iPod, or the
BlackBerry. In addition, analysts may find themselves designing standard or wireless communi-
cations networks for users that integrate voice, video, text messaging, and email into organiza-
tional intranets or industry extranets. Wireless ecommerce is referred to as mcommerce (mobile
commerce).

Wireless local area networks (WLANs); wireless fidelity networks, called Wi-Fi; and per-
sonal wireless networks that bring together many types of devices under the standard called Blue-
tooth are all systems that you may be asked to design. In more advanced settings, analysts may
be called on to design intelligent agents, software that can assist users with tasks in which the soft-
ware learns users’ preferences over time and then acts on those preferences. For example, in the
use of pull technology, an intelligent agent would search the Web for stories of interest to the user,
having observed the user’s behavior patterns with information over time, and would conduct
searches on the Web without continual prompting from the user.

Open Source Software
An alternative to traditional software development in which proprietary code is hidden from the
users is called open source software (OSS). With OSS, the code, or computer instructions, can be
studied, shared, and modified by many users and programmers. Rules of this community include
the idea that any program modifications must be shared with all the people on the project.

Development of OSS has also been characterized as a philosophy rather than simply as the
process of creating new software. Often those involved in OSS communities view it as a way to
help societies change. Widely known open source projects include Apache for developing a Web
server, the browser called Mozilla Firefox, and Linux, which is a Unix-like open source operat-
ing system.

However, it would be an oversimplification to think of OSS as a monolithic movement, and
it does little to reveal what type of users or user analysts are developing OSS projects and on what
basis. To help us understand the open source movement, researchers have recently categorized
open source communities into four community types—ad hoc, standardized, organized, and com-
mercial—along six different dimensions—general structure, environment, goals, methods, user
community, and licensing. Some researchers argue that OSS is at a crossroads and that the com-
mercial and community OSS groups need to understand where they converge and where the po-
tential for conflict exists.

Open source development is useful for many applications running on diverse technologies,
including handheld devices and communication equipment. Its use may encourage progress in
creating standards for devices to communicate more easily. Widespread use of OSS may allevi-
ate some of the severe shortages of programmers by placing programming tools in the hands of
students in developing countries sooner than if they were limited to using proprietary packages,
and it may lead to solving large problems through intense and extensive collaboration.

6 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

NEED FOR SYSTEMS ANALYSIS AND DESIGN
Systems analysis and design, as performed by systems analysts, seeks to understand what humans
need to analyze data input or data flow systematically, process or transform data, store data, and out-
put information in the context of a particular organization or enterprise. By doing thorough analy-
sis, analysts seek to identify and solve the right problems. Furthermore, systems analysis and design
is used to analyze, design, and implement improvements in the support of users and the functioning
of businesses that can be accomplished through the use of computerized information systems.

Installing a system without proper planning leads to great user dissatisfaction and frequently
causes the system to fall into disuse. Systems analysis and design lends structure to the analysis
and design of information systems, a costly endeavor that might otherwise have been done in a
haphazard way. It can be thought of as a series of processes systematically undertaken to improve
a business through the use of computerized information systems. Systems analysis and design in-
volves working with current and eventual users of information systems to support them in work-
ing with technologies in an organizational setting.

User involvement throughout the systems project is critical to the successful development of
computerized information systems. Systems analysts, whose roles in the organization are dis-
cussed next, are the other essential component in developing useful information systems.

Users are moving to the forefront as software development teams become more international
in their composition. This means that there is more emphasis on working with software users; on
performing analysis of their business, problems, and objectives; and on communicating the analy-
sis and design of the planned system to all involved.

New technologies also are driving the need for systems analysis. Ajax (Asynchronous
JavaScript and XML) is not a new programming language, but a technique that uses existing lan-
guages to make Web pages function more like a traditional desktop application program. Build-
ing and redesigning Web pages that utilize Ajax technologies will be a task facing analysts. New
programming languages, such as the open source Web framework, Ruby on Rails, which is a com-
bination programming language and code generator for creating Web applications, will require
more analysis.

ROLES OF THE SYSTEMS ANALYST
The systems analyst systematically assesses how users interact with technology and how businesses
function by examining the inputting and processing of data and the outputting of information with the
intent of improving organizational processes. Many improvements involve better support of users’
work tasks and business functions through the use of computerized information systems. This defini-
tion emphasizes a systematic, methodical approach to analyzing—and potentially improving—what
is occurring in the specific context experienced by users and created by a business.

Our definition of a systems analyst is necessarily broad. The analyst must be able to work
with people of all descriptions and be experienced in working with computers. The analyst plays
many roles, sometimes balancing several at the same time. The three primary roles of the systems
analyst are consultant, supporting expert, and agent of change.

Systems Analyst as Consultant
The systems analyst frequently acts as a systems consultant to humans and their businesses and,
thus, may be hired specifically to address information systems issues within a business. Such hir-
ing can be an advantage because outside consultants can bring with them a fresh perspective that
other people in an organization do not possess. It also means that outside analysts are at a disad-
vantage because an outsider can never know the true organizational culture. As an outside con-
sultant, you will rely heavily on the systematic methods discussed throughout this text to analyze
and design appropriate information systems for users working in a particular business. In addi-
tion, you will rely on information systems users to help you understand the organizational culture
from others’ viewpoints.

Systems Analyst as Supporting Expert
Another role that you may be required to play is that of supporting expert within a business for
which you are regularly employed in some systems capacity. In this role the analyst draws on pro-
fessional expertise concerning computer hardware and software and their uses in the business.

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 7

C O N S U L T I N G O P P O R T U N I T Y 1 . 1

Healthy Hiring: Ecommerce Help Wanted

“You’ll be happy to know that we made a strong case to manage-
ment that we should hire a new systems analyst to specialize in ecom-
merce development,” says Al Falfa, a systems analyst for the
multioutlet international chain of Marathon Vitamin Shops. He is
meeting with his large team of systems analysts to decide on the qual-
ifications that their new team member should possess. Al continues,
saying, “In fact, they were so excited by the possibility of our team
helping to move Marathon into an ecommerce strategy that they’ve
said we should start our search now and not wait until the fall.”

Ginger Rute, another analyst, agrees, saying, “The demand for
Web site developers is still outstripping the supply. We should move
quickly. I think our new person should be knowledgeable in system
modeling, JavaScript, C��, Rational Rose, and familiar with Ajax,
just to name a few.”

Al looks surprised at Ginger’s long list of skills but then
replies, “Well, that’s certainly one way we could go. But I would
also like to see a person with some business savvy. Most of the peo-
ple coming out of school will have solid programming skills, but
they should know about accounting, inventory, and distribution of
goods and services, too.”

The newest member of the systems analysis group, Vita Ming,
finally breaks into the discussion. She says, “One of the reasons I
chose to come to work with all of you was that I thought we all got
along quite well together. Because I had some other opportunities,
I looked very carefully at what the atmosphere was here. From what
I’ve seen, we’re a friendly group. Let’s be sure to hire someone who
has a good personality and who fits in well with us.”

Al concurs, continuing, “Vita’s right. The new person should
be able to communicate well with us, and with business clients, too.

We are always communicating in some way, through formal presen-
tations, drawing diagrams, or interviewing users. If they understand
decision making, it will make their job easier, too. Also, Marathon
is interested in integrating ecommerce into the entire business. We
need someone who at least grasps the strategic importance of the
Web. Page design is such a small part of it.”

Ginger interjects again with a healthy dose of practicality, say-
ing, “Leave that to management. I still say the new person should
be a good programmer.” Then she ponders aloud, “I wonder how
important UML will be?”

After listening patiently to everyone’s wish list, one of the sen-
ior analysts, Cal Siem, speaks up, joking, “We’d better see if Super-
man is available!”

As the group shares a laugh, Al sees an opportunity to try for
some consensus, saying, “We’ve had a chance to hear a number of
different qualifications. Let’s each take a moment and make a list
of the qualifications we personally think are essential for the new
ecommerce development person to possess. We’ll share them and
continue discussing until we can describe the person in enough de-
tail to turn a description over to the human resources group for
processing.”

What qualifications should the systems analysis team be look-
ing for when hiring their new ecommerce development team mem-
ber? Is it more important to know specific languages or to have an
aptitude for picking up languages and software packages quickly?
How important is it that the person being hired has some basic
business understanding? Should all team members possess identi-
cal competencies and skills? What personality or character traits
are desirable in a systems analyst who will be working in ecom-
merce development?

This work is often not a full-blown systems project, but rather it entails a small modification or
decision affecting a single department.

As the supporting expert, you are not managing the project; you are merely serving as a re-
source for those who are. If you are a systems analyst employed by a manufacturing or service
organization, many of your daily activities may be encompassed by this role.

Systems Analyst as Agent of Change
The most comprehensive and responsible role that the systems analyst takes on is that of an agent
of change, whether internal or external to the business. As an analyst, you are an agent of change
whenever you perform any of the activities in the systems development life cycle (discussed in
the next section) and are present and interacting with users and the business for an extended pe-
riod (from two weeks to more than a year). An agent of change can be defined as a person who
serves as a catalyst for change, develops a plan for change, and works with others in facilitating
that change.

Your presence in the business changes it. As a systems analyst, you must recognize this fact
and use it as a starting point for your analysis. Hence, you must interact with users and manage-
ment (if they are not one and the same) from the very beginning of your project. Without their
help you cannot understand what they need to support their work in the organization, and real
change cannot take place.

8 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

1

7

6 5

4

Developing and
documenting
software

3

22 Determining human
information
requirements

Analyzing
system needs

Designing the
recommended
system

Testing and
maintaining
the system

Implementing
and evaluating
the system

Identifying problems,
opportunities, and
objectives

FIGURE 1.3
The seven phases of the systems
development life cycle (SDLC).

If change (that is, improvements to the business that can be realized through information sys-
tems) seems warranted after analysis, the next step is to develop a plan for change along with the
people who must enact the change. Once a consensus is reached on the change that is to be made,
you must constantly interact with those who are changing.

As a systems analyst acting as an agent of change, you advocate a particular avenue of change
involving the use of information systems. You also teach users the process of change, because
changes in the information system do not occur independently; rather, they cause changes in the
rest of the organization as well.

Qualities of the Systems Analyst
From the foregoing descriptions of the roles the systems analyst plays, it is easy to see that the
successful systems analyst must possess a wide range of qualities. Many different kinds of peo-
ple are systems analysts, so any description is destined to fall short in some way. There are some
qualities, however, that most systems analysts seem to display.

Above all, the analyst is a problem solver. He or she is a person who views the analysis
of problems as a challenge and who enjoys devising workable solutions. When necessary, the
analyst must be able to systematically tackle the situation at hand through skillful application
of tools, techniques, and experience. The analyst must also be a communicator capable of re-
lating meaningfully to other people over extended periods of time. Systems analysts need to
be able to understand humans’ needs in interacting with technology, and they need enough
computer experience to program, to understand the capabilities of computers, to glean infor-
mation requirements from users, and to communicate what is needed to programmers. They
also need to possess strong personal and professional ethics to help them shape their client
relationships.

The systems analyst must be a self-disciplined, self-motivated individual who is able to man-
age and coordinate other people, as well as innumerable project resources. Systems analysis is a
demanding career, but, in compensation, an ever-changing and always challenging one.

THE SYSTEMS DEVELOPMENT LIFE CYCLE
Throughout this chapter we have referred to the systematic approach analysts take to the
analysis and design of information systems. Much of this is embodied in what is called the
systems development life cycle (SDLC). The SDLC is a phased approach to analysis and de-
sign that holds that systems are best developed through the use of a specific cycle of analyst
and user activities.

Analysts disagree on exactly how many phases there are in the SDLC, but they generally laud
its organized approach. Here we have divided the cycle into seven phases, as shown in Figure 1.3.
Although each phase is presented discretely, it is never accomplished as a separate step. Instead,
several activities can occur simultaneously, and activities may be repeated.

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 9

Incorporating Human–Computer Interaction Considerations
In recent years, the study of human–computer interaction (HCI) has become increasingly impor-
tant for systems analysts. Although the definition is still evolving, researchers characterize HCI as
the “aspect of a computer that enables communications and interactions between humans and the
computer. It is the layer of the computer that is between humans and the computer” (Zhang, Carey,
Te’eni, & Tremaine, 2005, p. 518). Analysts using an HCI approach are emphasizing people rather
than the work to be done or the IT that is involved. Their approach to a problem is multifaceted,
looking at the “human ergonomic, cognitive, affective, and behavioral factors involved in user
tasks, problem solving processes and interaction context” (Zhang, Carey, Te’eni, & Tremaine,
2005, p. 518). Human computer interaction moves away from focusing first on organizational and
system needs and instead concentrates on human needs. Analysts adopting HCI principles exam-
ine a variety of user needs in the context of humans interacting with information technology to
complete tasks and solve problems. These include taking into account physical or ergonomic fac-
tors; usability factors that are often labeled cognitive matters; the pleasing, aesthetic, and enjoy-
able aspects of using the system; and behavioral aspects that center on the usefulness of the system.

Another way to think about HCI is to think of it as a human-centered approach that puts peo-
ple ahead of organizational structure or culture when creating new systems. When analysts em-
ploy HCI as a lens to filter the world, their work will possess a different quality than the work of
those who do not possess this perspective.

Your career can benefit from a strong grounding in HCI. The demand for analysts who are
capable of incorporating HCI into the systems development process keeps rising, as companies
increasingly realize that the quality of systems and the quality of work life can both be improved
by taking a human-centered approach at the outset of a project.

The application of human–computer interaction principles tries to uncover and address the frus-
trations that users voice over their use of information technology. These concerns include a suspi-
cion that systems analysts misunderstand the work being done, the tasks involved, and how they can
best be supported; a feeling of helplessness or lack of control when working with the system; inten-
tional breaches of privacy; trouble navigating through system screens and menus; and a general mis-
match between the system designed and the way users themselves think of their work processes.

Misjudgments and errors in design that cause users to neglect new systems or that cause sys-
tems to fall into disuse soon after their implementation can be eradicated or minimized when sys-
tems analysts adopt an HCI approach.

Researchers in HCI see advantages to the inclusion of HCI in every phase of the SDLC. This
is a worthwhile approach, and we will try to mirror this by bringing human concerns explicitly into
each phase of the SDLC. As a person who is learning systems analysis, you can also bring a fresh
eye to the SDLC to identify opportunities for designers to address HCI concerns and ways for users
to become more central to each phase of the SDLC. Chapter 14 is devoted to examining the role of
the systems analyst in designing human-centered systems and interfaces from an HCI perspective.

Identifying Problems, Opportunities, and Objectives
In this first phase of the systems development life cycle, the analyst is concerned with correctly
identifying problems, opportunities, and objectives. This stage is critical to the success of the rest
of the project, because no one wants to waste subsequent time addressing the wrong problem.

The first phase requires that the analyst look honestly at what is occurring in a business.
Then, together with other organizational members, the analyst pinpoints problems. Often others
will bring up these problems, and they are the reason the analyst was initially called in. Opportu-
nities are situations that the analyst believes can be improved through the use of computerized in-
formation systems. Seizing opportunities may allow the business to gain a competitive edge or
set an industry standard.

Identifying objectives is also an important component of the first phase. The analyst must
first discover what the business is trying to do. Then the analyst will be able to see whether some
aspect of information systems applications can help the business reach its objectives by address-
ing specific problems or opportunities.

The people involved in the first phase are the users, analysts, and systems managers coordinat-
ing the project. Activities in this phase consist of interviewing user management, summarizing the

10 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

knowledge obtained, estimating the scope of the project, and documenting the results. The output
of this phase is a feasibility report containing a problem definition and summarizing the objectives.
Management must then make a decision on whether to proceed with the proposed project. If the user
group does not have sufficient funds in its budget or wishes to tackle unrelated problems, or if the
problems do not require a computer system, a different solution may be recommended, and the sys-
tems project does not proceed any further.

Determining Human Information Requirements
The next phase the analyst enters is that of determining the human needs of the users involved, using
a variety of tools to understand how users interact in the work context with their current information
systems. The analyst will use interactive methods such as interviewing, sampling and investigating
hard data, and questionnaires, along with unobtrusive methods, such as observing decision makers’
behavior and their office environments, and all-encompassing methods, such as prototyping.

The analyst will use these methods to pose and answer many questions concerning human-
computer interaction (HCI), including questions such as, “What are the users’ physical strengths
and limitations?” In other words, “What needs to be done to make the system audible, legible,
and safe?” “How can the new system be designed to be easy to use, learn, and remember?” “How
can the system be made pleasing or even fun to use?” “How can the system support a user’s in-
dividual work tasks and make them more productive in new ways?”

In the information requirements phase of the SDLC, the analyst is striving to understand what
information users need to perform their jobs. At this point the analyst is examining how to make
the system useful to the people involved. How can the system better support individual tasks that
need doing? What new tasks are enabled by the new system that users were unable to do without
it? How can the new system be created to extend a user’s capabilities beyond what the old system
provided? How can the analyst create a system that is rewarding for workers to use?

The people involved in this phase are the analysts and users, typically operations managers
and operations workers. The systems analyst needs to know the details of current system func-
tions: the who (the people who are involved), what (the business activity), where (the environ-
ment in which the work takes place), when (the timing), and how (how the current procedures are
performed) of the business under study. The analyst must then ask why the business uses the cur-
rent system. There may be good reasons for doing business using the current methods, and these
should be considered when designing any new system.

Agile development is an object-oriented approach (OOA) to systems development that in-
cludes a method of development (including generating information requirements) as well as soft-
ware tools. In this text it is paired with prototyping in Chapter 6. (There is more about
object-oriented approaches in Chapter 10.)

If the reason for current operations is that “it’s always been done that way,” however, the an-
alyst may wish to improve on the procedures. At the completion of this phase, the analyst should
understand how users accomplish their work when interacting with a computer and begin to know
how to make the new system more useful and usable. The analyst should also know how the busi-
ness functions and have complete information on the people, goals, data, and procedures involved.

Analyzing System Needs
The next phase that the systems analyst undertakes involves analyzing system needs. Again, spe-
cial tools and techniques help the analyst make requirement determinations. Tools such as data
flow diagrams (DFD) to chart the input, processes, and output of the business’s functions, or ac-
tivity diagrams or sequence diagrams to show the sequence of events, illustrate systems in a struc-
tured, graphical form. From data flow, sequence, or other diagrams, a data dictionary is developed
that lists all the data items used in the system, as well as their specifications.

During this phase the systems analyst also analyzes the structured decisions made. Struc-
tured decisions are those for which the conditions, condition alternatives, actions, and action
rules can be determined. There are three major methods for analysis of structured decisions:
structured English, decision tables, and decision trees.

At this point in the SDLC, the systems analyst prepares a systems proposal that summarizes
what has been found out about the users, usability, and usefulness of current systems; provides
cost-benefit analyses of alternatives; and makes recommendations on what (if anything) should
be done. If one of the recommendations is acceptable to management, the analyst proceeds along

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 11

that course. Each systems problem is unique, and there is never just one correct solution. The
manner in which a recommendation or solution is formulated depends on the individual qualities
and professional training of each analyst and the analyst’s interaction with users in the context of
their work environment.

Designing the Recommended System
In the design phase of the SDLC, the systems analyst uses the information collected earlier to ac-
complish the logical design of the information system. The analyst designs procedures for users
to help them accurately enter data so that data going into the information system are correct. In
addition, the analyst provides for users to complete effective input to the information system by
using techniques of good form and Web page or screen design.

Part of the logical design of the information system is devising the HCI. The interface con-
nects the user with the system and is thus extremely important. The user interface is designed with
the help of users to make sure that the system is audible, legible, and safe, as well as attractive
and enjoyable to use. Examples of physical user interfaces include a keyboard (to type in ques-
tions and answers), onscreen menus (to elicit user commands), and a variety of graphical user in-
terfaces (GUIs) that use a mouse or touch screen.

The design phase also includes designing databases that will store much of the data needed
by decision makers in the organization. Users benefit from a well-organized database that is log-
ical to them and corresponds to the way they view their work. In this phase the analyst also works
with users to design output (either onscreen or printed) that meets their information needs.

Finally, the analyst must design controls and backup procedures to protect the system and the
data, and to produce program specification packets for programmers. Each packet should contain
input and output layouts, file specifications, and processing details; it may also include decision
trees or tables, UML or data flow diagrams, and the names and functions of any prewritten code
that is either written in-house or using code or other class libraries.

Developing and Documenting Software
In the fifth phase of the SDLC, the analyst works with programmers to develop any original software
that is needed. During this phase the analyst works with users to develop effective documentation for
software, including procedure manuals, online help, and Web sites featuring Frequently Asked Ques-
tions (FAQs), on Read Me files shipped with new software. Because users are involved from the be-
ginning, phase documentation should address the questions they have raised and solved jointly with
the analyst. Documentation tells users how to use software and what to do if software problems occur.

Programmers have a key role in this phase because they design, code, and remove syntactical
errors from computer programs. To ensure quality, a programmer may conduct either a design or
a code walkthrough, explaining complex portions of the program to a team of other programmers.

Testing and Maintaining the System
Before the information system can be used, it must be tested. It is much less costly to catch prob-
lems before the system is signed over to users. Some of the testing is completed by programmers
alone, some of it by systems analysts in conjunction with programmers. A series of tests to pin-
point problems is run first with sample data and eventually with actual data from the current sys-
tem. Often test plans are created early in the SDLC and are refined as the project progresses.

Maintenance of the system and its documentation begins in this phase and is carried out rou-
tinely throughout the life of the information system. Much of the programmer’s routine work con-
sists of maintenance, and businesses spend a great deal of money on maintenance. Some
maintenance, such as program updates, can be done automatically via a vendor site on the Web.
Many of the systematic procedures the analyst employs throughout the SDLC can help ensure
that maintenance is kept to a minimum.

Implementing and Evaluating the System
In this last phase of systems development, the analyst helps implement the information system. This
phase involves training users to handle the system. Vendors do some training, but oversight of train-
ing is the responsibility of the systems analyst. In addition, the analyst needs to plan for a smooth con-
version from the old system to the new one. This process includes converting files from old formats to
new ones, or building a database, installing equipment, and bringing the new system into production.

12 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Evaluation is included as part of this final phase of the SDLC mostly for the sake of discus-
sion. Actually, evaluation takes place during every phase. A key criterion that must be satisfied is
whether the intended users are indeed using the system.

It should be noted that systems work is often cyclical. When an analyst finishes one phase of
systems development and proceeds to the next, the discovery of a problem may force the analyst
to return to the previous phase and modify the work done there.

The Impact of Maintenance
After the system is installed, it must be maintained, meaning that the computer programs must be
modified and kept up to date. Figure 1.4 illustrates the average amount of time spent on mainte-
nance at a typical MIS installation. Estimates of the time spent by departments on maintenance
have ranged from 48 to 60 percent of the total time spent developing systems. Very little time re-
mains for new systems development. As the number of programs written increases, so does the
amount of maintenance they require.

Maintenance is performed for two reasons. The first of these is to correct software errors. No
matter how thoroughly the system is tested, bugs or errors creep into computer programs. Bugs

FIGURE 1.MAC
Running Windows on a Mac using Virtualization Software called VM Fusion.

M A C A P P E A L

At home and in our visits to university campuses and businesses around the world, we’ve noticed that
students and organizations are increasingly showing an interest in Macs. Therefore, we thought it
would add a little bit of interest to show some Mac options that a systems designer has. At the time
we’re writing this book, about one out of seven personal computers purchased in the United States is
a Mac. Macs are quality Intel-based machines that run under a competent operating system and can
also run Windows, so in effect everything that can be done on a PC can be done on a Mac. One way
to run Windows is to boot directly into Windows (once it’s installed); another is to use virtualization
using software such as VM Fusion, which is shown in Figure 1.MAC.

Adopters of Macs have cited many reasons for using Macs including better security built into
the Mac operating system, intelligent backup using the built-in time machine, the multitude of appli-
cations already included, the reliability of setup and networking, and the ability to sync Macs with
other Macs and iPhones. The most compelling reason, we think, is the design itself.

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 13

Maintenance of
Existing Systems

60%

New Systems and
Other Activities

40%

FIGURE 1.4
Some researchers estimate that the
amount of time spent on system
maintenance may be as much as
60 percent of the total time spent
on systems projects.

in commercial PC software are often documented as “known anomalies,” and are corrected when
new versions of the software are released or in an interim release. In custom software (also called
bespoke software), bugs must be corrected as they are detected.

The other reason for performing system maintenance is to enhance the software’s capabili-
ties in response to changing organizational needs, generally involving one of the following three
situations:

1. Users often request additional features after they become familiar with the computer
system and its capabilities.

2. The business changes over time.
3. Hardware and software are changing at an accelerated pace.

Figure 1.5 illustrates the amount of resources—usually time and money—spent on systems
development and maintenance. The area under the curve represents the total dollar amount spent.
You can see that over time the total cost of maintenance is likely to exceed that of systems devel-
opment. At a certain point it becomes more feasible to perform a new systems study, because the
cost of continued maintenance is clearly greater than that of creating an entirely new information
system.

In summary, maintenance is an ongoing process over the life cycle of an information system.
After the information system is installed, maintenance usually takes the form of correcting pre-
viously undetected program errors. Once these are corrected, the system approaches a steady
state, providing dependable service to its users. Maintenance during this period may consist of re-
moving a few previously undetected bugs and updating the system with a few minor enhance-
ments. As time goes on and the business and technology change, however, the maintenance effort
increases dramatically.

Amount of
Resources
Consumed,
Time and
Money

Systems
Development

Postinstallation
Bugs

Minor Changes
Due to Bugs and
Enhancements

Major Changes
in Both Business
and Technology

Time

Installation
Day

FIGURE 1.5
Resource consumption over the
system life.

14 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

USING CASE TOOLS
Analysts who adopt the SDLC approach often benefit from productivity tools, called Computer-
Aided Software Engineering (CASE) tools, that have been created explicitly to improve their rou-
tine work through the use of automated support. Analysts rely on CASE tools to increase
productivity, communicate more effectively with users, and integrate the work that they do on the
system from the beginning to the end of the life cycle.

Visible Analyst (VA) is one example of a CASE tool that enables systems analysts to do
graphical planning, analysis, and design in order to build complex client/server applications and
databases. Visible Analyst and another software product called Microsoft Visio allow users to
draw and modify diagrams easily.

Analysts and users alike report that CASE tools afford them a means of communication
about the system during its conceptualization. Through the use of automated support featuring
onscreen output, clients can readily see how data flows and other system concepts are depicted,
and they can then request corrections or changes that would have taken too much time with
older tools.

Some analysts distinguish between upper and lower CASE tools. An upper CASE tool al-
lows the analyst to create and modify the system design. All the information about the project is
stored in an encyclopedia called the CASE repository, a large collection of records, elements, di-
agrams, screens, reports, and other information (see Figure 1.6). Analysis reports may be pro-
duced using the repository information to show where the design is incomplete or contains errors.
Upper CASE tools can also help support the modeling of an organization’s functional require-
ments, assist analysts and users in drawing the boundaries for a given project, and help them vi-
sualize how the project meshes with other parts of the organization.

Lower CASE tools are used to generate computer source code, eliminating the need for pro-
gramming the system. Code generation has several advantages: (1) the system can be produced
more quickly than by writing computer programs; (2) the amount of time spent on maintenance
decreases with code generation; (3) code can be generated in more than one computer language,
so it is easier to migrate systems from one platform to another; (4) code generation provides a
cost-effective way of tailoring systems purchased from third-party vendors to the needs of the or-
ganization; and (5) generated code is free of computer program errors.

THE AGILE APPROACH
Although this text tends to focus on SDLC, the most widely used approach in practice, at times
the analyst will recognize that the organization could benefit from an alternative approach. Per-
haps a systems project using a structured approach has recently failed, or perhaps the organiza-
tional subcultures, composed of several different user groups, seem more in step with an
alternative method. We cannot do justice to these methods in a small space; each deserves and has
inspired its own books and research. By mentioning these approaches here, however, we hope to
help you become aware that under certain circumstances, your organization may want to consider
an alternative or supplement to structured analysis and design and to the SDLC.

The agile approach is a software development approach based on values, principles, and core
practices. The four values are communication, simplicity, feedback, and courage. We recommend
that systems analysts adopt these values in all projects they undertake, not just when adopting the
agile approach.

In order to finish a project, adjustments often need to be made in project management. In
Chapter 6 we will see that agile methods can ensure successful completion of a project by adjust-
ing the important resources of time, cost, quality, and scope. When these four control variables
are properly included in the planning, there is a state of balance between the resources and the ac-
tivities needed to complete the project.

Taking development practices to the extreme is most noticeable when one pursues practices
that are unique to agile development. In Chapter 6 we discuss four core agile practices: short re-
leases, the 40-hour workweek, hosting an onsite customer, and using pair programming. At first
glance these practices appear extreme, but as you will see, we can learn some important lessons
from incorporating many of the values and practices of the agile approach into systems analysis
and design projects.

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 15

ADD CUSTOMER

NUMBER XXXXXX

NAME XXXXXXXXXXXX
STREET XXXXXXXXXXXX
CITY XXXXXXXXXXXX
STATE XX
ZIP XXXXX-XXXX

SALES ANALYSIS REPORT
ITEM

DESCRIPTION
TOTAL
SALES

XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX

ZZ,ZZ9
ZZ,ZZ9
ZZ,ZZ9
ZZ,ZZ9
ZZ,ZZ9
ZZ,ZZ9

Screen and
Report Design

System Diagrams
and Models

DO WHILE NOT End of file
Read Item record
IF Item is low in stock

Print Purchase Order
Update Item record

ENDIF
ENDDO

Data Dictionary and
Process Logic

Project Management

System Requirements

• Add new customers
• Identify fast- and slow-selling

items
• Enter customer orders
• Look up customer credit

balance
• Maintain adequate inventory

Deliverables

• Add customer screen
• Item Analysis Report
• Customer order entry screen
• Customer inquiry screen
• Vendor purchase order

program
• Seasonal forecasting

Number +
Description +
Cost +
Price +
Quantity on hand +
Quantity on order +
Reorder point +
Monthly sales +
Year to date sales

Item =

FIGURE 1.6
The repository concept.

Developmental Process for an Agile Project
There are activities and behaviors that shape the way development team members and customers
act during the development of an agile project. Two words that characterize a project done with
an agile approach are interactive and incremental. By examining Figure 1.7 we can see that there
are five distinct stages: exploration, planning, iterations to the first release, productionizing, and
maintenance. Notice that the three red arrows that loop back into the “Iterations” box symbolize
incremental changes created through repeated testing and feedback that eventually lead to a sta-
ble but evolving system. Also note that there are multiple looping arrows that feed back into the
productionizing phase. These symbolize that the pace of iterations is increased after a product is
released. The red arrow is shown leaving the maintenance stage and returning to the planning
stage, so that there is a continuous feedback loop involving customers and the development team
as they agree to alter the evolving system.

EXPLORATION. During exploration, you will explore your environment, asserting your conviction
that the problem can and should be approached with agile development, assemble the team, and
assess team member skills. This stage will take anywhere from a few weeks (if you already know

16 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Planning

Exploration

Maintenance

Iterations to the
First Release

Productionizing

Agile methods involvethe customer in manyiterations prior tothe firstrelease . . .

. . . and increase

the pace of

iterations after

the product is

released.

FIGURE 1.7
The five stages of the agile
modeling development process
show that frequent iterations are
essential to successful system
development.

your team members and technology) to a few months (if everything is new). You also will be
actively examining potential technologies needed to build the new system. During this stage you
should practice estimating the time needed for a variety of tasks. In exploration, customers also
are experimenting with writing user stories. The point is to get the customer to refine a story
enough so that you can competently estimate the amount of time it will take to build the solution
into the system you are planning. This stage is all about adopting a playful and curious attitude
toward the work environment, its problems, technologies, and people.

PLANNING. The next stage of the agile development process is called planning. In contrast to the
first stage, planning may only take a few days to accomplish. In this stage you and your customers
agree on a date anywhere from two months to half a year from the current date to deliver solutions
to their most pressing business problems (you will be addressing the smallest, most valuable set
of stories). If your exploration activities were sufficient, this stage should be very short.

The entire agile planning process has been characterized using the idea of a planning game
as devised by Beck. The planning game spells out rules that can help formulate the agile devel-
opment team’s relationship with their business customers. Although the rules form an idea of how
you want each party to act during development, they are not meant as a replacement for a rela-
tionship. They are a basis for building and maintaining a relationship.

So, we use the metaphor of a game. To that end we talk in terms of the goal of the game, the
strategy to pursue, the pieces to move, and the players involved. The goal of the game is to max-
imize the value of the system produced by the agile team. In order to figure the value, you have
to deduct costs of development, and the time, expense, and uncertainty taken on so that the de-
velopment project could go forward.

The strategy pursued by the agile development team is always one of limiting uncertainty
(downplaying risk). To do that they design the simplest solution possible, put the system into pro-
duction as soon as possible, get feedback from the business customer about what’s working, and
adapt their design from there.

Story cards become the pieces in the planning game that briefly describe the task, provide
notes, and provide an area for task tracking.

There are two main players in the planning game: the development team and the business cus-
tomer. Deciding which business group in particular will be the business customer is not always

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 17

easy, because the agile process is an unusually demanding role for the customer to play. Customers
decide what the development team should tackle first. Their decisions will set priorities and check
functionalities throughout the process.

ITERATIONS TO THE FIRST RELEASE. The third stage in the agile development process is composed
of iterations to the first release. Typically these are iterations (cycles of testing, feedback, and
change) of about three weeks in duration. You will be pushing yourself to sketch out the entire
architecture of the system, even though it is just in outline or skeletal form. One goal is to run
customer-written functional tests at the end of each iteration. During the iterations stage you
should also question whether the schedule needs to be altered or whether you are tackling too
many stories. Make small rituals out of each successful iteration, involving customers as well as
developers. Always celebrate your progress, even if it is small, because this is part of the culture
of motivating everyone to work extremely hard on the project.

PRODUCTIONIZING. Several activities occur during this phase. In this phase the feedback cycle
speeds up so that rather than receiving feedback for an iteration every three weeks, software
revisions are being turned around in one week. You may institute daily briefings so everyone
knows what everyone else is doing. The product is released in this phase, but may be improved
by adding other features. Getting a system into production is an exciting event. Make time to
celebrate with your teammates and mark the occasion. One of the watchwords of the agile
approach, with which we heartily agree, is that it is supposed to be fun to develop systems!

MAINTENANCE. Once the system has been released, it needs to be kept running smoothly. New
features may be added, riskier customer suggestions may be considered, and team members may
be rotated on or off the team. The attitude you take at this point in the developmental process is
more conservative than at any other time. You are now in a “keeper of the flame” mode rather
than the playful one you experienced during exploration.

OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN
Object-oriented (O-O) analysis and design is an approach that is intended to facilitate the devel-
opment of systems that must change rapidly in response to dynamic business environments.
Chapter 10 helps you understand what object-oriented systems analysis and design is, how it dif-
fers from the structured approach of the SDLC, and when it may be appropriate to use an object-
oriented approach.

Object-oriented techniques are thought to work well in situations in which complicated in-
formation systems are undergoing continuous maintenance, adaptation, and redesign. Object-
oriented approaches use the industry standard for modeling object-oriented systems, called the
unified modeling language (UML), to break down a system into a use case model.

Object-oriented programming differs from traditional procedural programming by examin-
ing objects that are part of a system. Each object is a computer representation of some actual thing
or event. Objects may be customers, items, orders, and so on. Objects are represented by and
grouped into classes that are optimal for reuse and maintainability. A class defines the set of
shared attributes and behaviors found in each object in the class.

The phases in UML are similar to those in the SDLC. Since those two methods share rigid
and exacting modeling, they happen in a slower, more deliberate pace than the phases of agile
modeling. The analyst goes through problem and identification phases, an analysis phase, and a
design phase as shown in Figure 1.8. Although much of the specifics are discussed in Chapters 2
and 10, the following steps give a brief description of the UML process.

1. Define the use case model.
In this phase the analyst identifies the actors and the major events initiated by the actors.

Often the analyst will start by drawing a diagram with stick figures representing the actors and
arrows showing how the actors relate. This is called a use case diagram (Chapter 2) and it
represents the standard flow of events in the system. Then an analyst typically writes up a use
case scenario (Chapter 2), which describes in words the steps that are normally performed.

2. During the systems analysis phase, begin drawing UML diagrams.
In the second phase (Chapter 10), the analyst will draw Activity Diagrams, which

illustrate all the major activities in the use case. In addition, the analyst will create one or

18 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Modify Diagrams and
Complete

Specifications

 Develop and
Document the

System

Draw Use Case
Diagrams

Write Use Case
Scenarios

Derive Activity
Diagrams from Use

Cases

Develop Sequence
Diagrams

Draw Statechart
Diagrams

Create Class
Diagrams

Systems Analysis
Phase

Systems Design
Phase

Problem Identification
Phase

Begin Object-Oriented
Analysis and Design

FIGURE 1.8
The steps in the UML
development process.

more sequence diagrams for each use case, which show the sequence of activities and their
timing. This is an opportunity to go back and review the use cases, rethink them, and
modify them if necessary.

3. Continuing in the analysis phase, develop class diagrams.
The nouns in the use cases are objects that can potentially be grouped into classes. For

example, every automobile is an object that shares characteristics with other automobiles.
Together they make up a class.

4. Still in the analysis phase, draw statechart diagrams.
The class diagrams are used to draw statechart diagrams, which help in understanding

complex processes that cannot be fully derived by the sequence diagrams. The statechart
diagrams are extremely useful in modifying class diagrams, so the iterative process of
UML modeling continues.

5. Begin systems design by modifying the UML diagrams. Then complete the specifications.
Systems design means modifying the existing system and that implies modifying the

diagrams drawn in the previous phase. These diagrams can be used to derive classes, their
attributes, and methods (methods are simply operations). The analyst will need to write
class specifications for each class including the attributes, methods, and their descriptions.
They will also develop methods specifications that detail the input and output requirements
for the method, along with a detailed description of the internal processing of the method.

6. Develop and document the system.
UML is, of course, a modeling language. An analyst may create wonderful models, but

if the system isn’t developed there is not much point in building models. Documentation is
critical. The more complete the information you provide the development team through
documentation and UML diagrams, the faster the development and the more solid the final
production system.

Object-oriented methodologies often focus on small, quick iterations of development, some-
times called the spiral model. Analysis is performed on a small part of the system, usually starting

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 19

with a high-priority item or perhaps one that has the greatest risk. This is followed by design and
implementation. The cycle is repeated with analysis of the next part, design, and some implemen-
tation, and it is repeated until the project is completed. Reworking diagrams and the components
themselves is normal. UML is a powerful modeling tool that can greatly improve the quality of your
systems analysis and design and the final product.

CHOOSING WHICH SYSTEMS DEVELOPMENT METHOD TO USE
The differences among the three approaches described earlier are not as big as they seem at the out-
set. In all three approaches, the analyst needs to understand the organization first (Chapter 2). Then
the analyst or project team needs to budget their time and resources and develop a project proposal
(Chapter 3). Next they need to interview organizational members and gather detailed data by us-
ing questionnaires (Chapter 4) and sample data from existing reports and observe how business is
currently transacted (Chapter 5). The three approaches have all of these activities in common.

Even the methods themselves have similarities. The SDLC and object-oriented approaches both
require extensive planning and diagramming. The agile approach and the object-oriented approach
both allow subsystems to be built one at a time until the entire system is complete. The agile and
SDLC approaches are both concerned about the way data logically moves through the system.

So given a choice to develop a system using an SDLC approach, an agile approach, or an ob-
ject-oriented approach, which would you choose? Figure 1.9 provides a set of guidelines to help
you choose which method to use when developing your next system.

SUMMARY
Information can be viewed as an organizational resource just as humans are. As such, it must be managed
carefully, just as other resources are. The availability of affordable computer power to organizations has
meant an explosion of information, and consequently, more attention must be paid to coping with the infor-
mation generated.

Systems analysts recommend, design, and maintain many types of systems for users, including transac-
tion processing systems (TPS), office automation systems (OAS), knowledge work systems (KWS), and man-
agement information systems (MIS). They also create decision-oriented systems for specific users. These

Choose When

Agile Methodologies

The Systems Development
Life Cycle (SDLC) Approach

Object-Oriented
Methodologies

• the customer is satisfied with incremental improvements

• applications need to be developed quickly in response to
 a dynamic environment

• there is a project champion of agile methods in the
 organization

• a rescue takes place (the system failed and there is no time
 to figure out what went wrong)

• executives and analysts agree with the principles of agile
 methodologies

• the problems modeled lend themselves to classes

• an organization supports the UML learning

• systems can be added gradually, one subsystem at a time

• reuse of previously written software is a possibility

• it is acceptable to tackle the difficult problems first

• systems have been developed and documented using SDLC

• it is important to document each step of the way

• communication of how new systems work is important

• upper-level management feels more comfortable or safe
 using SDLC

• there are adequate resources and time to complete the full
 SDLC

FIGURE 1.9
How to decide which development
method to use.

20 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

H Y P E R C A S E ® E X P E R I E N C E 1

“Welcome to Maple Ridge Engineering, what we call MRE.
We hope you’ll enjoy serving as a systems consultant for us. Al-
though I’ve worked here five years in different capacities, I’ve just
been reassigned to serve as an administrative aide to Snowden
Evans, the head of the new Training and Management Systems De-
partment. We’re certainly a diverse group. As you make your way
through the company, be sure to use all your skills, both technical
and people oriented, to understand who we are and to identify the
problems and conflicts that you think should be solved regarding
our information systems.”

“To bring you up to date, let me say that Maple Ridge Engi-
neering is a medium-sized medical engineering company. Last
year, our revenues exceeded $287 million. We employ about
335 people. There are about 150 administrative employees as well
as management and clerical staff like myself; approximately
75 professional employees, including engineers, physicians, and
systems analysts; and about 110 trade employees, such as drafters
and technicians.”

“There are four offices. You will visit us through HyperCase in
our home office in Maple Ridge, Tennessee. We have three other
branches in the southern United States as well: Atlanta, Georgia;

Charlotte, North Carolina; and New Orleans, Louisiana. We’d love
to have you visit when you’re in the area.”

“For now, you should explore HyperCase using either Firefox,
Safari, or Microsoft Internet Explorer.”

“To learn more about Maple Ridge Engineering as a company
or to find out how to interview our employees, who will use the sys-
tems you design, and how to observe their offices in our company,
you may want to start by going to the Web site found at www.
pearsonhighered.com/kendall. Then click on the link labeled
HyperCase. At the HyperCase display screen, click on Start and
you will be in the reception room for Maple Ridge Engineering.
From this point, you can start consulting right away.”

This Web site contains useful information about the project as
well as files that can be downloaded to your computer. There is a set
of Visible Analyst data files, and another set of Visio data files that
match HyperCase. They contain a partially constructed series of
data flow diagrams, entity-relationship diagrams, UML diagrams,
and repository information. The HyperCase Web site also contains
additional exercises that may be assigned. HyperCase is designed
to be explored, and you should not overlook any object or clue on a
Web page.

include decision support systems (DSS), expert systems (ES), group decision support systems (GDSS),
computer-supported collaborative work systems (CSCWS), and executive support systems (ESS). Many appli-
cations are either originating on, or moving to, the Web to support ecommerce and many other business functions.

Systems analysis and design is a systematic approach to identifying problems, opportunities, and ob-
jectives; to analyzing human and computer-generated information flows in organizations; and to designing
computerized information systems to solve a problem. Systems analysts are required to take on many roles
in the course of their work. Some of these roles are (1) an outside consultant to business, (2) a supporting
expert within a business, and (3) an agent of change in both internal and external situations.

Analysts possess a wide range of skills. First and foremost, the analyst is a problem solver, someone
who enjoys the challenge of analyzing a problem and devising a workable solution. Systems analysts require
communication skills that allow them to relate meaningfully to many different kinds of people on a daily ba-
sis, as well as computer skills. Understanding and relating well to users is critical to their success.

Analysts proceed systematically. The framework for their systematic approach is provided in what is
called the systems development life cycle (SDLC). This life cycle can be divided into seven sequential
phases, although in reality the phases are interrelated and are often accomplished simultaneously. The seven
phases are identifying problems, opportunities, and objectives; determining human information require-
ments; analyzing system needs; designing the recommended system; developing and documenting software;
testing and maintaining the system; and implementing and evaluating the system.

The agile approach is a software development approach based on values, principles, and core practices.
Systems that are designed using agile methods can be developed rapidly. Stages in the agile development
process are exploration, planning, iterations to the first release, productionizing, and maintenance.

A third approach to systems development is called object-oriented analysis design. These techniques
are based on object-oriented programming concepts that have become codified in UML, a standardized
modeling language in which objects that are created include not only code about data but also instructions
about the operations to be performed on the data. Key diagrams help analyze, design, and communicate
UML-developed systems. These systems are usually developed as components and reworking the compo-
nents many times is a normal activity in object-oriented analysis and design.

www.pearsonhighered.com/kendall
www.pearsonhighered.com/kendall

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 21

KEYWORDS AND PHRASES

agent of change
agile approach
agile methods
Ajax
artificial intelligence (AI)
bespoke software
Computer-Assisted Software Engineering (CASE)
CASE tools
computer-supported collaborative work systems

(CSCWS)
decision support systems (DSS)
ecommerce applications
enterprise resource planning (ERP) systems
executive support systems (ESS)
expert systems
exploration phase
group decision support systems (GDSS)
human–computer interaction (HCI)
iterations to the first release phase
knowledge work systems (KWS)

maintenance phase
management information systems (MIS)
mcommerce (mobile commerce)
migrate systems
object-oriented (O-O) systems analysis and design
office automation systems (OAS)
open source software (OSS)
planning game
planning phase
productionizing phase
prototyping
rapid application development (RAD)
service-oriented architecture (SOA)
systems analysis and design
systems analyst
systems consultant
systems development life cycle (SDLC)
transaction processing systems (TPS)
unified modeling language (UML)

REVIEW QUESTIONS
1. Compare treating information as a resource to treating humans as a resource.
2. List the differences between OAS and KWS.
3. Define what is meant by MIS.
4. How does MIS differ from DSS?
5. Define the term expert systems. How do expert systems differ from decision support systems?
6. List the problems of group interaction that group decision support systems (GDSS) and computer-

supported collaborative work systems (CSCWS) were designed to address.
7. Which is the more general term, CSCWS or GDSS? Explain.
8. Define the term mcommerce.
9. List the advantages of mounting applications on the Web.

10. What is the overarching reason for designing enterprise (or ERP) systems?
11. Provide an example of an open source software project.
12. List the advantages of using systems analysis and design techniques in approaching computerized

information systems for business.
13. List three roles that the systems analyst is called upon to play. Provide a definition for each one.
14. What personal qualities are helpful to the systems analyst? List them.
15. List and briefly define the seven phases of the systems development life cycle (SDLC).
16. What are CASE tools used for?
17. What is the difference between upper and lower CASE tools?
18. Define what is meant by the agile approach.
19. What is the meaning of the phrase “the planning game”?
20. What are the stages in agile development?
21. Define the term object-oriented analysis and design.
22. What is UML?

SELECTED BIBLIOGRAPHY
Coad, P., and E. Yourdon. Object-Oriented Analysis, 2d ed. Englewood Cliffs, NJ: Prentice Hall, 1991.
Davis, G. B., and M. H. Olson. Management Information Systems: Conceptual Foundation, Structure, and

Development, 2d ed. New York: McGraw-Hill, 1985.
Feller, J., P. Finnegan, D. Kelly, and M. MacNamara. “Developing Open Source Software: A Community-

Based Analysis of Research.” In IFIP International Federation for Information Processing,
Vol. 208, Social Inclusion: Societal and Organizational Implications for Information Systems.
Edited by E. Trauth, D. Howcroft, T. Butler, B. Fitzgerald, and J. DeGross, pp. 261–278. Boston:
Springer, 2006.

22 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Kendall, J. E., and K. E. Kendall. “Information Delivery Systems: An Exploration of Web Push and Pull
Technologies.” Communications of AIS, Vol. 1, Article 14, April 23, 1999.

Kendall, J. E., K. E. Kendall, and S. Kong. “Improving Quality Through the Use of Agile Methods in Sys-
tems Development: People and Values in the Quest for Quality.” In Measuring Information Systems
Delivery Quality. Edited by E. W. Duggan and H. Reichgelt, pp. 201–222. Hershey, PA: Idea Group
Publishing, 2006.

Laudon, K. C., and J. P. Laudon. Management Information Systems, 11th ed. Upper Saddle River, NJ:
Pearson Prentice Hall, 2010.

Verma, S. “Software Quality and the Open Source Process.” In Measuring Information Systems Delivery Qual-
ity. Edited by E. W. Duggan and H. Reichgelt, pp. 284–303. Hershey, PA: Idea Group Publishing, 2006.

www.visible.com/Products/index.htm. Last accessed March 23, 2009.
Yourdon, E. Modern Structured Analysis. Englewood Cliffs, NJ: Prentice Hall, 1989.
Zhang, P., J. Carey, D. Te’eni, and M. Tremaine. “Integrating Human–Computer Interaction Development

into the Systems Development Life Cycle: A Methodology.” Communications of the Association for
Information Systems, Vol. 15, 2005, pp. 512–543.

www.visible.com/Products/index.htm

CHAPTER 1 • SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES 23

E P I S O D E 1
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

The Case Opens
On a warm, sunny day in late October, Chip Puller parks his car and walks into his office at Central Pacific Univer-
sity. It felt good to be starting as a systems analyst, and he was looking forward to meeting the other staff.

In the office, Anna Liszt introduces herself. “We’ve been assigned to work as a team on a new project. Why
don’t I fill you in with the details, and then we can take a tour of the facilities?”

“That sounds good to me,” Chip replies. “How long have you been working here?”
“About five years,” answers Anna. “I started as a programmer analyst, but the last few years have been ded-

icated to analysis and design. I’m hoping we’ll find some ways to increase our productivity,” Anna continues.
“Tell me about the new project,” Chip says.
“Well,” Anna replies, “like so many organizations, we have a large number of microcomputers with different

software packages installed on them. From what I understand, in the 1980s there were few personal computers and
a scattered collection of software. This expanded rapidly in the 1990s, and now everyone uses computers. Some fac-
ulty members use more than one computer. The current system that is used to maintain software and hardware, which
was originally quite useful, is now very outdated and quite overwhelmed.”

“What about the users? Who should I know? Who do you think will be important in helping us with the new
system?” Chip asks.

“You’ll meet everyone, but there are key people I’ve recently met, and I’ll tell you what I’ve learned so you’ll
remember them when you meet them.

“Dot Matricks is manager of all microcomputer systems at Central Pacific. We seem to be able to work together
well. She’s very competent. She’d really like to be able to improve communication among users and analysts.”

“It will be a pleasure to meet her,” Chip speculates.
“Then there’s Mike Crowe, computer maintenance expert. He really seems to be the nicest guy, but way too

busy. We need to help lighten his load. The software counterpart to Mike is Cher Ware. She’s a free spirit, but don’t
get me wrong, she knows her job,” Anna says.

“She could be fun to work with,” Chip muses.
“Could be,” Anna agrees. “You’ll meet the financial analyst, Paige Prynter, too. I haven’t figured her out yet.”
“Maybe I can help,” Chip says.
“Last, you should—I mean, you will—meet Hy Perteks, who does a great job running the Information Center.

He’d like to see us be able to integrate our life cycle activities.”
“It sounds promising,” Chip says. “I think I’m going to like it here.”

EXERCISES

E-1. From the introductory conversation Chip and Anna shared, which elements mentioned might suggest the use
of CASE tools?

24

C H A P T E R 2

Understanding and Modeling
Organizational Systems

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Understand that organizations and their members are systems and that analysts need to
take a systems perspective.

2. Depict systems graphically using context-level data flow diagrams, entity-relationship
models, and use cases and use case scenarios.

3. Recognize that different levels of management require different systems.

4. Comprehend that organizational culture impacts the design of information systems.

To analyze and design appropriate information systems, systems analysts
need to comprehend the organizations they work in as systems shaped
through the interactions of three main forces: the levels of management,
design of organizations, and organizational cultures.

Organizations are large systems composed of interrelated subsystems.
The subsystems are influenced by three broad levels of management decision makers (opera-
tions, middle management, and strategic management) that cut horizontally across the orga-
nizational system. Organizational cultures and subcultures all influence the way people in
subsystems interrelate. These topics and their implications for information systems develop-
ment are considered in this chapter.

ORGANIZATIONS AS SYSTEMS
Organizations and their members are usefully conceptualized as systems designed to accomplish
predetermined goals and objectives through people and other resources that they employ. Orga-
nizations are composed of smaller, interrelated systems (departments, units, divisions, etc.) serv-
ing specialized functions. Typical functions include accounting, marketing, production, data
processing, and management. Specialized functions (smaller systems) are eventually reintegrated
through various ways to form an effective organizational whole.

The significance of conceptualizing organizations as complex systems is that systems prin-
ciples allow insight into how organizations work. To ascertain information requirements properly
and to design appropriate information systems, it is of primary importance to understand the or-
ganization as a whole. All systems are composed of subsystems (which include information sys-
tems); therefore, when studying an organization, we also examine how smaller systems are
involved and how they function.

Interrelatedness and Interdependence of Systems
All systems and subsystems are interrelated and interdependent. This fact has important implica-
tions both for organizations and for those systems analysts who seek to help them better achieve
their goals. When any element of a system is changed or eliminated, the rest of the system’s ele-
ments and subsystems are also significantly affected.

For example, suppose that the managers of an organization decide not to hire administrative as-
sistants any longer and to replace their functions with networked PCs. This decision has the poten-
tial to significantly affect not only the administrative assistants and the managers but also all the
organizational members who built up communications networks with the now departed assistants.

All systems process inputs from their environments. By definition, processes change or
transform inputs into outputs. Whenever you examine a system, check to see what is being
changed or processed. If nothing is changed, you may not be identifying a process. Typical
processes in systems include verifying, updating, and printing.

Another aspect of organizations as systems is that all systems are contained by boundaries
separating them from their environments. Organizational boundaries exist on a continuum rang-
ing from extremely permeable to almost impermeable. To continue to adapt and survive, organi-
zations must be able first to import people, raw materials, and information through their
boundaries (inputs), and then to exchange their finished products, services, or information with
the outside world (outputs).

Feedback is one form of system control. As systems, all organizations use planning and con-
trol to manage their resources effectively. Figure 2.1 shows how system outputs are used as feed-
back that compares performance with goals. This comparison in turn helps managers formulate
more specific goals as inputs. An example is a U.S. manufacturing company that produces red-
white-and-blue weight-training sets as well as gun-metal gray sets. The company finds that one
year after the Olympics, very few red-white-and-blue sets are purchased. Production managers
use that information as feedback to make decisions about what quantities of each color to pro-
duce. Feedback in this instance is useful for planning and control.

The ideal system, however, is one that self-corrects or self-regulates in such a way that deci-
sions on typical occurrences are not required. An example is a supply chain system for produc-
tion planning that takes into account current and projected demand and formulates a proposed
solution as output. An Italian knitwear manufacturer that markets its clothing in the United States
has just such a system. This company produces most of its sweaters in white, uses its computer-
ized inventory information system to find out what colors are selling best, and then dyes sweaters
in hot-selling colors immediately before shipping them.

Feedback is received from within the organization and from the outside environments around
it. Anything external to an organization’s boundaries is considered to be an environment. Numerous
environments, with varying degrees of stability, constitute the milieu in which organizations exist.

Among these environments are (1) the environment of the community in which the organi-
zation is physically located, which is shaped by the size of its population and its demographic pro-
file, including factors such as education and average income; (2) the economic environment,
influenced by market factors, including competition; (3) the political environment, controlled
through state and local governments; and (4) the legal environment, issuing federal, state, re-
gional, and local laws and guidelines. Although changes in environmental status can be planned
for, they often cannot be directly controlled by the organization.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 25

Goals

System

OutputsInputs

FIGURE 2.1
System outputs serve as feedback
that compares performance with
goals.

26 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Related and similar to the concept of external boundary permeability is the concept of inter-
nal openness or closedness of organizations. Openness and closedness also exist on a continuum,
because there is no such thing as an absolutely open or completely closed organization.

Openness refers to the free flow of information within the organization. Subsystems such as
creative or art departments often are characterized as open, with a free flow of ideas among par-
ticipants and very few restrictions on who gets what information at what time when a creative
project is in its infancy.

At the opposite end of the continuum might be a defense department unit assigned to work
on top-secret defense planning affecting national security. Each person needs to receive clear-
ance, timely information is a necessity, and access to information is only on a “need to know” ba-
sis. This sort of unit is constrained by numerous rules.

Using a systems overlay to understand organizations allows us to acknowledge the idea of
systems composed of subsystems; their interrelatedness and their interdependence; the existence
of boundaries that allow or prevent interaction between various departments and elements of
other subsystems and environments; and the existence of internal environments characterized by
degrees of openness and closedness, which might differ across departments, units, or even sys-
tems projects.

Virtual Organizations and Virtual Teams
Not all organizations or parts of organizations are visible in a physical location. Entire organ-
izations or units of organizations can now possess virtual components that permit them to
change configurations to adapt to changing project or marketplace demands. Virtual enter-
prises use networks of computers and communications technology to bring people with spe-
cific skills together electronically to work on projects that are not physically located in the
same place. Information technology enables coordination of these remote team members. Of-
ten virtual teams spring up in already-established organizations; in some instances, however,
organizations of remote workers have been able to succeed without the traditional investment
in a physical facility.

C O N S U L T I N G O P P O R T U N I T Y 2 . 1

The E in Vitamin E Stands for Ecommerce

“Our retail shops and mail-order division are quite healthy,”
says Bill Berry, one of the owners of Marathon Vitamin Shops, “but
to be competitive, we must establish an ecommerce Web site.” His
father, a co-owner, exclaims, “I agree, but where do we start?” The
elder Berry knew, of course, that it wasn’t a case of setting up a Web
site and asking customers to email their orders to the retail store. He
identified eight different parts to ecommerce and realized that they
were all part of a larger system. In other words, all the parts had to
work together to create a strong package. His list of elements essen-
tial to ecommerce included the following:

1. Attracting customers to an ecommerce Web site.
2. Informing customers about products and services offered.
3. Allowing customers to customize products online.
4. Completing transactions with customers.
5. Accepting payment from customers in a variety of forms.
6. Supporting customers after the sale via the Web site.
7. Arranging for the delivery of goods and services.

8. Personalizing the look and feel of the Web site for different
customers.

Bill Berry read the list and contemplated it for a while. “It is ob-
vious that ecommerce is more complex than I thought,” he says. You
can help the owners of Marathon Vitamin Shops in the following
ways:

1. Make a list of the elements that are interrelated or
interdependent. Then write a paragraph stating why it is
critical to monitor these elements closely.

2. Decide on the boundaries and ultimate scope of the system.
That is, write a paragraph expressing an opinion on which
elements are critical for Marathon Vitamin Shops and which
elements can be explored at a later date.

3. Suggest which elements should be handled in-house and
which should be outsourced to another company that may be
better able to handle the job. Justify your suggestions in two
paragraphs, one for the in-house jobs and one for the
outsourced tasks.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 27

There are several potential benefits to virtual organizations, such as the possibility of reduc-
ing costs of physical facilities, more rapid response to customer needs, and helping virtual em-
ployees to fulfill their familial obligations to growing children or aging parents. Just how
important it will be to meet the social needs of virtual workers is still open to research and debate.
One example of a need for tangible identification with a culture arose when students who were
enrolled in an online virtual university, with no physical campus (or sports teams), kept request-
ing items such as sweatshirts, coffee mugs, and pennants with the virtual university’s logo im-
printed on them. These items are meaningful cultural artifacts that traditional brick-and-mortar
schools have long provided.

Many systems analysis and design teams are now able to work virtually, and in fact, many of
them marked the path for other types of employees to follow in accomplishing work virtually.
Some applications permit analysts who are providing technical assistance over the Web to “see”
the software and hardware configuration of the user requesting help, in this way creating an ad
hoc virtual team composed of the analyst and user.

Taking a Systems Perspective
Taking a systems perspective allows systems analysts to start broadly clarifying and understand-
ing the various businesses with which they will come into contact. It is important that members
of subsystems realize that their work is interrelated. Notice in Figure 2.2 that the outputs from the
production subsystems serve as inputs for marketing and that the outputs of marketing serve as
new inputs for production. Neither subsystem can properly accomplish its goals without the other.

Problems occur when each manager possesses a different picture of the importance of his or
her own functional subsystem. In Figure 2.3 you can see that the marketing manager’s personal
perspective shows the business as driven by marketing, with all other functional areas interrelated
but not of central importance. By the same token, the perspective of a production manager posi-
tions production at the center of the business, with all other functional areas driven by it.

The relative importance of functional areas as revealed in the personal perspectives of man-
agers takes on added significance when managers rise to the top through the ranks, becoming
strategic managers. They can create problems if they overemphasize their prior functional infor-
mation requirements in relation to the broader needs of the organization.

For example, if a production manager is promoted but continues to stress production sched-
uling and performance of line workers, the broader aspects of forecasting and policy making may
suffer. This tendency is a danger in all sorts of businesses: where engineers work their way up to
become administrators of aerospace firms, college professors move from their departments to be-
come deans, or programmers advance to become executives of software firms. Their tunnel vi-
sion often creates problems for the systems analyst trying to separate actual information
requirements from desires for a particular kind of information.

Outputs from

marketing
become the inputs

for production.

Outputs from

production

become the inputs

for marketing.

Marketing

Production

FIGURE 2.2
Outputs from one department
serve as inputs for another such
that subsystems are interrelated.

Enterprise Systems: Viewing the Organization as a System
Enterprise systems, often referred to as enterprise resource planning (ERP) systems, is a term
used to describe an integrated organizational (enterprise) information system. Specifically, ERP
is software that helps the flow of information between the functional areas in the organization. It
is a customized system that, rather than being developed in-house, is usually purchased from one
of the software development companies well-known for its ERP packages, such as SAP or Ora-
cle. The product is then customized to fit the requirements of a particular company. Typically, the
vendor requires an organizational commitment in terms of specialized user or analyst training.
Many ERP packages are designed to run on the Web. ERP, although growing in popularity, is also
being viewed with some skepticism.

ERP evolved from materials requirements planning (MRP), the information systems de-
signed to improve manufacturing in general and assembly in particular. ERP systems now include
manufacturing components and thus help with capacity planning, material production schedul-
ing, and forecasting. Beyond manufacturing (and its service counterpart), ERP includes sales and
operations planning, distribution, procurement, and managing the supply chain. It therefore sig-
nificantly affects all the areas in the organization, including accounting, finance, management,
marketing, and information systems.

Implementing an ERP solution may be frustrating because it is difficult to analyze a system
currently in use and then fit the ERP model to that system. Furthermore, companies tend to de-
sign their business processes before ERP is implemented. Unfortunately, this process is often
rushed and the proposed business model does not always match the ERP functionality. The result
is further customizations, extended implementation time frames, higher costs, and often the loss

28 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Di

stributionPro
duction

Marketing

Pu
rchasing

How a Marketing Manager May View the Organization

Marketing

Finance

Production

Di

stribution

How a Production Manager May See the Organization

Finance

Purchasing

FIGURE 2.3
A depiction of the personal
perspective of functional
managers shows that they feature
their own functional area as
central to the organization.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 29

of user confidence. Analysts need to be aware of the magnitude of the problem they are tackling
when trying to implement ERP packages.

DEPICTING SYSTEMS GRAPHICALLY
A system or subsystem as it exists within the corporate organization may be graphically depicted
in several ways. The various graphical models show the boundaries of the system and the infor-
mation used in the system.

Systems and the Context-Level Data Flow Diagram
The first model is the context-level data flow diagram (also called an environmental model). Data
flow diagrams focus on the data flowing into and out of the system and the processing of the data.
These basic components of every computer program can be described in detail and used to ana-
lyze the system for accuracy and completeness.

As shown in Figure 2.4, the context-level data flow diagram employs only three symbols: (1)
a rectangle with rounded corners, (2) a square with two shaded edges, and (3) an arrow. Processes
transform incoming data into outgoing information, and the content level has only one process,
representing the entire system. The external entity represents any entity that supplies or receives
information from the system but is not a part of the system. This entity may be a person, a group
of people, a corporate position or department, or other systems. The lines that connect the exter-
nal entities to the process are called data flows, and they represent data.

An example of a context-level data flow diagram is found in Figure 2.5. In this example, the
most basic elements of an airline reservation system are represented. The passenger (an entity) ini-
tiates a travel request (data flow). The context-level diagram doesn’t show enough detail to indicate
exactly what happens (it isn’t supposed to), but we can see that the passenger’s preferences and the
available flights are sent to the travel agent, who sends ticketing information back to the process. We
can also see that the passenger reservation is sent to the airline. The context-level data flow diagram
serves as a good starting point for drawing the use case diagram (discussed later in this chapter).

In Chapter 7 we see that a data flow contains much information. For example, the passenger
reservation contains the passenger’s name, airline, flight number(s), date(s) of travel, price, seat-
ing preference, and so on. For now, however, we are concerned mainly with how a context level
defines the boundaries of the system. In the preceding example, only reservations are part of the
process. Other decisions that the airline would make (for example, purchasing airplanes, chang-
ing schedules, pricing) are not part of this system.

The context-level data flow diagram is one way to show the scope of the system, or what is
to be included in the system. The external entities are outside of the scope and something over
which the system has no control.

A process means that some action
or group of actions take place.

An entity is a person, group,
department, or any system that
either receives or originates
information or data.

A data flow shows that information
is being passed from or to a
process.

FIGURE 2.4
The basic symbols of a data flow
diagram.

30 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Systems and the Entity-Relationship Model
Another way a systems analyst can show the scope of the system and define proper system bound-
aries is to use an entity-relationship model. The elements that make up an organizational system
can be referred to as entities. An entity may be a person, a place, or a thing, such as a passenger
on an airline, a destination, or a plane. Alternatively, an entity may be an event, such as the end
of the month, a sales period, or a machine breakdown. A relationship is the association that de-
scribes the interaction among the entities.

There are many different conventions for drawing entity-relationship (E-R) diagrams (with
names like crow’s foot, Arrow, or Bachman notation). In this book, we use crow’s foot notation.
For now, we assume that an entity is a plain rectangular box.

Figure 2.6 shows a simple entity-relationship diagram. Two entities are linked together by a
line. In this example, the end of the line is marked with two short parallel marks (| |), signifying
that this relationship is one-to-one. Thus, exactly one employee is assigned to one phone exten-
sion. No one shares the same phone extension in this office.

The red arrows are not part of the entity-relationship diagram. They are present to demon-
strate how to read the entity-relationship diagram. The phrase on the right side of the line is read
from top to bottom as follows: “One EMPLOYEE is assigned to one PHONE EXTENSION.” On

0

Airline

Travel Request Ticketing Information

Travel
Agent

Preferences and
Available Flights

Airline
Reservation

System

Passenger
Reservation

Passenger

FIGURE 2.5
A context-level data flow diagram
for an airline reservation system.

Employee

Phone Extension

One

EMPLOYEE

is assigned

to one

PHONE

EXTENSION.

One

PHONE

EXTENSION

is
listed

for one

EMPLOYEE.

is
listed
for

is
assigned
to

FIGURE 2.6
An entity-relationship diagram
showing a one-to-one relationship.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 31

the left side, as you read from bottom to top, the arrow says, “One PHONE EXTENSION is listed
for one EMPLOYEE.”

Similarly, Figure 2.7 shows another relationship. The crow’s foot notation (>—+) is obvious on
this diagram, and this particular example is a many-to-one example. As you read from left to right,
the arrow signifies, “Many EMPLOYEES are members of a DEPARTMENT.” As you read from
right to left, it implies, “One DEPARTMENT contains many EMPLOYEES.”

Notice that when a many-to-one relationship is present, the grammar changes from “is” to
“are” even though the singular “is” is written on the line. The crow’s foot and the single mark do
not literally mean that this end of the relationship must be a mandatory “many.” Instead, they im-
ply that this end could be anything from one to many.

Figure 2.8 elaborates on this scheme. Here we have listed a number of typical entity relationships.
The first, “An EMPLOYEE is assigned to an OFFICE,” is a one-to-one relationship. The second one
is a one-to-many relationship: “One CARGO AIRCRAFT will serve one or more DISTRIBUTION
CENTERs.” The third one is slightly different because it has a circle at one end. It can be read as “A
SYSTEMS ANALYST may be assigned to MANY PROJECTS,” meaning that the analyst can be as-
signed to no projects [that is what the circle (O), for zero, is for], one, or many projects. Likewise, the
circle (O) indicates that none is possible in the next relationship. Recall that the short mark means one.
Therefore, we can read it as follows: “A MACHINE may or may not be undergoing SCHEDULED
MAINTENANCE.” Notice that the line is written as “is undergoing,” but the end marks on the line
indicate that either no maintenance (O) or maintenance (I) is actually going on.

The next relationship states, “One or many SALESPEOPLE (plural of SALESPERSON) are
assigned to one or more CUSTOMERs.” It is the classic many-to-many relationship. The next re-
lationship can be read as follows: “The HOME OFFICE can have one or many EMPLOYEEs,”
or “One or more EMPLOYEEs may or may not be assigned to the HOME OFFICE.” Once again,
the Iand O together imply a Boolean situation; in other words, one or zero.

The final relationship shown here can be read as, “Many PASSENGERs are flying to many
DESTINATIONs.” This symbol [>—+] is preferred by some to indicate a mandatory “many” con-
dition. (Would it ever be possible to have only one passenger or only one destination?) Even so,
some CASE tools such as Visible Analyst do not offer this possibility, because the optional one-
or-many condition as shown in the SALESPERSON-CUSTOMER relationship will do.

Up to now we have modeled all our relationships using just one simple rectangle and a line.
This method works well when we are examining the relationships of real things such as real peo-
ple, places, and things. Sometimes, though, we create new items in the process of developing an
information system. Some examples are invoices, receipts, files, and databases. When we want

Department
is a member of

contains
Employee

Many EMPLOYEES

are members of a

DEPARTMENT.

One DEPARTMENT

contains many

EMPLOYEES.

FIGURE 2.7
An entity-relationship diagram
showing a many-to-one
relationship.

32 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

to describe how a person relates to a receipt, for example, it becomes convenient to indicate the
receipt in a different way, as shown in Figure 2.9 as an associative entity.

An associative entity can only exist if it is connected to at least two other entities. For that
reason, some call it a gerund, a junction, an intersection, or a concatenated entity. This wording
makes sense because a receipt wouldn’t be necessary unless there were a customer and a sales-
person making the transaction.

Another type of entity is the attributive. When an analyst wants to show data that are com-
pletely dependent on the existence of a fundamental entity, an attributive entity should be used.

craft

Passenger Destination

is assigned to
is occupied by

is assigned to
will be developed by

is undergoing
is being done to

is assigned to
is called on by

has
is assigned to

is flying to
will be visited by

will serve
is served by

Employee Office

Systems Analyst

Distribution Center

Salesperson Customer

Home Office Employee

Machine

Project

Cargo Aircraft

Scheduled
Maintenance

FIGURE 2.8
Examples of different types of
relationships in E-R diagrams.

Fundamental
Entity

Associative
Entity

Usually a real entity: a person,
place, or thing

Something created that joins
two entities

Something useful in describing
attributes, especially repeating
groups

Attributive
Entity

FIGURE 2.9
Three different types of entities
used in E-R diagrams.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 33

For example, when a library had multiple copies of the same book, an attributive entity could be
used to designate which copy of the book is being checked out. The attributive entity is useful for
showing repeating groups of data. For example, suppose we are going to model the relationships
that exist when a patron gets tickets to a concert or show. The entities seem obvious at first: “a
PATRON and a CONCERT/SHOW,” as shown in Figure 2.10. What sort of relationship exists?
At first glance the PATRON gets a reservation for a CONCERT/SHOW, and the
CONCERT/SHOW can be said to have made a booking for a PATRON.

The process isn’t that simple, of course, and the E-R diagram need not be that simple either. The
PATRON actually makes a RESERVATION, as shown in Figure 2.11. The RESERVATION is for a
CONCERT/SHOW. The CONCERT/SHOW holds the RESERVATION, and the RESERVATION is
in the name of the PATRON. We added an associative entity here because a RESERVATION was cre-
ated due to the information system required to relate the PATRON and the CONCERT/SHOW.

Patron

Concert/Show

makes a
reservation
for

makes
a
booking
for

Here is

my firs
t

attempt.

 K

en

FIGURE 2.10
The first attempt at drawing an
E-R diagram.

Concert/Show

makes

Patron

is in
the
name
of

is for
a

I’ve added

an associative

entity.

 J

ulie

has

Reservation

FIGURE 2.11
Improving the E-R diagram by
adding an associative entry called
RESERVATION.

34 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Again this process is quite simple, but because concerts and shows have many performances,
the E-R diagram is drawn once more in Figure 2.12. Here we add an attributive entity to handle
the many performances of the CONCERT/SHOW. In this case the RESERVATION is made for a
particular PERFORMANCE, and the PERFORMANCE is one of many that belong to a specific
CONCERT/SHOW. In turn the CONCERT/SHOW has many performances, and one PERFOR-
MANCE has a RESERVATION that is in the name of a particular PATRON.

To the right of this E-R diagram is a set of data attributes that make up each of the entities.
Some entities may have attributes in common. The attributes that are underlined can be searched
for. The attributes are referred to as keys and are discussed in Chapter 13.

E-R diagrams are often used by systems designers to help model the file or database. It is
even more important, however, that the systems analyst understand early both the entities and
relationships in the organizational system. In sketching out some basic E-R diagrams, the ana-
lyst needs to:

1. List the entities in the organization to gain a better understanding of the organization.
2. Choose key entities to narrow the scope of the problem to a manageable and meaningful

dimension.

Concert/Show

has

has belongs to

Performance

makes

Patron

Reservation

is in
the
name
of

is
made
for

Patron-name
Patron-address
Patron-phone
Patron-credit-card

Reservation-number
Patron-name
Performance-number
Concert/show
Date
Time
Location
Price

Performance-number
Concert/show
Date
Time
Location
Price-options

Concert/show
Concert-details
Dates-of-event
Location

FIGURE 2.12
A more complete E-R diagram
showing data attributes of the
entities.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 35

3. Identify what the primary entity should be.
4. Confirm the results of steps 1 through 3 through other data-gathering methods

(investigation, interviewing, administering questionnaires, observation, and prototyping),
as discussed in Chapters 4 through 6.

It is critical that the systems analyst begin to draw E-R diagrams upon entering the organi-
zation rather than waiting until the database needs to be designed, because E-R diagrams help the
analyst understand what business the organization is actually in, determine the size and scope of
the problem, and discern whether the right problem is being addressed. The E-R diagrams need
to be confirmed or revised as the data-gathering process takes place.

USE CASE MODELING
Originally introduced as a diagram for use in object-oriented UML, use cases are now being
used regardless of the approach to systems development. It can be used as part of the SDLC or
in agile modeling. The word use is pronounced as a noun (yoos) rather than a verb (yooz). A

M A C A P P E A L

Microsoft Visio makes it easy for a systems analyst to draw E-R diagrams as well as most of the di-
agrams found in this book, but it is available only for PCs. Mac users have an alternative, OmniGraf-
fle Professional. OmniGraffle is easier to use than Microsoft Visio because its drag-and-drop interface
is smoother and more intuitive.

It also features a “smart guide” that uses pop-up distance markers to help position the symbols
in the correct places. Many symbols like those used in E-R diagrams are built in, but OmniGraffle
also lets the user search a third-party library called Graffletopia to find UML and other specialized
symbols.

FIGURE 2.MAC
OmniGraffle from The Omni Group is an easy and powerful drawing package.

36 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

use case model describes what a system does without describing how the system does it; that
is, it is a logical model of the system. (Logical or conceptual models will be further discussed
in Chapter 7.) The use case model reflects the view of the system from the perspective of a user
outside of the system (i.e., the system requirements).

An analyst develops use cases in a cooperative effort with the business experts who help de-
fine the requirements of the system. The use case model provides an effective means of commu-
nication between the business team and the development team. A use case model partitions the
way the system works into behaviors, services, and responses (the use cases) that are significant
to the users of the system.

From the perspective of an actor (or user), a use case should produce something that is of
value. Therefore, the analyst must determine what is important to the user, and remember to in-
clude it in the use case diagram. For example, is entering a password something of value to the
user? It may be included if the user has a concern about security or if it is critical to the success
of the project.

Use Case Symbols
A use case diagram contains the actor and use case symbols, along with connecting lines. Actors
are similar to external entities; they exist outside of the system. The term actor refers to a partic-
ular role of a user of the system. For example, an actor may be an employee, but also may be a
customer at the company store. Even though it is the same person in the real world, it is repre-
sented as two different symbols on a use case diagram, because the person interacts with the sys-
tem in different roles. The actor exists outside of the system and interacts with the system in a
specific way. An actor can be a human, another system, or a device such as a keyboard or Web
connection. Actors can initiate an instance of a use case. An actor may interact with one or more
use cases, and a use case may involve one or more actors.

Actors may be divided into two groups. Primary actors supply data or receive information
from the system. Some users directly interact with the system (system actors), but primary actors
may also be businesspeople who do not directly interact with the system but have a stake in it. Pri-
mary actors are important because they are the people who use the system and can provide details
on what the use case should do. They can also provide a list of goals and priorities. Supporting ac-
tors (also called secondary actors) help to keep the system running or provide other services. These
are the people who run the help desk, the analysts, programmers, and so on.

Sometimes it is useful to create an actor profile that lists the actors, their background, and
their skills in a simple table format. This may be useful to understand how the actor interacts with
the system. An example is an Order Processing Specialist. The profile would be, “A routine user
of the software, familiar with minor features, order exceptions, and order customization.” It is
also useful to list the actors and their goals and priorities. Each goal may become a use case.

A use case provides developers with a view of what the users want. It is free of technical or
implementation details. We can think of a use case as a sequence of transactions in a system. The
use case model is based on the interactions and relationships of individual use cases.

A use case always describes three things: an actor that initiates an event; the event that trig-
gers a use case; and the use case that performs the actions triggered by the event. In a use case,
an actor using the system initiates an event that begins a related series of interactions in the sys-
tem. Use cases are used to document a single transaction or event. An event is an input to the sys-
tem that happens at a specific time and place and causes the system to do something.

It is better to create fewer use cases rather than more. Often queries and reports are not in-
cluded; 20 use cases (and no more than 40 or 50) are sufficient for a large system. Use cases may
also be nested, if needed. Some use cases use the verb manage to group use cases for adding,
deleting, and changing into another, lower-level, use case diagram. You can include a use case on
several diagrams, but the actual use case is defined only once in the repository. A use case is
named with a verb and a noun.

Use Case Relationships
Active relationships are referred to as behavioral relationships and are used primarily in use case
diagrams. There are four basic types of behavioral relationships: communicates, includes, ex-
tends, and generalizes. Notice that all these terms are action verbs. Figure 2.13 shows the arrows

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 37

and lines used to diagram each of the four types of behavioral relationships. The four relation-
ships are described next.

COMMUNICATES. The behavioral relationship communicates is used to connect an actor to a use
case. Remember that the task of the use case is to give some sort of result that is beneficial to the
actor in the system. Therefore, it is important to document these relationships between actors and
use cases. In our first example, a Student communicates with Enroll in Course. Examples of some
components of a student enrollment example are shown in the use case diagrams in Figure 2.14.

INCLUDES. The includes relationship (also called uses relationship) describes the situation in
which a use case contains behavior that is common to more than one use case. In other words, the
common use case is included in the other use cases. A dotted arrow that points to the common use
case indicates the includes relationship. An example would be a use case Pay Student Fees that
is included in Enroll in Course and Arrange Housing, because in both cases students must pay
their fees. This may be used by several use cases. The arrow points toward the common use case.

EXTENDS. The extends relationship describes the situation in which one use case possesses the
behavior that allows the new use case to handle a variation or exception from the basic use case.

Relationship

Communicates

Includes

Symbol

An actor is connected to a use case using a line with
no arrowheads.

A use case contains a behavior that is common to more than one
other use case. The arrow points to the common use case.

Generalizes
One UML “thing” is more general than another “thing.”
The arrow points to the general “thing.”

Extends
A different use case handles exceptions from the basic use case.
The arrow points from the extended to the basic use case.

Meaning

<< include >>

<< extend >>

FIGURE 2.13
Some components of use case
diagrams showing actors, use
cases, and relationships for a
student enrollment example.

<< include >>

<< include >>

Enroll
in Course

Includes
Relationship

Arrange
Housing

Pay Student
Fees

<< extend >> Pay Student
Fees

Extends
Relationship

student states
amount of coverage

Student Health
Insurance

Communicates
Relationship

Enroll
in Course

Student

Part-time
Student

 Student

Generalizes
Relationship

FIGURE 2.14
Examples of use cases and
behavioral relationships for
student enrollment.

38 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

For example, the extended use case Student Health Insurance extends the basic use case Pay
Student Fees. The arrow goes from the extended to the basic use case.

GENERALIZES. The generalizes relationship implies that one thing is more typical than the other
thing. This relationship may exist between two actors or two use cases. For example, a Part-Time
Student generalizes a Student. Similarly, some of the university employees are professors. The
arrow points to the general thing.

Developing System Scope
The scope of a system defines its boundaries, what is in scope—or inside the system—and what
is out of scope. The project usually has a budget that helps to define scope, and a start and end
time. Actors are always outside the scope of the system. The communicates lines that connect ac-
tors to the use cases are the boundaries, and define the scope. Since a use case diagram is created
early in the systems life cycle, the budget, starting time, and ending time may change as the proj-
ect progresses; as the analyst learns more about the system, the use case diagrams, use case, and
scope may change.

Developing Use Case Diagrams
The primary use case consists of a standard flow of events in the system that describes a standard
system behavior. The primary use case represents the normal, expected, and successful comple-
tion of the use case.

When diagramming a use case, start by asking the users to list everything the system should
do for them. This can be done using interviews, in a joint application design session (as described
in Chapter 4), or through other facilitated team sessions. The analyst may also use agile stories
sessions (described in Chapter 6) to develop use cases. Write down who is involved with each use
case, and the responsibilities or services the use case must provide to actors or other systems. In
the initial phases, this may be a partial list that is expanded in the later analysis phases. Use the
following guidelines:

1. Review the business specifications and identify the actors involved.
2. Identify the high-level events and develop the primary use cases that describe those events

and how the actors initiate them. Carefully examine the roles played by the actors to
identify all the possible primary use cases initiated by each actor. Use cases with little or
no user interaction do not have to be shown.

3. Review each primary use case to determine the possible variations of flow through the use
case. From this analysis, establish the alternative paths. Because the flow of events is
usually different in each case, look for activities that could succeed or fail. Also look for
any branches in the use case logic in which different outcomes are possible.

If a context-level data flow diagram has been created, it can be a starting point for creating a
use case. The external entities are potential actors. Then examine the data flow to determine if it
would initiate a use case or be produced by a use case.

Figure 2.15 is an example of a use case diagram representing a system used to plan a confer-
ence. The actors are the Conference Chair, responsible for planning and managing the confer-
ence, the conference Participant, Speakers, a Keynote Speaker, Hotel Reservations, and a
Caterer. Actors represent the role the user plays, and the Caterer may be either a hotel employee
or an external catering service.

Both the Conference Chair and the Caterer are involved in planning meals and banquets.
The Conference Chair is also responsible for arranging speakers. The Participant registers for
the conference. Notice that the Reserve Room use case is involved in an includes relationship
with the Arrange Speaker and Register for Conference use cases, since both speakers and par-
ticipants will need lodging. The Arrange Language Translation use case extends the Register
for Conference use case because not all participants will require language translation services.
The Speaker actor is a generalization of Keynote Speaker.

Developing Use Case Scenarios
Each use case has a description. We will refer to the description as a use case scenario. As men-
tioned, the primary use case represents the standard flow of events in the system, and alternative

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 39

paths describe variations to the behavior. Use case scenarios may describe what happens if an item
purchased is out of stock, or if a credit card company rejects a customer’s requested purchase.

There is no standardized use case scenario format, so each organization is faced with speci-
fying what standards should be included. Often the use cases are documented using a use case
document template predetermined by the organization, which makes the use cases easier to read
and provides standardized information for each use case in the model.

Use Case Levels
You may want to create use cases for different levels. One method (defined by Alistair Cockburn)
uses the following altitude metaphors:

1. White is the highest level, like clouds. This is the enterprise level, and there may only be
four to five for the entire organization. Examples might be to advertise goods, sell goods to
customers, manage inventory, manage the supply chain, and optimize shipping.

2. Kite is lower than white but still a high level, providing an overview. The kite use case may
be at the business unit or department level and is a summary of goals. Examples would be
to register students, or if working with a travel company: make an airline, hotel, car, or
cruise reservation.

3. Blue is at sea level, and is usually created for user goals. This often has the greatest interest
for users and is easiest for a business to understand. It is usually written for a business
activity and each person should be able to do one blue level activity in anywhere from 2 to

Caterer

Conference
Chair

Hotel
Reservations

Arrange
Speaker

Plan
Catering

<
<

 in
cl

ud
e

>
>

Reserve
Room

<
<

 in
cl

ud
e

>
>

<< extend >>

Participant

Register for
Conference

Keynote
Speaker

Speaker

Arrange Language
Translation

FIGURE 2.15
A use case diagram representing a
system used to plan a conference.

40 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

20 minutes. Examples are register a continuing student, add a new customer, place an item
in a shopping cart, and order checkout.

4. Indigo or fish is a use case that shows lots of detail, often at a functional or subfunctional
level. Examples are choose a class, pay academic fees, look up the airport code for a given
city, and produce a list of customers after entering a name.

5. Black or clam, like the bottom of the ocean, are the most detailed use cases, at a
subfunction level. Examples might be a secure logon validation, adding a new field using
dynamic HTML, or using Ajax to update a Web page in a small way.

A use case scenario example is shown in Figure 2.16. Some of the areas included are op-
tional, and may not be used by all organizations. The three main areas are:

1. An area header containing case identifiers and initiators.
2. Steps performed.
3. A footer area containing preconditions, assumptions, questions, and other information.

Use case name: Register for Conference
UniqueID: Conf RG 003

Area:

Actor(s):

Description:

Triggering Event:

Preconditions:

Postconditions:

Assumptions:

Steps Performed (Main Path)

Conference Planning

Participant has already registered and has created a user account.

Participant has a browser and a valid userID and password.

Participant has successfully registered for the conference.

Success Guarantee: Participant has registered for the conference and is enrolled in all selected sessions.
Minimum Guarantee: Participant was able to logon.
Requirements Met: Allow conference participants to be able to register for the conference using a secure Web site.
Outstanding Issues: How should a rejected credit card be handled?Priority: High

Risk:
Medium

Participant uses Conference Registration Web site, enters userID and password, and clicks the logon button.

1. Participant logs in using the secure Web server.
2. Participant record is read and password is verified.
3. Participant and session information is displayed on the Registration Web page.
4. Participant enters information on the Registration Web form and clicks Submit button.
5. Registration information is validated on the Web server.6. Registration Confirmation page is displayed to confirm registration information.

7. Credit card is charged for registration fees.
8. Add Registration Journal record is written.

userID, Password

Participant Record, userID, Password
Participant Record, Session Record

Registration Web Form

Registration Web Form

Confirmation Web Page

Secure Credit Card Web Page
Confirmation Web Page9. Registration record is updated on the Registration Master. Confirmation Web Page, Registration Record

10. Session record is updated for each selected session on the Session Master. Confirmation Web Page, Session Record11. Participant record is updated for the participant on the Participant Master. Confirmation Web Page, Participant Record12. Successful Registration Confirmation Web page is sent to the participant. Registration Record Confirmation Number

Trigger type:

Participant
Stakeholder: Conference Sponsor, Conference SpeakersLevel: Blue

Allow conference participant to register online for the conference using a secure Web site.

Information for Steps

External Temporal

FIGURE 2.16
A use case scenario is divided into
three sections: identification and
initiation; steps performed; and
conditions, assumptions, and
questions.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 41

The first area, use case identifiers and initiators, orients the reader and contains the use case
name and a unique ID; the application area or system that this use case belongs to; the actors in-
volved in the use case; and the stakeholders that have a high level of interest in the use case. Some
stakeholders never interact directly with the system, such as the stockholders, the board of direc-
tors, or the sales manager. Each primary actor is a stakeholder, but not listed in the stakeholder area.
Include the level (blue, kite, and so on) and a brief description of what the use case accomplishes.

The header concludes with the initiating (triggering) event, that is, what caused the use case
to start, and the type of trigger, either external or temporal. External events are those started by
an actor, either a person or another system requesting information, such as an airline reservation
system requesting flight information from an airline system. Temporal events are those that are
triggered or started by time. Events occur at a specific time, such as sending an email about spe-
cial offers once a week on a Sunday evening, sending bills on a specific day, or generating gov-
ernment statistics on a specified date every quarter.

The second area of the use case includes the steps performed, and the information required
for each of the steps. These statements represent the standard flow of events and the steps taken
for the successful completion of the use case. It is desirable to write up a use case for the main
path, and then to write up one for each of the alternative paths separately, rather than using
IF . . . THEN . . . statements. Steps are numbered with an integer. The steps may come from a de-
tailed interview with users or may be derived from agile modeling stories (as described in
Chapter 6). These steps should be reviewed with the users for clarification.

The analyst should examine each of the steps and determine the information required for each
step. If the analyst cannot determine the information, he or she should schedule a follow-up in-
terview with the user. Some use case descriptions include extensions or alternative scenarios, with
the exceptions as additional sections following the standard flow of events. These are numbered
with an integer, decimal point, and another integer, such as 3.1, 3.2, 3.3, and so on. These are steps
that may or may not be used. Analysts and users can brainstorm what can go wrong with the main
path, and may uncover important details and conditions. It is necessary to work with the users to
determine what to do when these conditions occur. This helps to detect errors earlier in the life
cycle.

Figure 2.17 illustrates how logic and alternative scenarios can be included in the middle sec-
tion of a use case. In this airline example, notice that step 1 is made up of smaller steps, many of
which are preceded by an “if.” These are still on the main path, but only occur if the condition is
met. For example, if there are many airports that serve a city, then all the airports will be displayed.
Extensions or alternate scenarios can also appear here. For this airline, other scenarios include flight
selection, seat selection, and meal selection. Use cases may even include iterative or looping steps.

The third area of the use case includes:

� Preconditions, or the condition of the system before the use case may be performed, which
may be another use case. An example might be, “The viewer has successfully logged into
the system,” or it might be the successful completion of another use case.

� Postconditions, or the state of the system after the use case has finished, including output
people have received, transmissions to other systems, and data that have been created or
updated. These relate to the goals or user requirements from a problem definition
(described in Chapter 3) or to agile stories (described in Chapter 6).

� Assumptions made that would affect the method of the use case and that could stipulate
required technology, such as the minimum technology requirements in a browser or even a
specific or higher version of a browser. An assumption might be that cookies or JavaScript
are enabled. The analyst must determine what to do if the assumptions are not met. When
using Google Maps, JavaScript must be enabled. If it is not enabled, the map will not
display. Cookies are required by Netflix. Good Web pages will detect that an assumption
has not been met and notify the viewer with a message, including information on how to
turn on cookies or JavaScript for different browsers.

� Minimal guarantee is the minimum promised to the users. They may not be happy with this
result and it may be that nothing happens.

� Success guarantee is what would satisfy the users, and it is usually that the goal of the use
case has been met.

� Any outstanding issues or questions must be answered before implementation of the use case.

42 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

� An optional statement of priority of the use case, which may come from a problem
definition or user requirements.

� An optional statement of risk involved in creating the use case.

The “requirements met” area links the use case to user requirements or objectives from a
problem definition. Once you develop the use case scenarios, be sure to review your results with
the business experts to verify and refine the use cases if needed.

In this particular use case scenario, called Register for Conference, the only actor involved
is the Participant. The overall area is Conference Planning, and the use case is triggered by the
participant logging on to the Registration Web page. The Steps Performed area lists the se-
quence of events that must occur for a successful conference registration. Notice that the infor-
mation needed to perform each of the steps is listed on the right. This may include Web pages and
forms, as well as database tables and records.

Steps Performed (Main Path)
Information for Steps 1. Enter departing and arriving airports, dates of travel.
Airport Locations 1.1. If an airport code is entered, display matching name, city, country

 1.2. If a city is entered, find all matching cities
 1.3. Customer selects a city

 1.4. If there is more than one airport for the city, display airports
 1.5. Client selects an airport

 1.6. Insert the airport code (3 characters)
 1.7. Display the matching airport country, city, and airport name
2. Find all matching flights with available seats

Flight Information3. Customer selects flight

4. Customer logs on
Customer Logon 5. Customer selects passenger names
Passenger Records6. Seating chart is displayed showing all available seats
Plane Number, Seating Chart, Available Seats

7. Customer selects seat(s) for each passenger
8. Display confirmation and credit card page
9. Credit card verified

10. Email confirmation sent

11. Airline reservation made

Extensions or Alternative Scenarios

Flight Selection

1. A list of flights displays
2. Customer selects a flight
3. Request is sent to airline
4. Flight is already full

Seat Selection

1. A list of flights displays
2. Customer selects a flight
3. Request is sent to airline
4. Seat reservations are retrieved
5. Seating chart is displayed
6. Customer cannot find an acceptable seat
Meal Selection for International Flights

1. Customer selects meal from drop-down list
Available Airline Meal List 2. Record is updated with meal selection
Customer Meal Record

FIGURE 2.17
Use cases can include conditional
steps as well as extensions or
alternative scenarios.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 43

The Preconditions area in the footer section of the use case scenario lists what must occur be-
fore the participant can register for a conference. In this example, the participant must have already
signed up as a member of the society and have a valid userID and password. The Postconditions area
lists what has been accomplished by the use case. The Assumptions area lists any basic premises the
analyst assumes are fulfilled by the actor beforehand. The Requirements Met area shows why this
use case is important and necessary for the business area to be successful. Priority is an indication of
which use cases should be developed first and which may be delayed. Risk is a rough assessment of
whether there may be problems or difficulties developing the use case. In this case, the risk is medium
because the registration use case requires a secure server and is accepting credit card information.

Creating Use Case Descriptions
Use the following four steps to create use case descriptions:

1. Use agile stories, problem definition objectives, user requirements, or a features list as a
starting point.

2. Ask about the tasks that must be done to accomplish the transaction. Ask if the use case
reads any data or updates any tables.

3. Find out if there are any iterative or looping actions.
4. The use case ends when the customer goal is complete.

Why Use Case Diagrams Are Helpful
No matter what method you use to develop your system (traditional SDLC methods, agile meth-
ods, or object-oriented methods), you will find that use cases are very valuable. The use case di-
agrams identify all the actors in the problem domain, and a systems analyst can concentrate on
what humans want and need to use the system, extend their capabilities, and enjoy their interac-
tion with technology.

The actions that need to be completed are also clearly shown on the use case diagram. This
not only makes it easy for the analyst to identify processes, but it also aids in communication with
other analysts on the team and business executives.

The use case scenario is also worthwhile. Since a lot of the information the users impart to
the analyst already takes the form of stories, it is easy to capture the stories on a use case scenario
form. The use case scenario always documents the triggering event so that an analyst can always
trace the steps that led to other use cases. Since the steps performed are noted, it is possible to em-
ploy use case scenarios to write logical processes.

Use case diagrams are becoming popular because of their simplicity and lack of technical de-
tail. They are used to show the scope of a system, along with the major features of the system and
the actors who work with those major features. The users see the system and they can react to it
and provide feedback. They may also help to determine whether to build or buy the software.

The main reasons for writing use cases are shown in Figure 2.18.

LEVELS OF MANAGEMENT
Management in organizations exists on three broad, horizontal levels: operational control, man-
agerial planning and control (middle management), and strategic management, as shown in

• Use cases effectively communicate systems requirements because the diagrams are
 kept simple.
• Use cases allow people to tell stories.
• Use case stories make sense to nontechnical people.
• Use cases do not depend on a special language.
• Use cases can describe most functional requirements (such as interactions between
 actors and applications).
• Use cases can describe nonfunctional requirements (such as performance and
 maintainability) through the use of stereotypes.
• Use cases help analysts define boundaries.
• Use cases can be traceable, allowing analysts to identify links between use cases and
 other design and documentation tools.

FIGURE 2.18
The main reasons for writing use
cases are their effectiveness in
communicating with users and
their capturing of user stories.

44 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Figure 2.19. Each level carries its own responsibilities, and all work toward achieving organiza-
tional goals and objectives in their own ways.

Operational control forms the bottom tier of three-tiered management. Operations managers
make decisions using predetermined rules that have predictable outcomes when implemented
correctly.

They make decisions that affect implementation in work scheduling, inventory control, ship-
ping, receiving, and control of processes such as production. Operations managers oversee the
operating details of the organization.

Middle management forms the second, or intermediate, tier of the three-tiered management
system. Middle managers make short-term planning and control decisions about how resources
may best be allocated to meet organizational objectives.

Their decisions range all the way from forecasting future resource requirements to solving
employee problems that threaten productivity. The decision-making domain of middle managers
can usefully be characterized as partly operational and partly strategic, with constant fluctuations.

Operational Control

Managerial
Planning and Control

Strategic
Management

FIGURE 2.19
Management in organizations
exists on three horizontal levels:
operational control, managerial
planning and control, and strategic
management.

C O N S U L T I N G O P P O R T U N I T Y 2 . 2

Where There’s Carbon, There’s a Copy

“I don’t know what we do with the pink ones yet,” Richard Rus-
sell admitted. “They’re part of a quadruplicate form that rips apart.
All I know is that we keep them for the filing clerk, and he files
them when he has time.”

Richard is a newly hired junior account executive for Carbon,
Carbon & Rippy, a brokerage house. You are walking through the
steps he takes in making a stock purchase “official” because his
boss has asked you to streamline the process whereby stock pur-
chase information is stored in the computer system and retrieved.

After you leave, Richard continues thinking about the pink
forms. He tells his clerk, Harry Schultz, “In my two months here, I
haven’t seen anyone use those. They take up my time and yours, not
to mention all the filing space. Let’s pitch them.”

Richard and Harry proceed to open all the old files kept by
Richard’s predecessor and throw out the filed pink forms, along with
those accumulated but not yet filed. It takes hours, but they make a
lot of room. “Definitely worth the time,” Richard reassures Harry.

Three weeks later, an assistant to Richard’s boss, Carol Vaness,
appears. Richard is happy to see a familiar face, greeting her with,
“Hi, Carol. What’s new?”

“Same old thing,” Carol sighs. “Well, I guess it isn’t old to you,
because you’re the newcomer. But I need all those pesky pink
forms.”

Almost in shock, Richard exchanges looks with Harry, then
mumbles, “You’re kidding, of course.”

Carol looks more serious than Richard ever thought possible,
replying, “No joke. I summarize all the pink forms from all the bro-
kers, and then my totals are compared with computerized stock pur-
chase information. It’s part of our routine, three-month audit for
transaction accuracy. My work depends on yours. Didn’t Ms. Mc-
Cue explain that to you when you started?”

What systems concept did Richard and Harry ignore when
tossing out the pink forms? What are the possible ramifications
for systems analysts if general systems concepts are ignored?

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 45

Strategic management is the third level of three-tiered management control. Strategic man-
agers look outward from the organization to the future, making decisions that will guide middle
and operations managers in the months and years ahead.

Strategic managers work in a highly uncertain decision-making environment. Through state-
ments of goals and the determination of strategies and policies to achieve them, strategic man-
agers actually define the organization as a whole. Theirs is the broad picture, wherein the
company decides to develop new product lines, divest itself of unprofitable ventures, acquire
other compatible companies, or even allow itself to be acquired or merged.

There are sharp contrasts among the decision makers on many dimensions. For instance,
strategic managers have multiple decision objectives, whereas operations managers have single
ones. It is often difficult for high-level managers to identify problems, but it is easy for operations
managers to do so. Strategic managers are faced with semistructured problems, whereas lower-
level managers deal mostly with structured problems.

The alternative solutions to a problem facing the strategic managers are often difficult to ar-
ticulate, but the alternatives that operations managers work with are usually easy to enumerate.
Strategic managers most often make one-time decisions, whereas the decisions made by opera-
tions managers tend to be repetitive.

Implications for Information Systems Development
Each of the three management levels holds differing implications for developing information sys-
tems. Some of the information requirements for managers are clear-cut, whereas others are fuzzy
and overlapping.

Operations managers need internal information that is of a repetitive, low-level nature. They
are highly dependent on information that captures current performance, and they are large users
of online, real-time information resources. The need of operations managers for past performance
information and periodic information is only moderate. They have little use for external informa-
tion that allows future projections.

On the next management level, middle managers are in need of both short- and longer-term
information. Due to the troubleshooting nature of their jobs, middle managers experience ex-
tremely high needs for information in real time. To control properly, they also need current infor-
mation on performance as measured against set standards. Middle managers are highly dependent
on internal information. In contrast to operations managers, they have a high need for historical
information, along with information that allows for the prediction of future events and simulation
of numerous possible scenarios.

Strategic managers differ somewhat from both middle and operations managers in their in-
formation requirements. They are highly dependent on information from external sources that
supply news of market trends and the strategies of competing corporations. Because the task of
strategic managing demands projections into the uncertain future, strategic managers have a high
need for information of a predictive nature and information that allows creation of many differ-
ent what-if scenarios. Strategic managers also exhibit strong needs for periodically reported in-
formation as they seek to adapt to fast-moving changes.

ORGANIZATIONAL CULTURE
Organizational culture is an established area of research that has grown remarkably in the last
generation. Just as it is appropriate to think of organizations as including many technologies, it is
similarly appropriate to see them as hosts to multiple, often competing subcultures.

There is still little agreement on what precisely constitutes an organizational subculture. It is
agreed, however, that competing subcultures may be in conflict, attempting to gain adherents to
their vision of what the organization should be. Research is in progress to determine the effects
of virtual organizations and virtual teams on the creation of subcultures when members do not
share a physical workspace but share tasks.

Rather than thinking about culture as a whole, it is more useful to think about the researchable
determinants of subcultures, such as shared verbal and nonverbal symbolism. Verbal symbolism in-
cludes shared language used to construct, convey, and preserve subcultural myths, metaphors, vi-
sions, and humor. Nonverbal symbolism includes shared artifacts, rites, and ceremonies; clothing

46 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

of decision makers and workers; the use, placement, and decoration of offices; and rituals for cele-
brating members’ birthdays, promotions, and retirements.

Subcultures coexist within “official” organizational cultures. The officially sanctioned cul-
ture may prescribe a dress code, suitable ways to address superiors and coworkers, and proper
ways to deal with the outside public. Subcultures may be powerful determinants of information
requirements, availability, and use.

Organizational members may belong to one or more subcultures in the organization. Subcul-
tures may exert a powerful influence on member behavior, including sanctions for or against the
use of information systems.

Understanding and recognizing predominant organizational subcultures may help the sys-
tems analyst overcome the resistance to change that arises when a new information system is in-
stalled. For example, the analyst might devise user training to address specific concerns of
organizational subcultures. Identifying subcultures may also help in the design of decision sup-
port systems that are tailored for interaction with specific user groups.

SUMMARY
There are three broad organizational fundamentals to consider when analyzing and designing information
systems: the concept of organizations as systems, the various levels of management, and the overall organi-
zational culture.

Organizations are complex systems composed of interrelated and interdependent subsystems. In addi-
tion, systems and subsystems are characterized by their internal environments on a continuum from open to
closed. An open system allows free passage of resources (people, information, materials) through its bound-
aries; closed systems do not permit free flow of input or output. Organizations and teams can also be organ-
ized virtually with remote members connected electronically who are not in the same physical workspace.
Enterprise resource planning systems are integrated organizational (enterprise) information systems devel-
oped with customized, proprietary software that help the flow of information between the functional areas
in the organization. They support a systems view of the organization.

C O N S U L T I N G O P P O R T U N I T Y 2 . 3

Pyramid Power

“We really look up to you,” says Paul LeGon. As a systems an-
alyst, you have been invited to help Pyramid, Inc., a small, inde-
pendent book-publishing firm that specializes in paperback books
outside of the publishing mainstream.

Paul continues, “We deal with what some folks think are fringe
topics. You know, pyramid power, end-of-the-world prophecies, and
healthier living by thinking of the color pink. Sometimes when peo-
ple see our books, they just shake their heads and say, ‘Tut—uncom-
mon topic.’ But we’re not slaves to any particular philosophy, and
we’ve been very successful. So much so that because I’m 24, people
call me the ‘boy king.’” Paul pauses to decipher your reaction.

Paul continues, “I’m at the top as president, and functional areas
such as editorial, accounting, production, and marketing are under me.”

Paul’s assistant, Ceil Toom, who has been listening quietly up
to now, barges in with her comments: “The last systems experts that
did a project for us recommended the creation of liaison committees

of employees between accounting, production, and marketing, so
that we could share newly computerized inventory and sales figures
across the organization. They claimed that committees such as that
would cut down on needless duplication of output, and each func-
tional area would be better integrated with all the rest.”

Paul picks up the story, saying, “It was fair—oh, for a while—
and the employees shared information, but the reason you’re here is
that the employees said they didn’t have time for committee meet-
ings and were uncomfortable sharing information with people from
other departments who were further up the ladder than they were
here at Pyramid.”

According to Paul and Ceil, what were the effects of installing
a management information system at Pyramid, Inc., that required
people to share information in ways that were not consistent with
their structure? Propose some general ways to resolve this problem
so that Pyramid employees can still obtain the sales and inventory
figures they need.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 47

H Y P E R C A S E ® E X P E R I E N C E 2

Organizational cultures and subcultures are important determi-
nants of how people use information and information systems. By
grounding information systems in the context of the organization as a
larger system, it is possible to realize that numerous factors are impor-
tant and should be taken into account when ascertaining information
requirements and designing and implementing information systems.

HYPERCASE Questions
1. What major organizational change recently took place at

MRE? What department(s) was (or were) involved? Why
was the change made?

2. What are the goals of the Training and Management Systems
Department?

3. Would you categorize MRE as a service industry, a
manufacturer, or both? What kind of “products” does MRE
“produce”? Suggest how the type of industry MRE is in
affects the information systems it uses.

4. What type of organizational structure does MRE have? What
are the implications of this structure for MIS?

5. Describe in a paragraph the “politics” of the Training and
Management Systems Department at MRE. Who is involved,
and what are some of the main issues?

6. Draw a use case diagram representing the activities of the
Webster Design group at MRE when developing site and
facility master plans (use the MRE Web site to obtain your
basic information).

FIGURE 2.HC1
Click on key words in the HyperCase and find
out more detail.

“You seem to have already made a good
start at MRE. I’m glad you met Snowden Evans.
As you know, you’ll be reporting directly to him
during your consulting project. As his adminis-
trative assistant for the last five years I can tell
you a lot about the company, but remember that
there are a number of ways to find out more. You
will want to interview users, observe their deci-
sion-making settings, and look at archival re-
ports, charts, and diagrams. To do so, you can
click on the phone directory to get an appoint-
ment with an interviewee, click on the building
map to view the layout of the building, or click on
the corporate Web site to see the functional areas
and formal hierarchical relationships at MRE.

“Many of the rules of corporate life apply
in the MRE HyperCase. You can walk freely in
many public areas. If you want to tour a private
office, however, you must first book an ap-
pointment with one of our employees. Some se-
cure areas are strictly off limits to you as an
outsider since you could pose a security risk.

“I don’t think you’ll find us excessively secretive, however,
because you may assume that any employee who grants you an in-
terview will also grant you access to the archival material in his or
her files as well as to current work on their desktops or screens.

“Unfortunately, some people in the company never seem to
make themselves available to consultants. I suggest you be persist-
ent. There are lots of ways to find out about the people and the sys-
tems of MRE. Creativity pays off. You’ll notice that the systems
consultants who follow their hunches, sharpen their technical skills,
and never stop thinking about piecing together the puzzles at MRE
are the ones who get the best results.

“Remember to use multiple methods—interviewing, observa-
tion, and investigation—to understand what we at MRE are trying
to tell you. Sometimes actions, documents, and offices actually
speak louder than words!”

There are many ways to graphically depict the system. The ana-
lyst should choose among these tools early on to get an overview of
the system. These approaches include drawing context-level data flow
diagrams, capturing relationships early on with entity-relationship di-
agrams; or drawing use case diagrams or writing use case scenarios
based on user stories. Using these diagrams and techniques at the be-
ginning of analysis can help the analyst define the boundaries and
scope of the system, and can help bring into focus which people and
systems are external to the system being developed.

Entity-relationship diagrams help the systems analyst under-
stand the entities and relationships that comprise the organizational
system. E-R diagrams can depict a one-to-one relationship, a one-
to-many relationship, a many-to-one relationship, and a many-to-
many relationship.

The three levels of managerial control are operational, middle
management, and strategic. The time horizon of decision making is
different for each level.

48 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

KEYWORDS AND PHRASES
actor
associative entity
attributive entity
closedness
context-level data flow diagram
crow’s foot notation
enterprise resource planning (ERP)
enterprise systems
entity (fundamental entity)
entity-relationship (E-R) diagrams
environment
feedback
four levels of use cases
interdependent
interrelatedness

middle management
openness
operations management
organizational boundaries
organizational culture
scope of the system
strategic management
systems
use case
use case diagram
use case scenario
virtual enterprise
virtual organization
virtual team

REVIEW QUESTIONS
1. What are the three groups of organizational fundamentals that carry implications for the development

of information systems?
2. What is meant by saying that organizational subsystems are interrelated and interdependent?
3. Define the term organizational boundary.
4. What are the two main purposes for feedback in organizations?
5. Define openness in an organizational environment.
6. Define closedness in an organizational environment.
7. What is the difference between a traditional organization and a virtual one?
8. What are the potential benefits and a drawback of a virtual organization?
9. Give an example of how systems analysts could work with users as a virtual team.

10. What are enterprise systems?
11. What is ERP, and what is its purpose?
12. What problems do analysts often encounter when they try to implement an ERP package?
13. What are the two symbols on a use case diagram, and what do they represent?
14. What is a use case scenario?
15. What are the three main parts of a use case scenario?
16. What are the four steps in creating use case descriptions?
17. What are the five altitude metaphors for describing use case on different levels? What do they

represent?
18. What does a process represent on a context-level data flow diagram?
19. What is an entity on a data flow diagram?
20. What is meant by the term entity-relationship diagram?
21. What symbols are used to draw E-R diagrams?
22. List the types of E-R diagrams.
23. How do an entity, an associative entity, and an attributive entity differ?
24. List the three broad, horizontal levels of management in organizations.
25. How can understanding organizational subcultures help in the design of information systems?

PROBLEMS
1. “It’s hard to focus on what we want to achieve. I look at what our real competitors, the convenience

stores, are doing and think we should copy that. Then a hundred customers come in, and I listen to
each of them, and they say we should keep our little store the same, with friendly clerks and old-
fashioned cash registers. Then, when I pick up a copy of SuperMarket News, they say that the wave
of the future is super grocery stores, with no individual prices marked and UPC scanners replacing
clerks. I’m pulled in so many directions I can’t really settle on a strategy for our grocery store,”
admits Geoff Walsham, owner and manager of Jiffy Geoff’s Grocery Store.

In a paragraph, apply the concept of permeable organizational boundaries to analyze Geoff’s
problem in focusing on organizational objectives.

2. Write seven sentences explaining the right-to-left relationships in Figure 2.8.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 49

3. Draw an entity-relationship diagram of a patient–doctor relationship.
a. Which of the types of E-R diagrams is it?
b. In a sentence or two, explain why the patient–doctor relationship is diagrammed in this way.

4. You began drawing E-R diagrams soon after your entry into the health maintenance organization for
which you’re designing a system. Your team member is skeptical about using E-R diagrams before
the design of the database is begun. In a paragraph, persuade your team member that early use of E-R
diagrams is worthwhile.

5. Neil is a decision maker for Pepe’s Atlantic Sausage Company. Because there are several suppliers of
ingredients and their prices fluctuate, he has come up with several different formulations for the various
sausages that he makes, depending on the availability of particular ingredients from particular suppliers.
He then orders ingredients accordingly twice a week. Even though he cannot predict when ingredients
will become available at a particular price, his ordering of supplies can be considered routine.
a. On what level of management is Neil working? Explain in a paragraph.
b. What attributes of his job would have to change before you would categorize him as working on

a different level of management? List them.
6. Many of the people who work at Pepe’s (Problem 5) are extremely dedicated to Pepe’s and have

devoted their lives to the company. Others feel that the company is behind the times and should use
more sophisticated production systems, information systems, and supply chain management to make
the company more competitive. Members of a third group feel that what they do is unappreciated.
Describe the various subculture in words. Assign them a name based on their emotions.

7. Alice in the human resources department at the Cho Manufacturing plant is constantly being asked
by employees how much is taken out of their paychecks for insurance, taxes, medical, mandatory
retirement, and voluntary retirement. “It takes up to a few hours every day,” says Alice.

She would like a Web system that would allow employees to use a secure logon to view the
information. Alice wants the system to interface with health and dental insurance companies to
obtain the amount remaining in the employee’s account for the year. She would also like to obtain
retirement amounts saved along with investment results. Alice has a high regard for privacy and
wants the system to have employees register and give permission to obtain financial amounts from
the dental insurance and retirement companies. Draw a use case diagram representing the activities
of the Employee Benefit system.

8. Write up a use case scenario for the use case diagram you constructed for Cho Manufacturing.
9. What level are you creating your use case at? Choose one of the four altitude metaphors and explain

why you chose it.
10. Create a context-level data flow diagram for the Employee Benefit system in Problem 7. Make any

assumptions about the data to and from the central process. Do you find this to be better or not as
good at explaining the system to Alice than the use case and use case scenarios?

11. Draw a use case and write up a use case scenario for getting two or three email accounts. Think about
the steps that are needed to ensure security.

GROUP PROJECTS
1. Break up into groups of five. Assign one person to act as the Web site designer, one to write copy for

a company’s product, one to keep track of customer payments, one to monitor distribution, and one
to satisfy customers who have questions about using the product. Then select a simple product (one
that does not have too many versions). Good examples are a digital camera, a DVD player, a GPS, a
box of candy, or a specialty travel hat (rainproof or sunblocker). Now spend 20 minutes trying to
explain to the Web site designer what to include on the Web site. Describe in about three paragraphs
what experience your group had in coordination. Elaborate on the interrelatedness of subsystems in
the organization (your group).

2. In a small group, develop a use case and a use case scenario for making air, hotel, and car
reservations for domestic travel.

3. Change your answer in Group Project 2 to include foreign travel. How does the use case and use case
scenario change?

4. With your group, draw a context-level data flow diagram of your school’s or university’s registration
system. Label each entity and process. Discuss why there appear to be different ways to draw the
diagram. Reach consensus as a group about the best way to draw the diagram and defend your choice
in a paragraph. Now, working with your group’s members, follow the appropriate steps for
developing an E-R diagram and create one for your school or university registration system. Make
sure your group indicates whether the relationship you depict is one-to-one, one-to-many, many-to-
one, or many-to-many.

50 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

SELECTED BIBLIOGRAPHY
Bleeker, S. E. “The Virtual Organization.” Futurist, Vol. 28, No. 2, 1994, pp. 9–14.
Chen, P. “The Entity-Relationship Model—Towards a Unified View of Data.” ACM Transactions on Data-

base Systems, Vol. 1, March 1976, pp. 9–36.
Ching, C., C. W. Holsapple, and A. B. Whinston. “Toward IT Support for Coordination in Network Organi-

zations.” Information Management, Vol. 30, No. 4, 1996, pp. 179–199.
Cockburn, A. “Use Case Icons,” http://alistair.cockburn.us/Use�case�icons?version=8339&diff=8339&

with=6296. Last accessed March 18, 2009.
Davis, G. B., and M. H. Olson. Management Information Systems, Conceptual Foundations, Structure, and

Development, 2d ed. New York: McGraw-Hill, 1985.
Galbraith, J. R. Organizational Design. Reading, MA: Addison-Wesley, 1977.
Kendall, K. E., J. R. Buffington, and J. E. Kendall. “The Relationship of Organizational Subcultures to DSS

User Satisfaction.” Human Systems Management, March 1987, pp. 31–39.
Kulak, D., and E. Guiney. Use Cases: Requirement in Context, 2d ed. Boston: Pearson Education, 2004.
PeopleSoft. Available at: www.peoplesoft.com/corplen/public_index.jsp. Accessed June 3, 2003.
Warkentin, M., L. Sayeed, and R. Hightower. “Virtual Teams versus Face-to-Face Teams; An Exploratory

Study of a Web-Based Conference System.” In Emerging Information Technologies: Improving Deci-
sions, Cooperation, and Infrastructure. Edited by K. E. Kendall, pp. 241–262. Thousand Oaks, CA:
Sage Publications, 1999.

Yager, S. E. “Everything’s Coming Up Virtual.” Available at: www.acm.org/crossroads/xrds4-1/organ.html.
Accessed June 3, 2003.

www.peoplesoft.com/corplen/public_index.jsp
www.acm.org/crossroads/xrds4-1/organ.html
http://alistair.cockburn.us/Use+case+icons?version=8339&diff=8339&with=6296
http://alistair.cockburn.us/Use+case+icons?version=8339&diff=8339&with=6296

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 51

E P I S O D E 2
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Picturing the Relationships
“So the project involves more than simply performing maintenance work on the current programs,” Chip
says. “Are we using a formal methodology for analyzing and designing the new system?”

“Yes,” replies Anna. “We are also using Microsoft Visio to create and modify the diagrams and some
simple repository information. We also have a CASE tool, Visible Analyst, to analyze and design the
system.1 We’ve recently installed the products on the computer in the office.”

With a few easy mouse clicks Anna comes to a context-level data flow diagram (see Figure E2.1). “It’s
very useful to begin thinking of the system this way,” Anna says as they look at the diagram on the screen.

Chip agrees, saying, “I can very easily see what you think is happening with the system. For instance,
I see that the external entity Management supplies hardware and software inquiries and receives the corre-
sponding responses in return. It shows the system within the larger organization.”

“I’ve also drawn a preliminary E-R diagram of the system,” Anna says as she brings up the entity-
relationship diagram on the screen (see Figure E2.2). “It may need modification as we learn more about
the system.”

“Yes, the many-to-many and one-to-many relationships are very clear when you look at this,” Chip
says, viewing the screen.

“There is one more view of the system,” continues Anna, opening the use case diagram. “This is the pre-
liminary use case diagram for our system (see Figure E2.3). We are going to use it to obtain some valuable

New Computer Form

Software Received

Repaired Computer

Hardware Master Report

Software Master Report

EE 4

Context

Hardware Inquiry Response

Software Inquiry Response

Hardware Inquiry

Software Inquiry

Software Inquiry Inquiry Response

EE 1

Management

EE 2

Faculty

Computer
Inventory
System

Clerical
Support

EE 5

EE 3

Maintenance

EE 1

Management

EE 2

Faculty

Shipping/
Receiving

Dept.

FIGURE E2.1
Context-level data flow diagram,
current system.

1For more details on how to begin using Visible Analyst, see Allen Schmidt, Working with Visible Analyst, 2d ed.
(Upper Saddle River, NJ: Prentice Hall, 2004).

52 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

has

Software

performed on
Computer

can have
Hardware and
Software

located
within

has provides warranty
Vendor

Room

Operating System

Computer
Maintenance

FIGURE E2.2
Entity-relationship diagram,
current system.

Shipping/Receiving Department

Software User

Create Software
Category

<<extend>>

Maintenance

Clerical Support

Management

Add New Computer

Add Software

Produce Hardware
Investment Report

Produce Hardware
Software Cross

Reference Report

Query Training
Classes

FIGURE E2.3
Use case diagram for the CPU
computer system.

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 53

feedback from the users. The use cases are not all complete, but I can show you one of them.” Anna clicks on
the use case symbol, displaying the use case description in the repository shown in Figure E2.4.

“You’ve got a good start here,” Chip continues as he eyes the use case description. “This helps to un-
derstand the activities that take place. Let’s get to work and see what needs to be done next.”

EXERCISES
E-1. Use Microsoft Visio or Visible Analyst to view and print the context-level data flow diagram for the

computer inventory system, as Chip and Anna did.

E-2. Use the Repository feature or the Repository Web page to view the entry for the central process.

E-3. Use Microsoft Visio or Visible Analyst to view and print the entity-relationship diagram for the com-
puter inventory system.

E-4. Explain why the external entities on the context-level diagram are not found on the entity-
relationship diagram.

Use case name: Add New Computer

Area: Computer Inventory

Actors: Shipping/Receiving Department, Maintenance
Stakeholder: Faculty, Student, Staff

Level: Blue

Description: Add a new computer and generate a list of all machines for software installation
Trigger: Add Computer menu choice clicked

Trigger Type: External Temporal
Steps Performed (Main Path)

1. Information is entered about new computers.

2. Computer is added to Computer Master.

3. Pending orders are updated with computers that have been received.

4. Produce the Installation Listing report for all desktop models.

5. Produce Software Installation Listing report showing all standard.software for all received computers.

Information for Steps

Invoice and specification sheets

Computer Master

Pending Order database table

Computer Master

Computer Master

Preconditions: Computer has been received by the receiving department.
Postconditions: A computer has been added to the database and reports have been generated.
Assumptions: User has successfully logged on with access to Add Computer screen.
Success Guarantee: A computer has been added to the database and required reports printed.
Minimum Guarantee: Computer has been received and will be added later.
Objectives Met: Add and install new computers.

Outstanding Issues: What course of action should be taken when pending computers do not match those received.Priority (optional): High

Risk (optional): Medium

FIGURE E2.4
Use case scenario for the CPU
computer system.

54 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Software is keyed into the new system and validated Software received form

Software is added to the Software Master Software Master

The Software Installation List is produced Software Master, Order

The software user is notified about installed software Order

E-5. Explain why the entities MANAGEMENT and FACULTY are found on both sides of the process on
the context-level diagram.

E-6. Use Microsoft Visio or Visible Analyst to view and print the use case diagram for the computer in-
ventory system.

E-7. Add the following actors and use cases to the use case diagram:
a. FACULTY actor in the lower left side of the use case diagram.
b. Connect the FACULTY actor to the QUERY TRAINING CLASSES use case.
c. Since the computers may have software installed for a specific computer lab, the clerical support

staff may be responsible for installing software on the computers. Connect the CLERICAL SUP-
PORT actor to the ADD SOFTWARE use case.

d. Add two new use cases below the QUERY TRAINING CLASSES use case: QUERY SOFT-
WARE EXPERT and below it, QUERY SOFTWARE INFORMATION.

e. Connect the FACULTY actor to the QUERY SOFTWARE EXPERT and QUERY SOFTWARE
INFORMATION use cases.

f. Connect the MANAGEMENT actor to the QUERY SOFTWARE EXPERT use case.

E-8. Add the INSTALL DESKTOP COMPUTER use case to the upper right area of the diagram. This use
case extends the ADD NEW COMPUTER use case.

E-9. Add a use case description for the ADD SOFTWARE use case. It should contain the following infor-
mation:
a. Obtain the use case name and actors from the use case diagram. The stakeholder and level are the

same as those in Figure E2.3.
b. The description should be: Add new software to the Software database table and print an instal-

lation listing.
c. The activity is started (triggered) when the user clicks the Add Software menu item.
d. The steps performed and information for steps are:

e. Preconditions are that software has been received. Postconditions are that the software has been
added to the database and reports have been created. Assumptions are that the user has success-
fully logged on with access to the Add Software entry screen. A success guarantee is that the soft-
ware has been added to the database and the required report printed. A minimum guarantee is that
the software has been received. The objectives met are to add and install new software. The out-
standing issue is how to determine which software to install on which machines. The priority is
high and the risk is medium.

E-10. Write a use case description for the PRODUCE HARDWARE SOFTWARE CROSS REFERENCE
REPORT use case. Use the use case diagram to determine the heading information, making any rea-
sonable assumptions. The steps would be to read a software record, use that information to read the
hardware-software relational table, then read the hardware record. Use the hardware record to print a
line, accumulating totals. Print subtotals and grand totals. This is a medium priority, low-risk activ-
ity. Preconditions are that all the information must have been previously added to the appropriate
database tables. Postconditions are that the report has been printed. Assumptions are that all the in-
formation on the database tables is correct. A success guarantee would be the report has been success-
fully created. A minimum guarantee would be the report could not be printed. The objectives met are
to produce information about what software is found on which machine. Outstanding issues are: What
if the software is older and is not currently installed on any machines, how should the report be pro-
duced: printed, in a PDF file, or should it really be a query for one software package?

CHAPTER 2 • UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS 55

E-11. Write the use case description for the PRODUCE HARDWARE INVESTMENT REPORT use case.
Use the use case diagram to define the header information. The steps involve reading each hardware
record, counting the number of machines, and totaling the amount invested in them for each computer
model. When the computer brand changes, produce subtotals, with a grand total at the end of the re-
port. All information comes from the Hardware Master database table. Make any reasonable assump-
tions about preconditions, postconditions, assumptions, success guarantee, minimum guarantee,
objectives met, outstanding issues, priority, and risk.

E-12. Write the use case description for the QUERY TRAINING CLASSES use case. Use the use case di-
agram to define the header information. The steps involve entering information on the Web form, val-
idating the information, and storing the data on a Training Request database table. Make any
reasonable assumptions about preconditions (such as if the software have to be already purchased),
postconditions, assumptions, success guarantee, minimum guarantee, objectives met, outstanding is-
sues, priority (would this be a high priority task), and risk.

The exercises preceded by a www icon indicate value-added material that is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft
Project, or a Microsoft Access file that can be used to complete the exercises. Alternatively, many of the exercises can
be accomplished manually if software is unavailable.

www.pearsonhighered.com/kendall

56

C H A P T E R 3

Project Management

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Understand how projects are initiated and selected, define a business problem, and
determine the feasibility of a proposed project.

2. Inventory and appraise current and proposed hardware and software and the way it
supports human interactions with technology.

3. Evaluate software by addressing the trade-offs among creating custom software,
purchasing COTS software, and outsourcing to an application service provider.

4. Forecast and analyze tangible and intangible costs and benefits.

5. Plan a project by identifying activities and scheduling them.

6. Manage team members and analysis and design activities so that the project objectives are
met while the project remains on schedule.

7. Professionally write and present an effective systems proposal, concentrating on both
content and design.

Initiating projects, determining project feasibility, scheduling projects, and
planning and then managing activities and team members for productiv-
ity are all important capabilities for the systems analyst to master.As such,
they are considered project management fundamentals.

A systems project begins with problems or with opportunities for im-
provement in a business that often come up as the organization adapts to change.The increas-
ing popularity of ecommerce means that some fundamental changes are occurring as
businesses either originate their enterprises on, or move their internal operations as well as ex-
ternal relationships to, the Internet. Changes that require a systems solution occur in the legal
environment as well as in the industry’s environment. Analysts work with users to create a
problem definition reflecting current business systems and concerns. Once a project is sug-
gested, the systems analyst works quickly with decision makers to determine whether it is fea-
sible. If a project is approved for a full systems study, the project activities are scheduled
through the use of tools such as Gantt charts and Program Evaluation and Review Techniques
(PERT) diagrams so that the project can be completed on time. Part of assuring the productiv-
ity of systems analysis team members is effectively managing their scheduled activities. This
chapter is devoted to a discussion of project management fundamentals.

PROJECT INITIATION
Systems projects are initiated by many different sources for many reasons. Some of the projects
suggested will survive various stages of evaluation to be worked on by you (or you and your
team); others will not and should not get that far. Businesspeople suggest systems projects for two

broad reasons: (1) because they experience problems that lend themselves to systems solutions,
and (2) because they recognize opportunities for improvement through upgrading, altering, or in-
stalling new systems when they occur. Both situations can arise as the organization adapts to and
copes with natural, evolutionary change.

Problems in the Organization
Managers do not like to conceive of their organization as having problems, let alone talk about
them or share them with someone from outside. Good managers, however, realize that recogniz-
ing symptoms of problems or, at a later stage, diagnosing the problems themselves and then con-
fronting them are imperative if the business is to keep functioning at its highest potential.

Problems surface in many different ways. One way of conceptualizing what problems are and
how they arise is to think of them as situations in which goals have never been met or are no
longer being met. Useful feedback gives information about the gap between actual and intended
performance. In this way feedback spotlights problems.

In some instances problems that require the services of systems analysts are uncovered be-
cause performance measures are not being met. Problems (or symptoms of problems) with
processes that are visible in output and that could require the help of a systems analyst include
excessive errors and work performed too slowly, incompletely, incorrectly, or not at all. Other
symptoms of problems become evident when people do not meet baseline performance goals.
Changes in employee behavior such as unusually high absenteeism, high job dissatisfaction, or
high worker turnover should alert managers to potential problems. Any of these changes, alone
or in combination, might be sufficient reason to request the help of a systems analyst.

Although difficulties such as those just described occur in the organization, feedback on how
well the organization is meeting intended goals may come from outside, in the form of complaints
or suggestions from customers, vendors, or suppliers, and lost or unexpectedly lower sales. This
feedback from the external environment is extremely important and should not be ignored.

A summary of symptoms of problems and approaches useful in problem detection is pro-
vided in Figure 3.1. Notice that checking output, observing or researching employee behavior,
and listening to feedback from external sources are all valuable in problem finding. When react-
ing to accounts of problems in the organization, the systems analyst plays the roles of consultant,
supporting expert, and agent of change, as discussed in Chapter 1. As you might expect, roles for
the systems analyst shift subtly when projects are initiated because the focus is on opportunities
for improvement rather than on the need to solve problems.

Defining the Problem
Whether using the classical SDLC or an object-oriented approach, the analyst first defines the
problems and objectives of the system. These form the foundation of determining what needs to
be accomplished by the system. Methods like Six Sigma (refer to Chapter 16 for details) start with
a problem definition.

CHAPTER 3 • PROJECT MANAGEMENT 57

Check output against performance criteria.

Observe behavior of employees.

Listen to external feedback from:
 Vendors.
 Customers.
 Suppliers.

• Too many errors
• Work completed slowly
• Work done incorrectly
• Work done incompletely
• Work not done at all

• High absenteeism
• High job dissatisfaction
• High job turnover

Look for These Specific Signs:To Identify Problems

• Complaints
• Suggestions for improvement
• Loss of sales
• Lower sales

FIGURE 3.1
Checking output, observing
employee behavior, and listening
to feedback are all ways to help
the analyst pinpoint systems
problems and opportunities.

A problem definition usually contains some sort of problem statement, summarized in a para-
graph or two. This is followed by a series of issues, or major, independent pieces of the problem.
The issues are followed by a series of objectives, or goals that match the issues point by point. Is-
sues are the current situation; objectives are the desired situation. The objectives may be very spe-
cific or worded using a general statement.

Here are some examples of business questions relating to business objectives:

� What are the purposes of the business?
� Is the business profit or nonprofit?
� Does the company plan to grow or expand?
� What is the business’s attitude (culture) about technology?
� What is the business’s budget for IT?
� Does the business’s staff have the expertise?

Needless to say, the systems analyst needs to understand how a business works.
The last part of the problem definition contains requirements, the things that must be accom-

plished, along with the possible solutions and the constraints that limit the development of the
system. The requirements section may include security, usability, government requirements, and
so on. Constraints often include the word not, indicating a limitation, and may contain budget re-
strictions or time limitations.

The problem definition is produced after completing interviews, observations, and document
analysis with the users. The result of gathering this information is a wealth of facts and important
opinions in need of summary. The first step in producing the problem definition is to find a num-

58 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

C O N S U L T I N G O P P O R T U N I T Y 3 . 1

The Sweetest Sound I’ve Ever Sipped

Felix Straw, who represents one of the many U.S. distributors of
the European soft drink Sipps, gazes unhappily at a newspaper
weather map, which is saturated with dark red, indicating that most
of the United States is experiencing an early spring heat wave with
no signs of a letup. Pointing to the paper as he speaks, he tells your
systems group, “It’s the best thing that could happen to us, or at least
it should be. But when we had to place our orders three months ago,
we had no idea that this spring monster heat wave was going to de-
vour the country this way!” Nodding his head toward a picture of
their European plant on the wall, he continues. “We need to be able
to tell them when things are hot over here so we can get enough
product. Otherwise, we’ll miss out every time. This happened two
years ago and it just about killed us.

“Each of us distributors meets with our district managers to do
three-month planning. When we agree, we fax our orders into Eu-
ropean headquarters. They make their own adjustments, bottle the
drinks, and then we get our modified orders about 9 to 15 weeks
later. But we need ways to tell them what’s going on now. Why, we
even have some new superstores that are opening up here. They
should know we have extra-high demand.”

Corky, his assistant, agrees, saying, “Yeah, they should at least
look at our past sales around this time of year. Some springs are hot,
others are just average.”

Straw concurs, saying, “It would be music to my ears, it would
be really sweet, if they would work with us to spot trends and
changes—and then respond quickly.”

Stern’s, based in Blackpool, England, is a European beverage
maker and the developer and producer of Sipps. Sipps is a sweet,
fruit-flavored, nonalcoholic, noncarbonated drink, which is served
chilled or with ice, and it is particularly popular when the weather
is hot. Selling briskly in Europe and growing in popularity in the
United States since its introduction five years ago, Sipps has had a
difficult time adequately managing inventory and keeping up with
U.S. customer demand, which is affected by seasonal temperature
fluctuations. Places with year-round, warm-temperature climates
and lots of tourists (such as Florida and California) have large stand-
ing orders, but other areas of the country could benefit from a less
cumbersome, more responsive order-placing process. Sipps is dis-
tributed by a network of local distributors located throughout the
United States and Canada.

As one of the systems analysts assigned to work with the U.S.
distributors of Sipps, begin your analysis by listing some of the
key symptoms and problems you have identified after studying
the information flows, ordering process, and inventory manage-
ment, and after interviewing Mr. Straw and his assistant. In a para-
graph describe which problems might indicate the need for a
systems solution.

Note: This consulting opportunity is loosely based on J. C. Perez,
“Heineken’s HOPS Software Keeps A-Head on Inventory,” PC Week, Vol.
14, No. 2, January 13, 1997, pp. 31 and 34.

CHAPTER 3 • PROJECT MANAGEMENT 59

ber of points that may be included in one issue. Major points can be identified in the interview in
a number of ways:

1. Users may identify an issue, topic, or theme that is repeated several times, sometimes by
different people in several interviews.

2. Users may communicate the same metaphors, such as saying the business is a journey, war,
game, organism, machine, and so on.

3. Users may speak at length on a topic.
4. Users may tell you outright that “This is a major problem.”
5. Users may communicate importance by body language or may speak emphatically on an

issue.
6. The problem may be the first thing mentioned by the user.

Once the issues have been created, the objectives must be stated. At times the analyst may
have to do a follow-up interview to obtain more precise information about the objectives. After
the objectives are stated, the relative importance of the issues or objectives must be determined.
If there are not enough funds to develop the complete system, the most critical objectives must
be completed first. The identification of the most critical objectives is best done by users (with
the support of analysts), because users are domain experts in their business area and in how they
work best with technologies in the organization.

One technique is to ask the users to assign a weight for each issue or objective of the first
draft of the problem definition. This is a subjective judgment by the user, but, if a number of users
all assign weights and they are averaged together, the result might reflect the bigger picture. Af-
ter the weights have been determined, the problem definition issues and objectives are rese-
quenced in order of decreasing importance, the most important issues listed first. There is
software such as Expert Choice (www.expertchoice.com) and other decision support software
that can assist with the weighting and prioritizing of objectives.

Besides looking through data and interviewing people, try to witness the problem firsthand.
When looking at the same situation, an employee may view a problem very differently than a sys-
tems analyst does. This also gives analysts the opportunity to confirm their findings. In this way
they use multiple methods, thereby strengthening the case for taking appropriate action.

A PROBLEM DEFINITION EXAMPLE: CATHERINE’S CATERING. Catherine’s Catering is a small
business that caters meals, receptions, and banquets for business and social occasions such as
luncheons and weddings. It was inspired by Catherine’s love of cooking and her talent for
preparing fine meals. At first it was a small company with a handful of employees working on
small projects. Catherine met with customers to determine the number of people, the type of
meals, and other information necessary to cater an event. As their reputation for creating superb
food and the quality of the service began to blossom, the number of events started to increase. The
building of a new convention center, along with a prospering business community in the city,
increased the number of catering events.

Catherine was able to manage the business using spreadsheets and word processing but
found difficulty in keeping up with endless phone calls about what types of meals were avail-
able, changes to the number of guests attending the event, and the availability of specialty di-
etary items, such as vegan, vegetarian, low-fat, low-carbohydrate, and so on. Catherine’s
decisions to hire a number of part-time employees to cook and cater the events meant that the
complexity of scheduling personnel was becoming overwhelming to the new human resources
manager. Catherine decided to hire an IT and business consulting company to help her address
the problems her catering enterprise was facing.

After performing interviews and observing a number of key staff, the consultants found the
following concerns:

1. The master chef ordered supplies (produce, meat, and so on) from suppliers for each event.
The suppliers would provide discounts if greater quantities were ordered at a single time
for all events occurring in a given time frame.

2. Customers often called to change the number of guests for an event, with some changes
made only one or two days before the event was scheduled.

3. It was too time-consuming for Catherine and her staff to handle each request for catering,
with about 60 percent of the calls resulting in a contract.

www.expertchoice.com

60 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

4. Conflicts in employee schedules were occurring and some events were understaffed.
Complaints about the timeliness of service were becoming more frequent.

5. Catherine does not have any summary information about the number of events and types of
meals. It would be helpful to have trend information that would help guide her customers
in their choice of meals.

6. Events are often held at hotels or other meeting halls, which provide table settings for sit-
down meals. There are problems with having sufficient waitstaff and changes with the
number of guests.

The problem definition is shown in Figure 3.2. Notice the weights on the right, representing
an average of the weights assigned by each employee. Objectives match the issues. Each objec-
tive is used to create user requirements.

Problem DefinitionCatherine’s Catering is experiencing problems with handling the number of routine calls with customers, as well as

coordinating with external partners such as suppliers and meeting facilities. The growth in the number of part-time

staff is leading to scheduling conflicts and understaffed events.Issues
1. Customer contact takes an inordinate amount of time for routine questions.
2. Managing part-time employees is time-consuming and leads to scheduling errors.
3. It is difficult to accommodate last-minute changes for events.
4. Supplies are ordered for each event. Often shipments are received several times a day.
5. There are often problems communicating changes to event facilities.
6. There is little historical information about customers and meals.Objectives

1. Provide a Web system for customers to obtain pricing information and place orders.
2. Create or purchase a human resources system with a scheduling component.
3. After customers have signed an event contract, provide them with Web access to their

 account and a means for them to update the number of guests. Notify management of changes.

4. Provide a means to determine overall quantities of supplies for events occurring within a

 concurrent time frame.
5. Provide a system for communicating changes to key personnel at event facilities.
6. Store all event data and make summary information available in a variety of formats.Requirements

1. The system must be secure.2. Feedback must be entered by event managers at the close of each event.
3. There must be a means for event facilities to change their contact person.
4. The system must be easy to use by nontechnical people.Constraints

1. Development costs must not exceed $50,000.2. The initial Web site for customer orders must be ready by March 1 to accommodate requests

 for graduation parties and weddings.

10
9
7
6
5
3

Weight

FIGURE 3.2
Problem definition for Catherine’s
Catering, developed with the help
of users.

CHAPTER 3 • PROJECT MANAGEMENT 61

User requirements are then used to create either use cases and a use case diagram or data flow
diagram processes. Each objective may create one or more user requirements or several objectives
may create one or perhaps no use cases (use cases are not often created for simple reports), or
each requirement may create one data flow diagram process. The user requirements for Cather-
ine’s Catering are to:

1. Create a dynamic Web site to allow current and potential clients to view and obtain pricing
information for a variety of different products.

2. Allow current and potential clients to submit a request with their catering choices, with the
request routed to an account manager.

3. Add clients to the client database, assigning them a userID and a password for access to
their projects.

4. Create a Web site for clients to view and update the number of guests for an event and
restrict changing the number of guests when the event day is less than five days in the
future.

5. Obtain or create software to communicate directly with event facility personnel.
6. Create or purchase a human resources system for scheduling part-time employees,

allowing management to add employees and schedule them using a number of constraints.
7. Provide queries or reports with summary information.

Each requirement may be used to create a preliminary test plan. Since scant details are avail-
able at this time, the test plan will be revised as the project progresses.

A simple test plan for Catherine’s Catering is:

1. Design test data that would allow clients to view each different type of product.
2. Test to ensure that a catering request has been entered with valid data, as well as each

possible condition of invalid data (data will be defined later). Ensure that the request is
routed to the appropriate account manager.

3. Test that all data fields pass all validation criteria for each field. Test good data to ensure
that clients are added to the client database, and that a userID and a password are correctly
assigned.

4. Create a test plan that will test that clients are able to view event information. Test that
updates may not be made within five days of the event. Design test data that will check to
ensure correct updating of the number of guests for an event.

5. Test that the software works correctly for communicating directly with event facility personnel.
6. Test the human resources system for scheduling part-time employees, checking that

employees have been correctly added and that all invalid values for each field are detected
and reported. Check scheduling software for valid updates and each invalid entry.

7. Check that all queries or reports work correctly and contain the correct summary
information.

Selection of Projects
Projects come from many different sources and for many reasons. Not all should be selected for
further study. You must be clear in your own mind about the reasons for recommending a systems
study on a project that seems to address a problem or could bring about improvement. Consider
the motivation that prompts a proposal on the project. You need to be sure that the project under
consideration is not being proposed simply to enhance your own political reputation or power, or
that of the person or group proposing it, because there is a high probability that such a project will
be ill-conceived and eventually ill-accepted.

As outlined in Chapter 2, prospective projects need to be examined from a systems perspec-
tive in such a way that you are considering the impact of the proposed change on the entire orga-
nization. Recall that the various subsystems of the organization are interrelated and
interdependent, so a change to one subsystem might affect all the others. Even though the deci-
sion makers directly involved ultimately set the boundaries for the systems project, a systems
project cannot be contemplated or selected in isolation from the rest of the organization.

Beyond these general considerations are five specific criteria for project selection:

1. Backing from management.
2. Appropriate timing of project commitment.

62 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

3. Possibility of improving attainment of organizational goals.
4. Practical in terms of resources for the systems analyst and organization.
5. Worthwhile project compared with other ways the organization could invest resources.

First and foremost is backing from management. Absolutely nothing can be accomplished
without the endorsement of the people who eventually will foot the bill. This statement does not
mean that you lack influence in directing the project or that people other than management can’t
be included, but management backing is essential.

Another important criterion for project selection includes timing for you and the organiza-
tion. Ask yourself and the others who are involved if the business is presently capable of making
a time commitment for installation of new systems or improvement to existing ones. You must
also be able to commit all or a portion of your time for the duration.

A third criterion is the possibility of improving attainment of organizational goals such as
(1) improving corporate profits, (2) supporting the competitive strategy of the organization, (3) im-
proving cooperation with vendors and partners, (4) improving internal operations support so that
goods and services are produced efficiently and effectively, (5) improving internal decision support
so that decisions are more effective, (6) improving customer service, and (7) increasing employee
morale. The project should put the organization on target, not deter it from its ultimate goals.

A fourth criterion is selecting a project that is practicable in terms of your resources and ca-
pabilities as well as those of the business. Some projects will not fall within your realm of exper-
tise, and you must be able to recognize them.

Finally, you need to come to a basic agreement with the organization about the worthiness of
the systems project relative to any other possible project being considered. There are many pos-
sibilities for improvements, including, (1) speeding up a process, (2) streamlining a process
through the elimination of unnecessary or duplicated steps, (3) combining processes, (4) reduc-
ing errors in input through changes of forms and display screens, (5) reducing redundant storage,
(6) reducing redundant output, and (7) improving integration of systems and subsystems. Re-
member that when a business commits to one project, it is committing resources that thereby be-
come unavailable for other projects. It is useful to view all possible projects as competing for the
business resources of time, money, and people.

DETERMINING FEASIBILITY
Once the number of projects has been narrowed according to the criteria discussed previously, it
is still necessary to determine if the selected projects are feasible. Our definition of feasibility
goes much deeper than common usage of the term, because systems projects feasibility is as-
sessed in three principal ways: operationally, technically, and economically. The feasibility study
is not a full-blown systems study. Rather, the feasibility study is used to gather broad data for the
members of management that in turn enables them to make a decision on whether to proceed with
a systems study.

Data for the feasibility study can be gathered through interviews, which are covered in detail
in Chapter 4. The kind of interview required is directly related to the problem or opportunity be-
ing suggested. The systems analyst typically interviews those requesting help and those directly
concerned with the decision-making process, typically management. Although it is important to
address the correct problem, the systems analyst should not spend too much time doing feasibil-
ity studies, because many projects will be requested and only a few can or should be executed.
The feasibility study must be highly time compressed, encompassing several activities in a short
span of time.

Determining Whether It Is Possible
After an analyst determines reasonable objectives for a project, the analyst needs to determine if
it is possible for the organization and its members to see the project through to completion. Gen-
erally, the process of feasibility assessment is effective in screening out projects that are incon-
sistent with the business’s objectives, technically impossible, or economically without merit.

Although it is painstaking, studying feasibility is worthwhile because it saves businesses and
systems analysts time and money. In order for an analyst to recommend further development, a
project must show that it is feasible in all three of the following ways: technically, economically,
and operationally, as shown in Figure 3.3.

CHAPTER 3 • PROJECT MANAGEMENT 63

TECHNICAL FEASIBILITY. The analyst must find out whether it is possible to develop the new
system given the current technical resources. If not, can the system be upgraded or added to in a
manner that fulfills the request under consideration? If existing systems cannot be added onto or
upgraded, the next question becomes whether there is technology in existence that meets the
specifications.

At the same time, the analyst can ask whether the organization has the staff who are techni-
cally proficient enough to accomplish the objectives. If not, the question becomes whether they
can hire additional programmers, testers, experts, or others who may have different programming
skills from theirs, or maybe outsource the project completely. Still another question is whether
there are software packages available that can accomplish their objectives, or does the software
need to be customized for the organization?

ECONOMIC FEASIBILITY. Economic feasibility is the second part of resource determination. The
basic resources to consider are your time and that of the systems analysis team, the cost of doing
a full systems study (including the time of employees you will be working with), the cost of the
business employee time, the estimated cost of hardware, and the estimated cost of software or
software development.

The concerned business must be able to see the value of the investment it is pondering before
committing to an entire systems study. If short-term costs are not overshadowed by long-term
gains or produce no immediate reduction in operating costs, the system is not economically fea-
sible and the project should not proceed any further.

OPERATIONAL FEASIBILITY. Suppose for a moment that technical and economic resources are
both judged adequate. The systems analyst must still consider the operational feasibility of the
requested project. Operational feasibility is dependent on the human resources available for the
project and involves projecting whether the system will operate and be used once it is installed.

If users are virtually wed to the present system, see no problems with it, and generally are
not involved in requesting a new system, resistance to implementing the new system will be
strong. Chances for it ever becoming operational are low.

Alternatively, if users themselves have expressed a need for a system that is operational more
of the time, in a more efficient and accessible manner, chances are better that the requested sys-
tem will eventually be used. Much of the art of determining operational feasibility rests with the
user interfaces that are chosen, as we see in Chapter 14.

ASCERTAINING HARDWARE AND SOFTWARE NEEDS
Assessing technical feasibility includes evaluating the ability of computer hardware and software
to handle workloads adequately. Figure 3.4 shows the steps the systems analyst takes in ascertain-
ing hardware and software needs. First, all current computer hardware the organization owns
must be inventoried to discover what is on hand and what is usable.

The systems analyst needs to work with users to determine what hardware will be needed.
Hardware determinations can come only in conjunction with determining human information

The Three Key Elements of Feasibility

 Technical Feasibility
 Add on to present system
 Technology available to meet users’ needs

 Economic Feasibility
 Systems analysts’ time
 Cost of systems study
 Cost of employees’ time for study
 Estimated cost of hardware
 Cost of packaged software or software development

 Operational Feasibility
 Whether the system will operate when installed
 Whether the system will be used

FIGURE 3.3
The three key elements of
feasibility include technical,
economic, and operational
feasibility.

64 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

requirements. Knowledge of the organizational structure (as discussed in Chapter 2) and how
users interact with technologies in an organizational setting can also be helpful in hardware de-
cisions. Only when systems analysts, users, and management have a good grasp of what kinds
of tasks must be accomplished can hardware options be considered.

Inventorying Computer Hardware
Begin by inventorying what computer hardware is already available in the organization. As will
become apparent, some of the hardware options involve expanding or recycling current hardware,
so it is important to know what is on hand.

If an updated computer hardware inventory is unavailable, the systems analyst needs to set
up one quickly and carry through on it. You need to know the following:

1. The type of equipment: model number, manufacturer.
2. The operation status of the equipment: on order, operating, in storage, in need of repair.
3. The estimated age of the equipment.
4. The projected life of the equipment.
5. The physical location of the equipment.
6. The department or person considered responsible for the equipment.
7. The financial arrangement for the equipment: owned, leased, rented.

Ascertaining the current hardware available will result in a sounder decision-making process
when hardware decisions are finally made, because much of the guesswork about what exists will
be eliminated. Through your earlier interviews with users, questionnaires surveying them, and re-
search of archival data, you will already know the number of people available for data processing
as well as their skills and capabilities. Use this information to project how well the staffing
needs for new hardware can be met.

Estimating Workloads
The next step in ascertaining hardware needs is to estimate workloads. Thus, systems analysts for-
mulate numbers that represent both current and projected workloads for the system so that any
hardware obtained will possess the capability to handle current and future workloads.

Steps in Acquiring Computer
Hardware and Software

Estimate
Workloads

Evaluate
HardwareOptionsPurchase Purchase

COTS

Lease

Rent

Use
ASP

Create

Options
Evaluate
Software

Acquire the
Computer
Equipment

Choose
the Vendor

Inventory
Computer
Hardware

FIGURE 3.4
Steps in choosing hardware and
software.

CHAPTER 3 • PROJECT MANAGEMENT 65

If estimates are accomplished properly, the business should not have to replace hardware solely
due to unforeseen growth in system use. (Other events, however, such as superior technological in-
novations, may dictate hardware replacement if the business wants to maintain its competitive edge.)

Out of necessity, workloads are sampled rather than actually put through several computer
systems. The guidelines given on sampling in Chapter 5 can be of use here, because in workload
sampling, the systems analyst is taking a sample of necessary tasks and the computer resources
required to complete them.

Figure 3.5 is a comparison of the times required by an existing and a proposed information
system that are supposed to handle a given workload. Notice that the company is currently using
a legacy computer system to prepare a summary of shipments to its distribution warehouses, and
a Web-based dashboard is being suggested. The workload comparison looks at when and how
each process is done, how much human time is required, and how much computer time is needed.
Notice that the newly proposed system should cut down the required human and computer time
significantly.

Evaluating Computer Hardware
Evaluating computer hardware is the shared responsibility of management, users, and systems an-
alysts. Although vendors will be supplying details about their particular offerings, analysts need
to oversee the evaluation process personally because they will have the best interests of the busi-
ness at heart. In addition, systems analysts may have to educate users and management about the
general advantages and disadvantages of hardware before they can capably evaluate it.

Based on the current inventory of computer equipment and adequate estimates of current and
forecasted workloads, the next step in the process is to consider the kinds of equipment available that

Compare performance ofdistribution warehousesby running the summaryprogram.

Computer programs arerun when needed; processingis done from the workstation.

Updates occur immediately;processing is done online.
Distribution manager Distribution managerDaily:
Enter shipments on Excel spreadsheet; verify accuracyof spreadsheet manually; and

media.
then write files to backup

Monthly:
Run program that
summarizes daily recordsand prints report; get report and make evaluations.

Daily:
Enter shipments on theWeb-based system using

automatically backed up

drop-down boxes. Data are

to remote location.Monthly:
Compare warehouses onlineusing the performancedashboard; print only ifneeded.

Daily: 20 minutes
Daily: 10 minutesMonthly: 30 minutes Monthly: 10 minutesDaily: 20 minutes
Daily: 10 minutesMonthly: 30 minutes Monthly: 10 minutes

Task

Method

Personnel

When and how

Human time
requirements

Computer time
requirements

Existing System Proposed System
Compare performance ofdistribution warehouseson the Web-based

dashboard.

FIGURE 3.5
Comparisons of workloads
between existing and proposed
systems.

66 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

appear to meet projected needs. Information from vendors on possible systems and system config-
urations becomes more pertinent at this stage and should be reviewed with management and users.

In addition, workloads can be simulated and run on different systems, including those already
used in the organization. This process is referred to as benchmarking.

Criteria that the systems analysts and users should use to evaluate performance of different
systems hardware include the following:

1. The time required for average transactions (including how long it takes to input data and
how long it takes to receive output).

2. The total volume capacity of the system (how much can be processed at the same time
before a problem arises).

3. The idle time of the CPU or network.
4. The size of the memory provided.

Some criteria will be shown in formal demonstrations; some cannot be simulated and must
be gleaned from manufacturers’ specifications. It is important to be clear about the required and
desired functions before getting too wrapped up in vendors’ claims during demonstrations.

Once functional requirements are known and the current products available are compre-
hended and compared with what already exists in the organization, decisions are made by the sys-
tems analysts in conjunction with users and management about whether obtaining new hardware
is necessary. Options can be thought of as existing on a continuum from using only equipment al-
ready available in the business all the way to obtaining entirely new equipment. In between are
options to make minor or major modifications to the existing computer system.

COMPUTER SIZE AND USE. The rapid advance of technology dictates that the systems analyst
research types of computers available at the particular time that the systems proposal is being
written. Computer sizes range all the way from miniature mobile phones to room-sized
supercomputers. Each has different attributes that should be considered when deciding how to
implement a computer system.

Acquisition of Computer Equipment
The three main options for acquisition of computer hardware are buying, leasing, or renting it.
There are advantages and disadvantages that ought to be weighed for each of the decisions, as
shown in Figure 3.6. Some of the more influential factors to consider in deciding which option is
best for a particular installation include initial versus long-term costs, whether the business can
afford to tie up capital in computer equipment, and whether the business desires full control of
and responsibility for the computer equipment.

Advantages Disadvantages

• Cheaper than leasing or
 renting over the long run
• Ability to change system
• Provides tax advantages of
 accelerated depreciation
• Full control

• No capital is tied up
• No financing is required
• Easy to change systems
• Maintenance and insurance
 are usually included

• Initial cost is high
• Risk of obsolescence
• Risk of being stuck
 if choice was wrong
• Full responsibility

• Company doesn’t own
 the computer
• Cost is very high because
 vendor assumes the risk
 (most expensive option)

Renting

Buying

Leasing • No capital is tied up
• No financing is required
• Leases are lower than
 rental payments

• Company doesn’t own the
 system when lease expires
• Usually a heavy penalty for
 terminating the lease
• Leases are more expensive
 than buying

FIGURE 3.6
Comparing the advantages and
disadvantages of buying, leasing,
and renting computer equipment.

CHAPTER 3 • PROJECT MANAGEMENT 67

Buying implies that the business itself will own the equipment. One of the main determinants
of whether to buy is the projected life of the system. If the system will be used longer than four
to five years (with all other factors held constant), the decision is usually made to buy. Notice in
the example in Figure 3.7 that the cost of purchase after three years is lower than that of leasing
or renting. As systems become smaller, more powerful, and less expensive, and as distributed sys-
tems become more popular, more businesses are deciding to purchase equipment.

Leasing, rather than purchasing, computer hardware is another possibility. Leasing equip-
ment from the vendor or a third-party leasing company is more practical when the projected life
of the system is less than four years. In addition, if significant change in technology is imminent,
leasing is a better choice. Leasing also allows the business to put its money elsewhere, where it
can be working for the company rather than be tied up in capital equipment. Over a long period,
however, leasing is not an economical way to acquire computer equipment.

Renting computer hardware is the third main option for computer acquisition. One of the
main advantages of renting is that none of the company’s capital is tied up, and hence no financ-
ing is required. Also, renting computer hardware makes it easier to change system hardware. Fi-
nally, maintenance and insurance are usually included in rental agreements. Because of the high
costs involved and the fact that the company will not own the rented equipment, however, rent-
ing should be contemplated only as a short-term move to handle nonrecurring or limited com-
puter needs or technologically volatile times.

EVALUATION OF VENDOR SUPPORT FOR COMPUTER HARDWARE. Several key areas ought to be
evaluated when weighing the support services available to businesses from vendors. Most
vendors offer testing of hardware on delivery and a 90-day warranty covering any factory defects,
but you must ascertain what else the vendor has to offer. Vendors of comparable quality frequently
distinguish themselves from others by the range of support services they offer.

A list of key criteria that ought to be checked when evaluating vendor support is provided in
Figure 3.8. Most of the extra vendor support services listed there are negotiated separately from
hardware lease or purchase contracts.

Support services include routine and preventive maintenance of hardware, specified re-
sponse time (within six hours, next working day, etc.) in case of emergency equipment break-
downs, loan of equipment in the event that hardware must be permanently replaced or off-site
repair is required, and in-house training or off-site group seminars for users. Peruse the support
services documents accompanying the purchase or lease of equipment and remember to involve
appropriate legal staff before signing contracts for equipment or services.

Unfortunately, evaluating computer hardware is not as straightforward as simply comparing
costs and choosing the least expensive option. Some other eventualities commonly brought up by

Monthly lease× 36 monthsSubtotalInitial payment

$ 150

5,400
 500

Lease

$5,900

Total cost over 3 years

Purchase price

Scrap value

$6,000

 – 500

Buy

$5,500
Total cost over 3 years

Monthly rental
× 36 months

Total cost over 3 years

$ 170

$6,120

Rental

FIGURE 3.7
Comparison of alternatives for
computer acquisition.

68 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

users and management include (1) the possibility of adding on to the system if the need comes up
later; (2) the possibility of interfacing with equipment from other vendors if the system needs to
grow; (3) the benefits of buying more memory than is projected as necessary, with the expectation
that business will eventually “grow into it”; and (4) the corporate stability of the vendor.

Competition among vendors has made the idea of producing hardware that is compatible
with competitors’ hardware important for vendors’ survival. Before becoming convinced that
buying cheaper compatibles is the way to endow your system with add-on capability, however,
do enough research to feel confident that the original vendor is a stable corporate entity.

Software Evaluation
Analysts and organizations are increasingly faced with a make, buy, or outsource decision when
assessing software for information systems projects, particularly when contemplating upgrades
to existing or legacy systems.

You have seen the decisions that analysts make when deciding about renting, buying, or leas-
ing hardware. Some of the decision making surrounding purchase of commercial off-the-shelf
(COTS) software, “rental” of the software from an application service provider (ASP), or creation
of custom software for the project is analogous to the hardware decision process.

It should be noted that regardless of whether you develop software or purchase a COTS prod-
uct for a particular project, it is imperative to complete a human information requirements analy-
sis of the users and the systems they use first (as discussed in preceding chapters). As an analyst,
part of the expertise you are developing is to make sound judgments regarding developing soft-
ware versus the purchase of COTS software for new and existing systems. The following sections
discuss when to create your own software, when to purchase COTS packages, and when to use
an ASP. Figure 3.9 summarizes the advantages and disadvantages of each of these options.

WHEN TO CREATE CUSTOM SOFTWARE. There are several situations that call for the creation of
original software or software components. The most likely instance is when COTS software does
not exist or cannot be identified for the desired application. Alternatively, the software may exist
but it is unaffordable or cannot easily be purchased or licensed.

Original software should be created when the organization is attempting to gain a competi-
tive advantage through the leveraged use of information systems. This is often the case when an
organization is creating ecommerce or other innovative applications where none existed. It is also
possible that the organization is a “first mover” in the use of a particular technology or in its par-
ticular industry. Organizations that have highly specialized requirements or exist in niche indus-
tries can also benefit from original software.

The advantages of creating your own software include being able to respond to specialized user
and business needs, gaining a competitive advantage by creating innovative software, having in-
house staff available to maintain the software, and the pride of owning something you have created.

The drawbacks of developing your own software include the potential for a significantly
higher initial cost compared to purchasing COTS software or contracting with an ASP, the neces-

Full line of hardware
Quality products
Warranty

Complete software needs
Custom programming
Warranty

Commitment to schedule
In-house training
Technical assistance

Routine maintenance procedures
Specified response time in emergencies
Equipment loan while repair is being done

Specifics Vendors Typically Offer

Hardware Support

Software Support

Installation and Training

Maintenance

Vendor Services
FIGURE 3.8
Guidelines for vendor selection.

CHAPTER 3 • PROJECT MANAGEMENT 69

sity of hiring or working with a development team, and the fact that you are responsible for the
ongoing maintenance because you were the software’s creator.

WHEN TO BUY COTS SOFTWARE. Commercial off-the-shelf software includes such products as the
Microsoft Office suite, which includes Word for word processing, Excel for spreadsheets, Access
for building databases, and other applications. Other types of COTS software are for organizational-
level systems rather than office or personal use. Some authors include popular (but costly) ERP
packages such as Oracle and SAP in their examples of COTS software. These packages differ
radically in the amount of customization, support, and maintenance required compared to Microsoft
Office. COTS software can also refer to software components or objects (also called building
blocks) that can be purchased to provide a particular needed functionality in a system.

Consider using COTS software when you can easily integrate the applications or packages into
existing or planned systems, and when you have identified no necessity to immediately or continu-
ously change or customize them for users. Your forecasts should demonstrate that the organization
you are designing the system for is unlikely to undergo major changes after the proposed purchase
of COTS software, such as a dramatic increase in customers or large physical expansions.

There are some advantages to purchasing COTS software that you should keep in mind as
you weigh alternatives. One advantage is that these products have been refined through the
process of commercial use and distribution, so that often there are additional functionalities of-
fered. Another advantage is that packaged software is typically extensively tested, and thus ex-
tremely reliable.

Increased functionality is often offered with COTS software, because a commercial product
is likely to have sister products, add-on features, and upgrades that enhance its attractiveness. Ad-
ditionally, analysts often find that the initial cost of COTS software is lower than the cost for ei-
ther in-house software development or the use of an ASP.

Another advantage of purchasing COTS packages includes their use by many other compa-
nies, so analysts are not experimenting on their clients with one-of-a-kind software applications.

Advantages Disadvantages

• Specific response to
 specialized business needs
• Innovation may give firm a
 competitive advantage
• In-house staff available to
 maintain software
• Pride of ownership

• May be significantly higher
 initial cost compared to COTS
 software or ASP
• Necessity of hiring or working
 with a development team
• Ongoing maintenance

Creating Custom
Software

• Organizations that do not
 specialize in information
 systems can focus on what
 they do best (their strategic
 mission)
• There is no need to hire,
 train, or retain a large IT staff
• There is no expenditure of
 employee time on
 nonessential IT tasks

• Loss of control of data, systems,
 IT employees, and schedules
• Concern over the financial
 viability and long-run stability
 of the ASP
• Security, confidentiality, and
 privacy concerns
• Loss of potential strategic
 corporate advantage regarding
 innovativeness of applications

Using an ASP

• Refined in the commercial
 world
• Increased reliability
• Increased functionality
• Often lower initial cost
• Already in use by other
 firms
• Help and training comes
 with software

• Programming focused; not
 business focused
• Must live with the existing
 features
• Limited customization
• Uncertain financial future
 of vendor
• Less ownership and
 commitment

Purchasing COTS
Packages

FIGURE 3.9
Comparing the advantages and
disadvantages of creating custom
software, purchasing COTS
packages, and outsourcing to
an ASP.

70 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Lastly, COTS software boasts an advantage in the help and training that accompanies the pur-
chase of the packaged software.

One example of the use of COTS software is from a theatre company in the nonprofit sector,
in which organizations (particularly in the performing arts) tend to lag behind their for-profit
counterparts in adoption of information communication technologies (ICTs). The theatre com-
pany was predictably slow to move to the Web. When they desired to create ecommerce applica-
tions, they were put in a position of having to hire outside designers to create ecommerce
applications for them. In light of the expense and lack of in-house expertise, many nonprofit or-
ganizations simply did not move the business portion of their organizations to the Web, waiting
instead for COTS packages, such as PC-based, box-office software, or ASPs such as online tick-
eting agencies with automation already in place, to make these services available to patrons. In-
house software development was out of the question for most of these groups, who typically have
small or nonexistent IT staffs and budgets, and minimal internal IT expertise.

There is a downside to the use of COTS software. Because it is not meant to be fully cus-
tomizable, the theatre company lost its ability to change the software to include key features in
its donor database that users were reliant on. COTS software may also include errors that could
expose an organization to liability issues.

There are other disadvantages to consider with the purchase of COTS software, including the
fact that packages are programmed, rather than being focused on human users working in a busi-
ness. Additionally, users must live with whatever features exist in the software, whether they are
appropriate or not. A disadvantage that grows out of this is the limited customizability of most
packaged software. Other disadvantages to purchasing COTS software include the necessity of
investigating the financial stability of the software vendor, and the diminished sense of ownership
and commitment that is inevitable when the software is considered a product rather than a process.

To achieve some perspective on systems being developed, you should recognize that over
half of the projects are built from scratch (two-thirds using traditional methods like SDLC and
prototyping and one-third using agile or object-oriented technologies). Most of these are devel-
oped using an internal systems analysis team. Programmers may be in-house or outsourced.

Less than half of all projects are developed from existing applications or components. The
great majority are modified, some extensively. Less than 5 percent of software is off-the-shelf
software that requires no modifications at all.

C O N S U L T I N G O P P O R T U N I T Y 3 . 2

Veni, Vidi, Vendi, or, I Came, I Saw, I Sold

“It’s really some choice. I mean, no single package seems to have
everything we want. Some of them come darn close, though,” says
Roman, an advertising executive for Empire Magazine with whom
you have been working on a systems project. Recently, the two of
you have decided that packaged software would probably suit the
advertising department’s needs and stem its general decline.

“The last guy’s demo we saw, you know, the one who worked
for Data Coliseum, really had a well-rounded pitch. And I like their
brochure. Full-color printing, on card stock. Classic,” Roman asserts.

“And what about those people from Vesta Systems? They’re
really fired up. And their package was easy to use with a minimum
of ceremony. Besides, they said they would train all 12 of us, on-
site, at no charge. But look at their advertising. They just take things
off their printers.”

Roman fiddles in his chair as he continues his ad hoc review
of software and software vendors. “That one package from Mars,
Inc., really sold me all on its own, though. I mean, it had a built-in

calendar. And I like the way the menus for the screen displays could
all be chosen by Roman numerals. It was easy to follow. And the
vendor isn’t going to be hard to move on price. I think they’re al-
ready in a price war.”

“Do you want to know my favorite, though?” Roman asks
archly. “It’s the one put out by Jupiter, Unlimited. I mean, it has
everything, doesn’t it? It costs a little extra coin, but it does what we
need it to do, and the documentation is heavenly. They don’t do any
training, of course. They think they’re above it.”

You are already plotting that to answer Roman’s burning ques-
tions by your March 15 deadline, you need to evaluate the software
as well as the vendors, systematically, and then render a decision.
Evaluate each vendor and package based on what Roman has said
so far (assume you can trust his opinions). What are Roman’s ap-
parent biases when evaluating software and vendors? What further
information do you need about each company and its software
before making a selection? Set up a table to evaluate each vendor.
Answer each question in a separate paragraph.

CHAPTER 3 • PROJECT MANAGEMENT 71

WHEN TO OUTSOURCE SOFTWARE SERVICES TO AN APPLICATION SERVICE PROVIDER.
Organizations may realize some benefits from taking an entirely different approach to procuring
software. This third option is to outsource some of the organization’s software needs to an
application service provider that specializes in IT applications.

There are specific benefits to outsourcing applications to an application service provider
(ASP). For example, organizations that desire to retain their strategic focus and do what they’re
best at may want to outsource the production of information systems applications. Additionally,
outsourcing one’s software needs means that the organization doing the outsourcing may be able
to sidestep the need to hire, train, and retain a large IT staff. This can result in significant savings.
When an organization uses an ASP, there is little or no expenditure of valuable employee time on
nonessential IT tasks (these are handled professionally by the ASP).

Hiring an ASP should not be considered a magic formula for addressing software require-
ments. There are drawbacks to the use of an ASP that must be seriously considered. One disad-
vantage is a general loss of control over corporate data, information systems, IT employees, and
even processing and project schedules. Some companies believe that the heart of their business is
their information, so even the thought of relinquishing control over it is distressing. Another
disadvantage is concern over the financial viability of any ASP that is chosen. There might also
be concerns about the security of the organization’s data and records, along with concern about
confidentiality of data and client privacy. Finally, when choosing an ASP, there is a potential loss
of strategic corporate advantage that might have been gained through the company’s own deploy-
ment of innovative applications created by their employees.

EVALUATION OF VENDOR SUPPORT FOR SOFTWARE AND ASPS. Whether you purchase a COTS
package or contract for ASP services, you will be dealing with vendors who may have their own
best interests at heart. You must be willing to evaluate software with users and not be unduly
influenced by vendors’ sales pitches. Specifically, there are six main categories on which to grade
software, as shown in Figure 3.10: performance effectiveness, performance efficiency, ease of
use, flexibility, quality of documentation, and manufacturer support.

 Able to perform all required tasks
 Able to perform all tasks desired
 Well-designed display screens
 Adequate capacity

Fast response time
Efficient input
Efficient output
Efficient storage of data
Efficient backup

Satisfactory user interface
Help menus available
“Read Me” files for last-minute changes
Flexible interface
Adequate feedback
Good error recovery

Options for input
Options for output
Usable with other software

Good organization
Adequate online tutorial
Web site with FAQ

Technical support hotline
Newsletter/email
Web site with downloadable product updates

Software Requirements Specific Software Features

Performance Efficiency

Performance Effectiveness

Ease of use

Flexibility

Quality of Documentation

Manufacturer Support

FIGURE 3.10
Guidelines for evaluating
software.

72 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Evaluate packaged software based on a demonstration with test data from the business con-
sidering it and an examination of accompanying documentation. Vendors’ descriptions alone will
not suffice. Vendors typically certify that software is working when it leaves their supply house,
but they will not guarantee that it will be error-free in every instance or that it will not crash when
incorrect actions are taken by users. Obviously, they will not guarantee their packaged software
if used in conjunction with faulty hardware.

IDENTIFYING, FORECASTING, AND COMPARING
COSTS AND BENEFITS
Costs and benefits of the proposed computer system must always be considered together, because
they are interrelated and often interdependent. Although the systems analyst is trying to propose
a system that fulfills various information requirements, decisions to continue with the proposed
system will be based on a cost-benefit analysis, not on information requirements. In many ways,
benefits are measured by costs, as becomes apparent in the next section.

Forecasting
Systems analysts are required to predict certain key variables before the proposal is submitted to
the client. To some degree, a systems analyst will rely on a what-if analysis, such as, “What if la-
bor costs rise only 5 percent per year for the next three years, rather than 10 percent?” The sys-
tems analyst should realize, however, that he or she cannot rely on what-if analysis for everything
if the proposal is to be credible, meaningful, and valuable.

The systems analyst has many forecasting models available. The main condition for choos-
ing a model is the availability of historical data. If they are unavailable, the analyst must turn to
one of the judgment methods: estimates from the sales force, surveys to estimate customer de-
mand, Delphi studies (a consensus forecast developed independently by a group of experts
through a series of iterations), creating scenarios, or drawing historical analogies.

If historical data are available, the next differentiation between classes of techniques involves
whether the forecast is conditional or unconditional. Conditional implies that there is an association
among variables in the model or that such a causal relationship exists. Common methods in this
group include correlation, regression, leading indicators, econometrics, and input/output models.

Unconditional forecasting means the analyst isn’t required to find or identify any causal
relationships. Consequently, systems analysts find that these methods are low-cost, easy-to-
implement alternatives. Included in this group are graphical judgment, moving averages, and
analysis of time-series data. Because these methods are simple, reliable, and cost effective, the
remainder of the section focuses on them.

ESTIMATION OF TRENDS. Trends can be estimated in a number of different ways. One way to
estimate trends is to use a moving average. This method is useful because some seasonal, cyclical,
or random patterns may be smoothed, leaving the trend pattern. The principle behind moving
averages is to calculate the arithmetic mean of data from a fixed number of periods; a three-month
moving average is simply the average of the last three months. For example, the average sales for
January, February, and March is used to predict the sales for April. Then the average sales for
February, March, and April are used to predict the sales for May, and so on.

When the results are graphed, it is easily noticeable that the widely fluctuating data are
smoothed. The moving average method is useful for its smoothing ability, but at the same time it has
many disadvantages. Moving averages are more strongly affected by extreme values than by
using graphical judgment or estimating using other methods such as least squares. The analyst should
learn forecasting well, as it often provides information valuable in justifying the entire project.

Identifying Benefits and Costs
Benefits and costs can be thought of as either tangible or intangible. Both tangible and intangible
benefits and costs must be taken into account when systems are considered.

TANGIBLE BENEFITS. Tangible benefits are advantages measurable in dollars that accrue to the
organization through the use of the information system. Examples of tangible benefits are an
increase in the speed of processing, access to otherwise inaccessible information, access to
information on a more timely basis than was possible before, the advantage of the computer’s

CHAPTER 3 • PROJECT MANAGEMENT 73

C O N S U L T I N G O P P O R T U N I T Y 3 . 3

We’re Off to See the Wizards

Elphaba I. Menzel and Glinda K. Chenoweth are the owners of
Emerald City Beautyscapes, a commercial landscaping company.
They are trying to decide whether to write their own software, per-
haps using Microsoft Access as a basis; adopt a COTS software
package such as QuickBooks Pro; or hire a service called Lawn
Wizards, Inc., to perform all of their bookkeeping functions.

Elphaba turned to Glinda and asked, “Is it possible for us to
create a system of our own?”

Glinda replied, “I suppose we could, but it would take forever.
We would need to define all our fields, our queries, and our reports.
We would need to know who hasn’t paid us yet, and how long it has
been since we last billed them.”

“Yes,” says Elphaba, “and we would also have to create prod-
uct descriptions, service descriptions, and codes for everything we
sell and provide.”

“If that was all we needed, we could probably do it,” says
Glinda. “But we also need to include a scheduling system. We need
to know when we can provide the services to our customers and
what to do if we fall behind schedule. Maybe it just isn’t worth it.

“Still,” reflects Glinda, “my mother used to say ‘There’s no
place like home.’ Maybe there’s no software like home grown.”

“You see both sides of everything,” remarks Elphaba. “But the
path you want to take is too long and risky. We need a software
package that is ready for us to use now. I hear that there are products
they call commercial off-the-shelf software that we can buy and
adapt to our lawn service business. I’ll investigate.” So, Elphaba sets
out to look for software that may be suitable.

“I’ve found something,” cries Elphaba. “I found this software
called QuickBooks Pro at www.quickbooks.com and it looks like we
can afford it. There are numerous versions of the software already—
one for accounting, one for construction, one for health services.
Maybe we can find a package that suits us. If not, it looks like we can
customize the generic version of QuickBooks Pro to fit our needs.

“Our system could grow, too. QuickBooks Pro is readily
scalable. We can add customers, suppliers, or products easily. I

just wanted to plant the idea of buying a ready-made package on
you.”

“That’s interesting,” says Glinda, “but I’ve been doing my
own research. Some of our competitors have told me they let a com-
pany do all the work for them. The company is called Lawn Wiz-
ards. They do landscaping, but they also maintain accounts
receivable and scheduling packages.”

So off they went to see the Wizards.
Joel Green, the owner and creator of Lawn Wizards, is proud

of his software. “I spent a great deal of time working with my sup-
pliers, that is, nurseries, in the area, and we have developed a cod-
ing system for everything,” he brags. “All the trees, sizes of trees,
shrubs, flowers, mulch, and even lawn care tools have numbers.

“I started with a small firm, but when customers realized I paid
attention to every little detail, my business blossomed.” He adds,
“My suppliers love my system because it cuts down on confusion.

“I noticed that my competitors were working with the same
suppliers, but were getting less preferential treatment because they
couldn’t communicate about product very effectively. So I decided
I would offer my software for hire. I would make money by renting
out my software and demand even greater respect from my suppli-
ers. My end user license agreement states that I own the software,
product codes, and data generated by the system.

“Using my unique Wizards software, I can customize the pack-
age a bit for the customer, but essentially all the lawn services in the
state will be using my database, codes, and B2B features. I main-
tain my software. If you could see the software code, it would look
just like a manicured lawn.”

Now Glinda and Elphaba are even more confused than before.
They have three distinct options: to create a package on their own,
buy commercial off-the-shelf software such as QuickBooks Pro, or
outsource their needs to Lawn Wizards. Help them learn the true se-
cret of (software) happiness by helping them articulate the pros and
cons of each of their alternatives. What would you recommend? In
two paragraphs, write a recommendation that grows out of your
consideration of their specific business situation.

superior calculating power, and decreases in the amount of employee time needed to complete
specific tasks. There are still others. Although measurement is not always easy, tangible benefits
can actually be measured in terms of dollars, resources, or time saved.

INTANGIBLE BENEFITS. Some benefits that accrue to the organization from the use of the
information system are difficult to measure but are important nonetheless. They are known as
intangible benefits.

Intangible benefits include improving the decision-making process, enhancing accuracy, be-
coming more competitive in customer service, maintaining a good business image, and increas-
ing job satisfaction for employees by eliminating tedious tasks. As you can judge from the list
given, intangible benefits are extremely important and can have far-reaching implications for the
business as it relates to people both outside and within the organization.

Although intangible benefits of an information system are important factors that must be con-
sidered when deciding whether to proceed with a system, a system built solely for its intangible

www.quickbooks.com

74 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

benefits will not be successful. You must discuss both tangible and intangible benefits in your
proposal, because presenting both will allow decision makers in the business to make a well-
informed decision about the proposed system.

TANGIBLE COSTS. The concepts of tangible and intangible costs present a conceptual parallel to
the tangible and intangible benefits discussed already. Tangible costs are those that can be
accurately projected by the systems analyst and the business’s accounting personnel.

Included in tangible costs are the cost of equipment such as computers and terminals, the cost
of resources, the cost of systems analysts’ time, the cost of programmers’ time, and other employ-
ees’ salaries. These costs are usually well established or can be discovered quite easily, and are
the costs that will require a cash outlay of the business.

INTANGIBLE COSTS. Intangible costs are difficult to estimate and may not be known. They include
losing a competitive edge, losing the reputation for being first with an innovation or the leader in
a field, declining company image due to increased customer dissatisfaction, and ineffective
decision making due to untimely or inaccessible information. As you can imagine, it is next to
impossible to project a dollar amount for intangible costs accurately. To aid decision makers who
want to weigh the proposed system and all its implications, you must include intangible costs
even though they are not quantifiable.

Comparing Costs and Benefits
There are many well-known techniques for comparing the costs and benefits of the proposed sys-
tem. They include break-even analysis, payback, cash-flow analysis, and present value analysis.
All these techniques provide straightforward ways of yielding information to decision makers
about the worthiness of the proposed system.

BREAK-EVEN ANALYSIS. By comparing costs alone, the systems analyst can use break-even analysis
to determine the break-even capacity of the proposed information system. The point at which the
total costs of the current system and the proposed system intersect represents the break-even point,
the point where it becomes profitable for the business to get the new information system.

Total costs include the costs that recur during operation of the system plus the developmen-
tal costs that occur only once (one-time costs of installing a new system), that is, the tangible costs
that were just discussed. Figure 3.11 is an example of a break-even analysis on a small store that
maintains inventory using a manual system. As volume rises, the costs of the manual system rise
at an increasing rate. A new computer system would cost a substantial sum up front, but the in-

Cost
($) Proposed

System

Break-Even
Point

Current
System

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0
0 200 400 600 800 1,000 1,200

Units Sold

Cost of proposed
system

Cost of current
system

Annie’s EquipmentFIGURE 3.11
Break-even analysis for the
proposed inventory system.

CHAPTER 3 • PROJECT MANAGEMENT 75

cremental costs for higher volume would be rather small. The graph shows that the computer sys-
tem would be cost effective if the business sold about 600 units per week.

Break-even analysis is useful when a business is growing and volume is a key variable in
costs. One disadvantage of break-even analysis is that benefits are assumed to remain the same,
regardless of which system is in place. From our study of tangible and intangible benefits, we
know that is clearly not the case.

Break-even analysis can also determine how long it will take for the benefits of the system
to pay back the costs of developing it. Figure 3.12 illustrates a system with a payback period of
three and a half years.

CASH-FLOW ANALYSIS. Cash-flow analysis examines the direction, size, and pattern of cash flow
that is associated with the proposed information system. If you are proposing the replacement of
an old information system with a new one and if the new information system will not be
generating any additional cash for the business, only cash outlays are associated with the project.
If that is the case, the new system cannot be justified on the basis of new revenues generated and
must be examined closely for other tangible benefits if it is to be pursued further.

Figure 3.13 shows a cash-flow analysis for a small company that is providing a mailing ser-
vice to other small companies in the city. Revenue projections are that only $5,000 will be gen-
erated in the first quarter, but after the second quarter, revenue will grow at a steady rate. Costs
will be large in the first two quarters and then level off. Cash-flow analysis is used to determine
when a company will begin to make a profit (in this case, it is in the third quarter, with a cash flow
of $7,590) and when it will be “out of the red,” that is, when revenue has made up for the initial
investment (in the first quarter of the second year, when accumulated cash flow changes from a
negative amount to a positive $10,720).

The proposed system should have increased revenues along with cash outlays. Then the size
of the cash flow must be analyzed along with the patterns of cash flow associated with the pur-
chase of the new system. You must ask when cash outlays and revenues will occur, not only for
the initial purchase but also over the life of the information system.

PRESENT VALUE ANALYSIS. Present value analysis helps the systems analyst to present to
business decision makers the time value of the investment in the information system as well as
the cash flow (as discussed in the previous section). Present value is a way to assess all the
economic outlays and revenues of the information system over its economic life, and to compare
costs today with future costs and today’s benefits with future benefits.

In Figure 3.14, system costs total $272,000 over six years and benefits total $280,700. There-
fore, we might conclude that benefits outweigh the costs. Benefits only started to surpass costs
after the fourth year, however, and dollars in the sixth year will not be equivalent to dollars in the
first year.

Cost
($)

Costs

Benefits

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0

0
1
2
3
4
5
6

Year Cost
($)

Cumulative
Costs
($)

Cumulative
Benefits

($)
Benefits

($)

30,000
1,000
2,000
2,000
3,000
4,000
4,000

30,000
31,000
33,000
35,000
38,000
42,000
46,000

0
12,000
12,000
8,000
8,000

10,000
15,000

0
12,000
24,000
32,000
40,000
50,000
65,000

0 1 2 3 4 5 6
Year

Cumulative benefits from
proposed system

Cumulative costs of
proposed system

Payback
Period

FIGURE 3.12
Break-even analysis showing a
payback period of three and a half
years.

76 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Revenue

Costs

Year 1
Quarter 2 Quarter 3 Quarter 4Quarter 1

Year 2
Quarter 1

$5,000 $20,000 $24,960 $31,270 $39,020

Software
 development
Personnel
Training
Equipment
 lease
Supplies
Maintenance

10,000
8,000
3,000

4,000
1,000

0

26,000

5,000
8,400
6,000

4,000
2,000
2,000

27,400

8,800

4,000
2,370
2,200

17,370

9,260

4,000
2,990
2,420

18,670

9,700

4,000
3,730
2,660

20,090

Cash Flow

Cumulative
 Cash Flow

–21,000

–21,000

–7,400

–28,400

7,590

–20,810 –8,210

12,600

10,720

18,930

Total Costs

FIGURE 3.13
Cash-flow analysis for the
computerized mail-addressing
system.

 1 2 3 4 5 6 Total
Year

$40,000

$25,000

42,000

31,200

44,100

39,000

46,300

48,700

48,600

60,800

Costs

Benefits

51,000

76,000

272,000

280,700

FIGURE 3.14
Without considering present value,
the benefits appear to outweigh
the costs.

1 2 3 4 5 6 Total
Year

$40,000

.89

35,600

$25,000

.89

22,250

42,000

.80

33,600

31,200

.80

24,960

44,100

.71

31,311

39,000

.71

27,690

46,300

.64

29,632

48,700

.64

31,168

48,600

.57

27,702

60,800

.57

34,656

51,000

.51

26,010

76,000

.51

38,760 179,484

183,855

Present Value of Benefits

Multiplier

Present Value of Costs

Multiplier

Costs

Benefits

FIGURE 3.15
Taking into account present value,
the conclusion is that the costs are
greater than the benefits. The
discount rate, i, is assumed to be
.12 in calculating the multipliers in
this table.

For instance, a dollar investment at 7 percent today will be worth $1.07 at the end of the year
and will double in approximately 10 years. The present value, therefore, is the cost or benefit
measured in today’s dollars and depends on the cost of money. The cost of money is the oppor-
tunity cost, or the rate that could be obtained if the money invested in the proposed system were
invested in another (relatively safe) project.

The present value of $1.00 at a discount rate of i is calculated by determining the factor

where n is the number of periods. Then the factor is multiplied by the dollar amount, yielding the
present value as shown in Figure 3.15. In this example, the cost of money—the discount rate—is
assumed to be .12 (12 percent) for the entire planning horizon. Multipliers are calculated for each
period: n � 1, n � 2, ..., n � 6. Present values of both costs and benefits are then calculated us-
ing these multipliers. When that step is done, the total benefits (measured in today’s dollars) are

1

11 + i 2 n

CHAPTER 3 • PROJECT MANAGEMENT 77

$179,484, and thus less than the costs (also measured in today’s dollars). The conclusion to be
drawn is that the proposed system is not worthwhile if present value is considered.

Although this example, which used present value factors, is useful in explaining the concept,
all electronic spreadsheets have a built-in present value function. The analyst can directly com-
pute present value using this feature.

GUIDELINES FOR ANALYSIS. The use of the methods discussed in the preceding subsections
depends on the methods employed and accepted in the organization itself. For general guidelines,
however, it is safe to say the following:

1. Use break-even analysis if the project needs to be justified in terms of cost, not benefits, or
if benefits do not substantially improve with the proposed system.

2. Use payback when the improved tangible benefits form a convincing argument for the
proposed system.

3. Use cash-flow analysis when the project is expensive relative to the size of the company or
when the business would be significantly affected by a large drain (even if temporary) on
funds.

4. Use present value analysis when the payback period is long or when the cost of borrowing
money is high.

Whichever method is chosen, it is important to remember that cost-benefit analysis should be ap-
proached systematically, in a way that can be explained and justified to managers, who will even-
tually decide whether to commit resources to the systems project. Next, we turn to the importance
of comparing many systems alternatives.

ACTIVITY PLANNING AND CONTROL
Systems analysis and design involves many different types of activities that together make up a
project. The systems analyst must manage the project carefully if the project is to be successful.
Project management involves the general tasks of planning and control.

Planning includes all the activities required to select a systems analysis team, assign mem-
bers of the team to appropriate projects, estimate the time required to complete each task, and
schedule the project so that tasks are completed in a timely fashion. Control means using feed-
back to monitor the project, including comparing the plan for the project with its actual evolution.
In addition, control means taking appropriate action to expedite or reschedule activities to finish
on time while motivating team members to complete the job properly.

Estimating Time Required
The systems analyst’s first decision is to determine the amount of detail that goes into defining
activities. The lowest level of detail is the SDLC itself, whereas the highest extreme is to include
every detailed step. The optimal answer to planning and scheduling lies somewhere in between.

A structured approach is useful here. In Figure 3.16 the systems analyst beginning a project
has broken the process into three major phases: analysis, design, and implementation. Then the

Phase Activity

Analysis Data gathering
Data flow and decision analysis
Proposal preparation

Design Data entry design
Input design
Output design
Data organization

Implementation Implementation
Evaluation

Break apart

the major

activities into

smaller ones.

FIGURE 3.16
Beginning to plan a project by
breaking it into three major
activities.

78 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

analysis phase is further broken down into data gathering, data flow and decision analysis, and
proposal preparation. Design is broken down into data entry design, input and output design, and
data organization. The implementation phase is divided into implementation and evaluation.

In subsequent steps the systems analyst needs to consider each of these tasks and break them
down further so that planning and scheduling can take place. Figure 3.17 shows how the analy-

C O N S U L T I N G O P P O R T U N I T Y 3 . 4

Food for Thought

“ We could really make some changes. Shake up some people.
Let them know we’re with it. Technologically, I mean,” said Mal-
colm Warner, vice president for AllFine Foods, a wholesale dairy
products distributor. “That old system should be overhauled. I think
we should just tell the staff that it’s time to change.”

“Yes, but what would we actually be improving?” Kim Han,
assistant to the vice president, asks. “I mean, there aren’t any sub-
stantial problems with the system input or output that I can see.”

Malcolm snaps, “Kim, you’re purposely not seeing my point.
People out there see us as a stodgy firm. A new computer system
could help change that. Change the look of our invoices. Send jazz-
ier reports to the food store owners. Get some people excited about
us as leaders in wholesale food distributing and computers.”

“Well, from what I’ve seen over the years,” Kim replies evenly,
“a new system is very disruptive, even when the business really
needs it. People dislike change, and if the system is performing the
way it should, maybe there are other things we could do to update
our image that wouldn’t drive everyone nuts in the process. Besides,
you’re talking big bucks for a new gimmick.”

Malcolm says, “I don’t think just tossing it around here be-
tween the two of us is going to solve anything. Check on it and get
back to me. Wouldn’t it be wonderful?”

A week later Kim enters Malcolm’s office with several pages
of interview notes in hand. “I’ve talked with most of the people who
have extensive contact with the system. They’re happy, Malcolm.
And they’re not just talking through their hats. They know what
they’re doing.”

“I’m sure the managers would like to have a newer system than
the guys at Quality Foods,” Malcolm replies. “Did you talk to
them?”

Kim says, “Yes. They’re satisfied.”
“And how about the people in systems? Did they say the tech-

nology to update our system is out there?” Malcolm inquires insis-
tently.

“Yes. It can be done. That doesn’t mean it should be,” Kim
says firmly.

As the systems analyst for AllFine Foods, how would you as-
sess the feasibility of the systems project Malcolm is proposing?
Based on what Kim has said about the managers, users, and systems
people, what seems to be the operational feasibility of the proposed
project? What about the economic feasibility? What about the tech-
nological feasibility? Based on what Kim and Malcolm have dis-
cussed, would you recommend that a full-blown systems study be
done? Discuss your answer in a paragraph.

8

then estimate

time required.

Conduct interviews
Administer questionnaires
Read company reports
Introduce prototype
Observe reactions to prototype

Analyze data flow

Perform cost-benefit analysis
Prepare proposal
Present proposal

Data gathering

Data flow and decision analysis

Proposal preparation

3
4
4
5
3

3
2
2

Weeks
RequiredDetailed ActivityActivity

Break thesedown further,

FIGURE 3.17
Refining the planning and
scheduling of analysis activities by
adding detailed tasks and
establishing the time required to
complete the tasks.

CHAPTER 3 • PROJECT MANAGEMENT 79

sis phase is described in more detail. For example, data gathering is broken down into five activ-
ities, from conducting interviews to observing reactions to the prototype. This particular project
requires data flow analysis but not decision analysis, so the systems analyst has written in “ana-
lyze data flow” as the single step in the middle phase. Finally, proposal preparation is broken
down into three steps: perform cost-benefit analysis, prepare proposal, and present proposal.

The systems analyst, of course, has the option to break down steps further. For instance, the
analyst could specify each of the persons to be interviewed. The amount of detail necessary de-
pends on the project, but all critical steps need to appear in the plans.

Sometimes the most difficult part of project planning is the crucial step of estimating the
time it takes to complete each task or activity. When quizzed about reasons for lateness on a
particular project, project team members cited poor scheduling estimates that hampered the
success of projects from the outset. There is no substitute for experience in estimating time re-
quirements, and systems analysts who have had the opportunity of an apprenticeship are fortu-
nate in this regard.

Planners have attempted to reduce the inherent uncertainty in determining time estimates by
projecting most likely, pessimistic, and optimistic estimates and then using a weighted average
formula to determine the expected time an activity will take. This approach offers little more in
the way of confidence, however. Perhaps the best strategy for the systems analyst is to adhere to
a structured approach in identifying activities and describing these activities in sufficient detail.
In this manner, the systems analyst will at least be able to limit unpleasant surprises.

Using Gantt Charts for Project Scheduling
A Gantt chart is an easy way to schedule tasks. It is a chart on which bars represent each task or
activity. The length of each bar represents the relative length of the task.

Figure 3.18 is an example of a two-dimensional Gantt chart in which time is indicated on the
horizontal dimension and a description of activities makes up the vertical dimension. In this ex-
ample the Gantt chart shows the analysis or information gathering phase of the project. Notice on
the Gantt chart that conducting interviews will take three weeks, administering the questionnaire
will take four weeks, and so on. These activities overlap part of the time. In the chart the special
symbol � signifies that it is week 9. The bars with color shading represent projects or parts of
projects that have been completed, telling us that the systems analyst is behind in introducing pro-
totypes but ahead in analyzing data flows. Action must be taken on introducing prototypes soon
so that other activities or even the project itself will not be delayed as a result.

The main advantage of the Gantt chart is its simplicity. The systems analyst will find not only
that this technique is easy to use but also that it lends itself to worthwhile communication with
end users. Another advantage of using a Gantt chart is that the bars representing activities or tasks
are drawn to scale; that is, the size of the bar indicates the relative length of time it will take to
complete each task.

Activity

Incomplete activity

Completed activity

Partially completed activity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Conduct interviews

Administer questionnaires

Read company reports

Analyze data flows

Introduce prototype

Observe reactions

Perform cost-benefit

Prepare proposal

Present proposal

Weeks
Current Week

FIGURE 3.18
Using a two-dimensional Gantt
chart for planning activities that
can be accomplished in parallel.

80 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Using PERT Diagrams
PERT is an acronym for Program Evaluation and Review Techniques. A program (a synonym for
a project) is represented by a network of nodes and arrows that are then evaluated to determine
the critical activities, improve the schedule if necessary, and review progress once the project is
undertaken. PERT was developed in the late 1950s for use in the U.S. Navy’s Polaris nuclear sub-
marine project. It reportedly saved the U.S. Navy two years’ development time.

PERT is useful when activities can be done in parallel rather than in sequence. The systems
analyst can benefit from PERT by applying it to systems projects on a smaller scale, especially
when some team members can be working on certain activities at the same time that fellow mem-
bers are working on other tasks.

Figure 3.19 compares a simple Gantt chart with a PERT diagram. The activities expressed as
bars in the Gantt chart are represented by arrows in the PERT diagram. The length of the arrows
has no direct relationship with the activity durations. Circles on the PERT diagram are called
events and can be identified by numbers, letters, or any other arbitrary form of designation. The
circular nodes are present to (1) recognize that an activity is completed and (2) indicate which ac-
tivities need to be completed before a new activity may be undertaken (precedence).

In reality activity C may not be started until activity A is completed. Precedence is not indi-
cated at all in the Gantt chart, so it is not possible to tell whether activity C is scheduled to start
on day 4 on purpose or by coincidence.

A project has a beginning, a middle, and an end; the beginning is event 10 and the end is event
50. To find the length of the project, each path from beginning to end is identified, and the length
of each path is calculated. In this example path 10–20–40–50 has a length of 15 days, whereas path
10–30–40–50 has a length of 11 days. Even though one person may be working on path
10–20–40–50 and another on path 10–30–40–50, the project is not a race. The project requires that
both sets of activities (or paths) be completed; consequently, the project takes 15 days to complete.

The longest path is referred to as the critical path. Although the critical path is determined by
calculating the longest path, it is defined as the path that will cause the whole project to fall be-
hind if even one day’s delay is encountered on it. Note that if you are delayed one day on path
10–20–40–50, the entire project will take longer, but if you are delayed one day on path
10–30–40–50, the entire project will not suffer. The leeway to fall behind somewhat on noncriti-
cal paths is called slack time.

Occasionally, PERT diagrams need pseudo-activities, referred to as dummy activities, to pre-
serve the logic of or clarify the diagram. Figure 3.20 shows two PERT diagrams with dummies.
Project 1 and project 2 are quite different, and the way the dummy is drawn makes the difference

A

B

C

D

E

2 4 6 8 10 12 14 16

A, 4 C, 5

B, 2 D, 3

E, 6
10

20

30

40 50

FIGURE 3.19
Gantt charts compared with PERT
diagrams for scheduling activities.

CHAPTER 3 • PROJECT MANAGEMENT 81

clear. In project 1 activity C can only be started if both A and B are finished, because all arrows com-
ing into a node must be completed before leaving the node. In project 2, however, activity C requires
only activity B’s completion and can therefore be under way while activity A is still taking place.

Project 1 takes 14 days to complete, whereas project 2 takes only 9 days. The dummy in proj-
ect 1 is necessary, of course, because it indicates a crucial precedence relationship. The dummy
in project 2, on the other hand, is not required, and activity A could have been drawn from 10 to
40 and event 20 may be eliminated completely.

Therefore, there are many reasons for using a PERT diagram over a Gantt chart. The PERT
diagram allows:

1. Easy identification of the order of precedence.
2. Easy identification of the critical path and thus critical activities.
3. Easy determination of slack time.

A PERT EXAMPLE. Suppose a systems analyst is trying to set up a realistic schedule for the data
gathering and proposal phases of the systems analysis and design life cycle. The systems analyst
looks over the situation and lists activities that need to be accomplished along the way. This list,
which appears in Figure 3.21, also shows that some activities must precede other activities. The
time estimates were determined as discussed in an earlier section of this chapter.

DRAWING THE PERT DIAGRAM. In constructing the PERT diagram, the analyst looks first at those
activities requiring no predecessor activities, in this case A (conduct interviews) and C (read
company reports). In the example in Figure 3.22, the analyst chose to number the nodes 10, 20,
30, and so on, and he or she drew two arrows out of the beginning node 10. These arrows represent

A, 9

B, 2 C, 5

C, 5

A, 9

B, 2

20

10 40

10 40

30

20

30

Dummy

Dummy Project 1

Project 2

FIGURE 3.20
Precedence of activities is
important in determining the
length of the project when using a
PERT diagram.

Activity DurationPredecessor

A
B
C
D
E
F
G
H
I

Conduct interviews
Administer questionnaires
Read company reports
Analyze data flow
Introduce prototype
Observe reactions to prototype
Perform cost-benefit analysis
Prepare proposal
Present proposal

None
A
None
B, C
B, C
E
D
F, G
H

3
4
4
8
5
3
3
2
2

FIGURE 3.21
Listing activities for use in
drawing a PERT diagram.

82 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

A, 3

C, 4

B, 4

D, 8

E, 5 F, 3

G, 3 H, 2 I, 2
30 50

40

60 70 8010

20
FIGURE 3.22
A completed PERT diagram for
the analysis phase of a systems
project.

activities A and C and are labeled as such. Nodes numbered 20 and 30 are drawn at the end of
these respective arrows. The next step is to look for any activity requiring only A as a predecessor;
task B (administer questionnaires) is the only one, so it can be represented by an arrow drawn
from node 20 to node 30.

Because activities D (analyze data flow) and E (introduce prototype) require both activities
B and C to be finished before they are started, arrows labeled D and E are drawn from node 30,
the event that recognizes the completion of both B and C. This process is continued until the en-
tire PERT diagram is completed. Notice that the entire project ends at an event called node 80.

IDENTIFYING THE CRITICAL PATH. Once the PERT diagram is drawn, it is possible to identify the
critical path by calculating the sum of the activity times on each path and choosing the longest
path. In this example, there are four paths: 10–20–30–50–60–70–80, 10–20–30–40–60–70–80,
10–30–50–60–70–80, and 10–30–40–60–70–80. The longest path is 10–20–30–50–60–70–80,
which takes 22 days. It is essential that the systems analyst carefully monitors the activities on the
critical path so as to keep the entire project on time or even shorten the project length if warranted.

MANAGING THE PROJECT
The process of analysis and design can become unwieldy, especially when the system being de-
veloped is large. To keep the development activities as manageable as possible, we usually em-
ploy some of the techniques of project management to help us get organized.

One important aspect of project management is how to manage one’s schedule to finish the
system on time, but it is not the only thing needed. The person in charge, called the project man-
ager, is often the lead systems analyst. The project manager needs to understand how to determine
what is needed and how to initiate a project; how to develop a problem definition; how to exam-
ine feasibility of completing the systems project; how to reduce risk; how to identify and manage
activities; and how to hire, manage, and motivate other team members.

Addressing System Complexity
Estimating models, such as Costar (www.softstarsystems.com) or Construx (www.construx.com),
work as follows: First the systems analyst enters an estimate of the size of the system. This can
be entered in a number of different ways, including the lines of source code of the current system.
Then it may be helpful to adjust the degree of difficulty based on how familiar the analyst is with
this type of project.

Also considered are other variables, like the experience or capability of the team, the type of
platform or operating system, the level of usability of the finished software (for example, what
languages are necessary), and other factors that can drive up costs. Once the data are entered, cal-
culations are made, and a rough projection of the completion date is produced. As the project gets
underway, more specific estimates are possible.

Another way of estimating the amount of work that needs to be done and how large a staff one
needs to complete a project is called function point analysis. This method takes the five main com-
ponents of a computer system—(1) external inputs, (2) external outputs, (3) external queries, (4) in-
ternal logical files, and (5) external interface files— and then rates them in terms of complexity.

Function point analysis can estimate the time it takes to develop a system in different com-
puter languages and compare them to one another. For more information about function point
analysis, visit the International Function Point Users Group’s Web site at www.ifpug.org.

www.softstarsystems.com
www.construx.com
www.ifpug.org

CHAPTER 3 • PROJECT MANAGEMENT 83

MANAGING ANALYSIS AND DESIGN ACTIVITIES
Along with managing time and resources, systems analysts must also manage people. Manage-
ment is accomplished primarily by communicating accurately to team members who have been
selected for their competency and compatibility. Goals for project productivity must be set, and
members of systems analysis teams must be motivated to achieve them.

Assembling a Team
Assembling a team is desirable. If a project manager has the opportunity to create a dream team
of skilled people to develop a system, whom should he or she choose? In general, project man-
agers need to look for others who share their values of teamwork guided by the desire to deliver
a high-quality system on time and on budget. Other desirable team member characteristics in-
clude a good work ethic, honesty, competency; a readiness to take on leadership based on exper-
tise; motivation, enthusiasm for the project, and trust of teammates.

The project manager needs to know about business principles, but it doesn’t hurt to have at least
one other person on the team who understands how a business operates. Perhaps this person should
be a specialist in the same area as the system being developed. When developing an ecommerce site,
teams can enlist the help of someone in marketing; those developing an inventory system can ask a
person versed in production and operations to provide expertise.

A team ideally should have two systems analysts on it. They can help each other, check each
other’s work, and shift their workloads accordingly. There is certainly a need to have people with

M A C A P P E A L

Color-coding helps a project manager sort out similar phases, tasks, and resources. OmniPlan, avail-
able for Macs, takes advantage of color-coding to set up a project, identify tasks, identify the critical
path, and flag impossible situations.

FIGURE 3.MAC
OmniPlan project management software from The Omni Group.

84 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

programming skills on board. Coding is important, but people who know how to conduct walk-
throughs, reviews, testing, and documenting systems are important as well. Some people are good
at seeing the big picture, while others perform well when tasks are broken down into smaller ones
for them. Every team should have both types of individuals.

Beyond the basics, a project manager should look for people with both experience and en-
thusiasm. Experience is especially important when trying to estimate the time required to
complete a project. Experience in programming can mean code is developed five times faster
than if it is developed by an inexperienced team. A usability expert is also a useful addition to
the team.

The team must be motivated. One way to keep the team positively oriented throughout the
entire process is to select good people at the outset. Look for enthusiasm, imagination, and an
ability to communicate with different kinds of people. These basic attributes hold the potential
for success. It also helps to hire superior writers and articulate speakers who can present propos-
als and work directly with customers.

Trust is an important part of a team. All members of the project need to act responsibly and
agree to do their best and complete their part of the project. People may have different work
styles, but they all need to agree to work together toward a common goal.

Communication Strategies for Managing Teams
Teams have their own personalities, a result of combining each individual team member with
every other in a way that creates a totally new network of interactions. A way to organize your
thinking about teams is to visualize them as always seeking a balance between accomplishing the
work at hand and maintaining the relationships among team members.

In fact, teams will often have two leaders, not just one. Usually one person will emerge who
leads members to accomplish tasks, and another person will emerge who is concerned with the
social relationships among group members. Both are necessary for the team. These individuals

H Y P E R C A S E ® E X P E R I E N C E 3 . 1

“Ihope everyone you’ve encountered at MRE has treated you
well. Here’s a short review of some of the ways you can access our
organization through HyperCase. The reception area at MRE con-
tains the key links to the rest of our organization. Perhaps you’ve al-
ready discovered these on your own, but I wanted to remind you of
them now, because I don’t want to get so engrossed in the rest of our
organizational problems that I forget to mention them.

“The empty doorway you see is a link to the next room, which
we call the East Atrium. You have probably noticed that all open
doorways are links to adjacent rooms. Notice the building map dis-
played in the reception area. You are free to go to public areas such
as the canteen, but as you know, you must have an employee escort
you into a private office. You cannot go there on your own.

“By now you have probably noticed the two documents and
the computer on the small table in the reception area. The little one
is the MRE internal phone directory. Just click on an employee
name, and if that person is in, he or she will grant you an interview
and a tour of the office. I leave you to your own devices in figuring
out what the other document is.

“The computer on the table is on and displays the Web home
page for MRE. You should take a look at the corporate site and visit

all the links. It tells the story of our company and the people who
work here. We’re quite proud of it and have gotten positive feedback
about it from visitors.

“If you have had a chance to interview a few people and see
how our company works, I’m sure you are becoming aware of some
of the politics involved. We are also worried, though, about more
technical issues, such as what constitutes feasibility for a training
project and what does not.”

HYPERCASE Questions
1. What criteria does the Training Unit use to judge the

feasibility of a new project? List them.
2. List any changes or modifications to these criteria that you

would recommend.
3. Snowden Evans has asked you to help prepare a proposal for

a new project tracking system for the Training Unit. Briefly
discuss the technical, economic, and operational feasibility of
each alternative for a proposed project tracking system for
the Training Unit.

4. Which option would you recommend? Use evidence from
HyperCase to support your decision.

CHAPTER 3 • PROJECT MANAGEMENT 85

have been labeled by other researchers as, respectively, task leader and socioemotional leader.
Every team is subject to tensions that are an outgrowth of seeking a balance between accomplish-
ing tasks and maintaining relationships among team members.

For the team to continue its effectiveness, tensions must be continually resolved. Minimiz-
ing or ignoring tensions will lead to ineffectiveness and eventual disintegration of the team. Much
of the tension release necessary can be gained through skillful use of feedback by all team mem-
bers. All members, however, need to agree that the way they interact (i.e., process) is important
enough to merit some time. Productivity goals for processes are discussed in a later section.

Securing agreement on appropriate member interaction involves creating explicit and im-
plicit team norms (collective expectations, values, and ways of behaving) that guide members in
their relationships. A team’s norms belong to it and will not necessarily transfer from one team to
another. These norms change over time and are better thought of as a team process of interaction
rather than a product.

Norms can be functional or dysfunctional. Just because a particular behavior is a norm for
a team does not mean it is helping the team to achieve its goals. For example, an expectation
that junior team members should do all project scheduling may be a team norm. By adhering
to this norm, the team is putting extreme pressure on new members and not taking full advan-
tage of the experience of the team. It is a norm that, if continued, could make team members
waste precious resources.

Team members need to make norms explicit and periodically assess whether norms are func-
tional or dysfunctional in helping the team achieve its goals. The overriding expectation for your
team must be that change is the norm. Ask yourself whether team norms are helping or hindering
the team’s progress.

Setting Project Productivity Goals
When you have worked with your team members on various kinds of projects, you or your team
leader will acquire acumen for projecting what the team can achieve in a specific amount of time.
Using the hints discussed in the earlier section in this chapter on methods for estimating time re-
quired and coupling them with experience will enable the team to set worthwhile productivity
goals.

C O N S U L T I N G O P P O R T U N I T Y 3 . 5

Goal Tending

“ H ere’s what I think we can accomplish in the next five weeks,”
says Hy, the leader of your systems analysis team, as he confidently
pulls out a schedule listing each team member’s name alongside a
list of short-term goals. Just a week ago your systems analysis team
went through an intense meeting on expediting their project sched-
ule for the Kitchener, Ontario, Redwings, a hockey organization
whose management is pressuring you to produce a prototype.

The three other members of the team look at the chart in sur-
prise. Finally, one of the members, Rip, speaks: “I’m in shock. We
each have so much to do as it is, and now this.”

Hy replies defensively, “We’ve got to aim high, Rip. They’re in
the off-season. It’s the only time to get them. If we set our goals too
low, we won’t finish the system prototype, let alone the system itself,
before another hockey season passes. The idea is to give the Kitchener
Redwings the fighting edge through the use of their new system.”

Fiona, another team member, enters the discussion, saying,
“Goodness knows their players can’t give them that!” She pauses

for the customary groan from the assembled group, then continues.
“But seriously, these goals are killers. You could have at least asked
us what we thought, Hy. We may even know better than you what’s
possible.”

“This is a pressing problem, not a tea party, Fiona,” Hy replies.
“Polite polling of team members was out of the question. Some-
thing had to be done quickly. So I went ahead with these. I say we
submit our schedule to management based on this. We can push
back deadlines later if we have to. But this way they’ll know we’re
committed to accomplishing a lot during the off-season.”

As a fourth team member listening to the foregoing exchange,
formulate three suggestions that would help Hy improve his ap-
proach to goal formation and presentation. How well motivated do
you think the team will be if they share Fiona’s view of Hy’s goals?
What are the possible ramifications of supplying management with
overly optimistic goals? Write one paragraph devoted to short-term
effects and another one discussing the long-term effects of setting
unrealistically high goals.

86 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Systems analysts are accustomed to thinking about productivity goals for employees who
show tangible outputs, such as the number of blue jeans sewn per hour, the number of entries
keyed in per minute, or the number of items scanned per second. As manufacturing productivity
rises, however, it is becoming clear that managerial productivity must keep pace. It is with this
aim in mind that productivity goals for the systems analysis team are set.

Goals need to be formulated and agreed to by the team, and they should be based on team
members’ expertise, former performance, and the nature of the specific project. Goals will vary
somewhat for each project undertaken, because sometimes an entire system will be installed,
whereas other projects might involve limited modifications to a portion of an existing system.

Motivating Project Team Members
Although motivation is an extremely complex topic, it is a good one to consider, even if briefly,
at this point. To oversimplify, recall that people join organizations to provide for some of their ba-
sic needs such as food, clothing, and shelter. All humans, however, also have higher-level needs,
which include affiliation, control, independence, and creativity. People are motivated to fulfill un-
met needs on several levels.

Team members can be motivated, at least partially, through participation in goal setting, as
described in the previous section. The very act of setting a challenging but achievable goal and
then periodically measuring performance against the goal seems to work in motivating people.
Goals act almost as magnets in attracting people to achievement.

Part of the reason goal setting motivates people is that team members know prior to any per-
formance review exactly what is expected of them. The success of goal setting for motivating can
also be ascribed to it, affording each team member some autonomy in achieving the goals. Al-
though a goal is predetermined, the means to achieve it may not be. In this instance team mem-
bers are free to use their own expertise and experience to meet their goals.

Setting goals can also motivate team members by clarifying for them and others what must
be done to get results. Team members are also motivated by goals because goals define the level
of achievement that is expected of them. This use of goals simplifies the working atmosphere, but
it also electrifies it with the possibility that what is expected can indeed be done.

Managing Ecommerce Projects
Many of the approaches and techniques discussed earlier are transferable to ecommerce project
management. You should be cautioned, however, that although there are many similarities, there
are also many differences. One difference is that the data used by ecommerce systems are scat-
tered all over the organization. Therefore, you are not just managing data in a self-contained de-
partment or even one solitary unit. Hence, many organizational politics can come into play,
because units often feel protective of the data they generate and do not understand the need to
share them across the organization.

Another stark difference is that ecommerce project teams typically need more staff with a vari-
ety of skills, including developers, consultants, database experts, and system integrators, from across
the organization. Neatly defined, stable project groups that exist within a cohesive IS group or sys-
tems development team will be the exception rather than the rule. In addition, because so much help
may be required initially, ecommerce project managers need to build partnerships externally and in-
ternally well ahead of the implementation, perhaps sharing talent across projects to defray costs of
ecommerce implementations and to muster the required numbers of people with the necessary ex-
pertise. The potential for organizational politics to drive a wedge between team members is very real.

One way to prevent politics from sabotaging a project is for the ecommerce project manager
to emphasize the integration of the ecommerce with the organization’s internal systems and in so
doing emphasize the organizational aspect embedded in the ecommerce project. As one ecom-
merce project manager told us, “Designing the front end [what the consumer sees] is the easy part
of all this. The real challenge comes from integrating ecommerce strategically into all the orga-
nization’s systems.”

A fourth difference between traditional project management and ecommerce project manage-
ment is that because the system will be linking with the outside world via the Internet, security is
of the utmost importance. Developing and implementing a security plan before the new system is
in place is a project in and of itself and must be managed as such.

CHAPTER 3 • PROJECT MANAGEMENT 87

Creating the Project Charter
Part of the planning process is to agree on what will be done and at what time. Analysts who are
external consultants, as well as those who are organization members, need to specify what they
will eventually deliver and when they will deliver it. This chapter has elaborated on ways to es-
timate the delivery date for the completed system and also how to identify organizational goals
and assess the feasibility of the proposed system.

The project charter is a written narrative that clarifies the following questions:

1. What does the user expect of the project (what are the objectives)? What will the system do
to meet the needs (achieve the objectives)?

2. What is the scope (or what are the boundaries) of the project? (What does the user consider
to be beyond the project’s reach?)

3. What analysis methods will the analyst use to interact with users in gathering data,
developing, and testing the system?

4. Who are the key participants? How much time are users willing and able to commit to
participating?

5. What are the project deliverables? (What new or updated software, hardware, procedures,
and documentation do the users expect to have available for interaction when the project is
done?)

6. Who will evaluate the system and how will they evaluate it? What are the steps in the
assessment process? How will the results be communicated and to whom?

7. What is the estimated project timeline? How often will analysts report project milestones?
8. Who will train the users?
9. Who will maintain the system?

The project charter describes in a written document the expected results of the systems proj-
ect (deliverables) and the time frame for delivery. It essentially becomes a contract between the
chief analyst (or project manager) and their analysis team with the organizational users request-
ing the new system.

Avoiding Project Failures
The early discussions you have with management and others requesting a project, along with the
feasibility studies you do, are usually the best defenses possible against taking on projects that
have a high probability of failure. Your training and experience will improve your ability to judge
the worthiness of projects and the motivations that prompt others to request projects. If you are
part of an in-house systems analysis team, you must keep current with the political climate of the
organization as well as with financial and competitive situations.

It is important, however, to note that systems projects can and do have serious problems.
Those that are developed using agile methods are not immune to such troubles. In order to illus-
trate what can go wrong in a project, a systems analyst may want to draw a fishbone diagram (also
called a cause-and-effect diagram or an Ishikawa diagram). When you examine Figure 3.23, you
will see that it is called a fishbone diagram because it resembles the skeleton of a fish.

The value of fishbone diagrams is to systematically list all the possible problems that can oc-
cur. In the case of the agile approach, it is useful to organize the fishbone diagram by listing all
the resource control variables on the top and all the activities on the bottom. Some problems such
as schedule slips might be obvious, but others such as scope creep (the desire to add features af-
ter the analyst hears new stories) or developing features with little value are not as obvious.

You can also learn from the wisdom gained by people involved in earlier project failures.
When asked to reflect on why projects had failed, professional programmers cited the setting of
impossible or unrealistic dates for completion by management, belief in the myth that simply
adding more people to a project would expedite it (even though the original target date on the
project was unrealistic), and management behaving unreasonably by forbidding the team to seek
professional expertise from outside of the group to help solve specific problems.

Remember that you are not alone in the decision to begin a project. Although apprised of your
team’s recommendations, management will have the final say about whether a proposed project
is worthy of further study (that is, further investment of resources). The decision process of your
team must be open and stand up to scrutiny from those outside of it. The team members should

88 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

consider that their reputation and standing in the organization are inseparable from the projects
they accept.

THE SYSTEMS PROPOSAL
Organizing the Systems Proposal
While the project charter serves the purpose of identifying objects, determining scope, and as-
signing responsibilities, the analyst still needs to prepare a systems proposal that includes much
of the detail about system needs, options, and recommendations. This section covers both the con-
tent and style that makes up a systems proposal.

WHAT TO INCLUDE IN THE SYSTEMS PROPOSAL. Ten main sections comprise the written systems
proposal. Each part has a particular function, and the eventual proposal should be arranged in the
following order:

1. Cover letter.
2. Title page of project.
3. Table of contents.
4. Executive summary (including recommendations).
5. Outline of systems study with appropriate documentation.
6. Detailed results of the systems study.
7. Systems alternatives (three or four possible solutions).
8. Systems analysts’ recommendations.
9. Proposal summary.

10. Appendices (assorted documentation, summary of phases, correspondence, and so on).

A cover letter to managers and the IT task force should accompany the systems proposal. It
should list the people who did the study and summarize the objectives of the study. Keep the cover
letter concise and friendly.

Include on the title page the name of the project, the names of the systems analysis team mem-
bers, and the date the proposal is submitted. The proposal title must accurately express the content
of the proposal, but it can also exhibit some imagination. The table of contents can be useful to read-
ers of long proposals. If the proposal is less than 10 pages long, omit the table of contents.

Defect rate excessive

Customer not
satisfied with interface

Fear of change

Design not
creative enough

Time

High staff turnover

Features with
little value

Need for additional
programmers

Scope creep

Schedule slips

Recoding required by
business changes

Inadequate feedback
from testing

Communication
breakdown

System fails tests
Misunderstanding of
businessToo complex code

Cost ScopeQuality

Designing Testing Coding Listening

FIGURE 3.23
A fishbone diagram may be used
to identify all the things that can
go wrong in developing a system.

CHAPTER 3 • PROJECT MANAGEMENT 89

The executive summary, in 250 to 375 words, provides the who, what, when, where, why,
and how of the proposal, just as would the first paragraph in a news story. It should also include
the recommendations of the systems analysts and desired management action, because some peo-
ple will only have time to read the summary. It should be written last, after the rest of the proposal
is complete.

The outline of the systems study provides information about all the methods used in the study
and who or what was studied. Any questionnaires, interviews, sampling of archival data, obser-
vation, or prototyping used in the systems study should be discussed in this section.

This detailed results section describes what the systems analyst has found out about human
and systems needs through all the methods described in the preceding section. Conclusions about
problems workers experience when interacting with technologies and systems that have come to
the fore through the study should be noted here. This section should raise the problems or sug-
gest opportunities that call forth the alternatives presented in the next section.

In the systems alternatives section of the proposal, the analyst presents two or three alterna-
tive solutions that directly address the aforementioned problems. The alternatives you present
should include one that recommends keeping the system the same. Each alternative should be ex-
plored separately. Describe the costs and benefits of each situation. Because there are usually
trade-offs involved in any solution, be sure to include the advantages and disadvantages of each.

Each alternative must clearly indicate what users and managers must do to implement it. The
wording should be as clear as possible, such as, “Buy notebook computers for all middle man-
agers,” “Purchase packaged software to support users in managing inventory,” or “Modify the ex-
isting system through funding in-house programming efforts.”

After the systems analysis team has weighed the alternatives, it will have a definite profes-
sional opinion about which solution is most workable. The systems analysts’ recommendations
section expresses the recommended solution. Include the reasons supporting the team’s recom-
mendation so that it is easy to understand why it is being made. The recommendation should flow
logically from the preceding analysis of alternative solutions, and it should clearly relate the
human–computer interaction findings to the choice offered.

The proposal summary is a brief statement that mirrors the content of the executive summary.
It gives the objectives of the study and the recommended solution. The analyst should once more
stress the project’s importance and feasibility along with the value of the recommendations for
reaching the users’ goals and improving the business. Conclude the proposal on a positive note.

The appendix is the last part of the systems proposal, and it can include any information that
the systems analyst feels may be of interest to specific individuals, but that is not essential for un-
derstanding the systems study and what is being proposed.

Once the systems proposal is written, carefully select who should receive the report. Person-
ally hand the report to the people you have selected. Your visibility is important for the acceptance
and eventual success of the system.

Using Figures for Effective Communication
The emphasis so far in this section has been on considering your audience when composing the
systems proposal. Tables and graphs as well as words are important in capturing and communi-
cating the basics of the proposed system. Good design should never be underestimated.

Integrating figures into your proposal helps demonstrate that you are responsive to the dif-
ferent ways people absorb information. Figures in the report supplement written information and
must always be interpreted in words; they should never stand alone.

EFFECTIVE USE OF TABLES. Although tables are technically not visual aids, they provide a
different way of grouping and presenting analyzed data that the analyst wants to communicate to
the proposal reader.

Tables use labeled columns and rows to present statistical or alphabetical data in an organized
way. Each table must be numbered according to the order in which it appears in the proposal and
should be meaningfully titled. Figure 3.24 shows the appropriate layout and labeling for a table.

Some guidelines for tables are the following:

1. Integrate tables into the body of the proposal. Don’t relegate them to the appendices.
2. Try to fit the entire table vertically on a single page if possible.

90 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

3. Number and title the table at the top of the page. Make the title descriptive and meaningful.
4. Label each row and column. Use more than one line for a title if necessary.
5. Use a boxed table if room permits. Vertically ruled columns will enhance the readability.
6. Use footnotes if necessary to explain detailed information contained in the table.

Several methods for comparing costs and benefits were presented in previous sections. Tabled re-
sults of those comparisons should appear in the systems proposal. If a break-even analysis is done,
a table illustrating results of the analysis should be included. Payback can be shown in tables that
serve as additional support for graphs. A short table comparing computer systems or options
might also be included in the systems proposal.

EFFECTIVE USE OF GRAPHS. There are many different kinds of graphs: line graphs, column
graphs, bar charts, and pie charts to name a few. Line graphs, column graphs, and bar charts
compare variables, whereas pie charts and area charts illustrate the composition of 100 percent of
an entity.

The guidelines for including effective graphs in a proposal (see Figure 3.25) are as follows:

1. Choose a style of graph that communicates your intended meaning well.
2. Integrate the graph into the body of the proposal.
3. Give the graph a sequential figure number and a meaningful title.
4. Label each axis and any lines, columns, bars, or pieces of the pie on the graph.
5. Include a key to indicate differently colored lines, shaded bars, or crosshatched areas.

Much of the detail that goes into a systems proposal is obtained from interviewing, provid-
ing questionnaires, sampling, discovering other hard data, and by observation. These topics are
discussed in the next two chapters.

Type of Set 2004 2005 2006 2007 2008 2009
40 kg grey 3.5 3.4 3.7 3.0 2.5 2.0

48 kg grey 5.9 5.5 5.1 4.6 2.0 2.0

55 kg grey 3.9 4.8 5.5 3.5 4.2 5.5

68 kg grey 1.0 1.9 2.2 2.5 1.3 1.2

100 kg grey 1.2 1.8 1.5 0.7 1.2 1.5

55 kg r,w,b* – – – 3.4 6.5 2.6

100 kg r,w,b – – – 0.8 1.8 1.2

Table 4Number of Sets of Barbells Sold by Weight and Color
for the Years 2004–2009 Inclusive

* r,w,b, stands for red, white, and blue

Use footnotes to
explain information.

Try to fit the table
vertically on a
single page.

Label the rows
and columns.

Make the title
descriptive.The use of a box

enhances thetable.

FIGURE 3.24
Guidelines for creating effective
tables.

CHAPTER 3 • PROJECT MANAGEMENT 91

SUMMARY
The five major project management fundamentals that the systems analyst must handle are (1) project initi-
ation—defining the problem, (2) determining project feasibility, (3) activity planning and control, (4) proj-
ect scheduling, and (5) managing systems analysis team members. When faced with questions of how
businesses can meet their goals and solve systems problems, the analyst creates a problem definition. A prob-
lem definition is a formal statement of the problem, including (1) the issues of the present situation, (2) the
objectives for each issue, (3) the requirements that must be included in all proposed systems, and (4) the con-
straints that limit system development.

Selecting a project is a difficult decision, because more projects will be requested than can actually be
done. Five important criteria for project selection are (1) that the requested project be backed by manage-
ment, (2) that it be timed appropriately for a commitment of resources, (3) that it move the business toward
attainment of its goals, (4) that it be practical, and (5) that it be important enough to be considered over other
possible projects.

If a requested project meets these criteria, a feasibility study of its operational, technical, and economic
merits can be done. Through the feasibility study, systems analysts gather data that enable management to
decide whether to proceed with a full systems study. By inventorying equipment already on hand and on or-
der, systems analysts will be able to better determine whether new, modified, or current computer hardware
is to be recommended.

Computer hardware can be acquired through purchase, lease, or rental. Vendors will supply support
services such as preventive maintenance and user training that are typically negotiated separately. Software
can be created as a custom product, purchased as a commercial off-the-shelf (COTS) software package, or
outsourced to an application service provider (ASP).

Preparing a systems proposal means identifying all the costs and benefits of a number of alternatives.
The systems analyst has a number of methods available to forecast future costs, benefits, volumes of
transactions, and economic variables that affect costs and benefits. Costs and benefits can be tangible

Cost
($)

70,000

60,000

Break-Even
Point

50,000

40,000

30,000

20,000

10,000

2006 2007 2008 2009 2010
Year

Include a key.

Include a
meaningful title.

Cost of proposed system Cost of current system
Figure 5The proposed system is expected toreach the break-even point in 2010.

Label the axes.

FIGURE 3.25
Guidelines for drawing effective
line graphs.

92 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

H Y P E R C A S E ® E X P E R I E N C E 3 . 2

“ Sometimes the people who have been here for some time are
surprised at how much we have actually grown. Yes, I do admit that
it isn’t easy to keep track of what each person is up to or even what
purchases each department has made in the way of hardware and
software. We’re working on it, though. Snowden would like to see
more accountability for computer purchases. He wants to make sure
we know what we have, where it is, why we have it, who’s using it,
and if it’s boosting MRE productivity, or, as he so delicately puts it,
‘to see whether it’s just an expensive toy’ that we can live without.”

HYPERCASE Questions
1. Complete a computer equipment inventory for the Training

and Management Systems Unit, describing all the systems

you find. Hint: Create an inventory form to simplify your
task.

2. Using the software evaluation guidelines given in the text, do
a brief evaluation of GEMS, a software package used by the
Management Systems employees. In a paragraph, briefly
critique this custom software by comparing it with
commercial off-the-shelf software such as Microsoft Project.

3. List the intangible costs and benefits of GEMS as reported by
employees of MRE.

4. Briefly describe the two alternatives Snowden is considering
for the proposed project tracking and reporting system.

5. What organizational and political factors should Snowden
consider in proposing his new system at MRE? (In a brief
paragraph, discuss three central conflicts.)

(quantifiable) or intangible (nonquantifiable and resistant to direct comparison). A systems analyst has
many methods for analyzing costs and benefits, including break-even analysis, the payback method, and
cash-flow analysis.

Project planning includes the estimation of time required for each of the analyst’s activities, scheduling
them, and expediting them if necessary to ensure that a project is completed on time. One technique available to
the systems analyst for scheduling tasks is the Gantt chart, which displays activities as bars on a graph.

Another technique, called Program Evaluation and Review Techniques (PERT), displays activities as
arrows on a network. PERT helps the analyst determine the critical path and slack time, which is the infor-
mation required for effective project control.

FIGURE 3.HC1
The reception room resembles a typical corporation. While you are in this HyperCase
screen, find the directory if you want to visit someone.

Creating a project charter containing user expectations and analyst deliverables is recommended, since
unrealistic management deadlines, adding unneeded personnel to a project that is trying to meet an unreal-
istic deadline, and not permitting developer teams to seek expert help outside their immediate group, were
cited by programmers as reasons projects had failed. Project failures can usually be avoided by examining
the motivations for requested projects, as well as your team’s motives for recommending or avoiding a par-
ticular project.

The systems analyst has three main steps to follow for putting together an effective systems proposal:
effectively organizing the proposal content, writing the proposal in an appropriate business style, and orally
presenting an informative systems proposal. To be effective, the proposal should be written in a clear and
understandable manner, and its content should be divided into 10 functional sections. Visual considerations
are important when putting together a proposal.

CHAPTER 3 • PROJECT MANAGEMENT 93

KEYWORDS AND PHRASES
benchmarking
break-even analysis
cash-flow analysis
critical path
ecommerce project management
economic feasibility
forecasting
function point analysis
Gantt chart
intangible benefits
intangible costs
moving average
operational feasibility
payback
PERT diagram

present value
problem definition
productivity goals
project charter
socioemotional leader
systems proposal
tangible benefits
tangible costs
task leader
team motivation
team norms
team process
technical feasibility
vendor support

REVIEW QUESTIONS
1. What are the five major project fundamentals?
2. List three ways to find out about problems or opportunities that might call for a systems solution.
3. List the five criteria for systems project selection.
4. Define technical feasibility.
5. Define economic feasibility.
6. Define operational feasibility.
7. List four criteria for evaluating system hardware.
8. What are the three main options for the acquisition of computer hardware?
9. What does COTS stand for?

10. What does ASP stand for in terms of software delivery?
11. Define tangible costs and benefits. Give an example of each one.
12. Define intangible costs and benefits. Give an example of each one.
13. List four techniques for comparing the costs and benefits of a proposed system.
14. When is break-even analysis useful?
15. What are the three drawbacks of using the payback method?
16. When is cash-flow analysis used?
17. As a general guideline, when should present value analysis be used?
18. What is a Gantt chart?
19. When is a PERT diagram useful for systems projects?
20. List three advantages of using a PERT diagram over a Gantt chart for scheduling systems projects.
21. Define the term critical path.
22. How does a project manager assess the risk of things going wrong and take that into consideration

when planning the time needed to complete the project?
23. List the two types of team leaders.
24. What is meant by a dysfunctional team norm?
25. What is meant by team process?
26. What are three reasons that goal setting seems to motivate systems analysis team members?
27. What are four ways in which ecommerce project management differs from traditional project

management?
28. What elements are contained in a project charter?

94 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

29. What is a fishbone diagram used for?
30. What are the three steps the systems analyst must follow to put together an effective systems

proposal?
31. List the 10 main sections of the systems proposal.

PROBLEMS
1. Williwonk’s Chocolates of St. Louis makes an assortment of chocolate candy and candy novelties.

The company has six in-city stores, five stores in major metropolitan airports, and a small mail-order
branch. Williwonk’s has a small, computerized information system that tracks inventory in its plant,
helps schedule production, and so on, but this system is not tied directly into any of its retail outlets.
The mail-order system is handled manually.

Recently, several Williwonk’s stores experienced a rash of complaints from mail-order
customers that the candy was spoiled upon arrival, that it did not come when promised, or that it
never arrived; the company also received several letters complaining that candy in various airports
tasted stale. Williwonk’s has been selling a new, low-carb, dietetic form of chocolate made with
sugar-free, artificial sweetener. Sales have been brisk, but there have been problems shipping the
wrong type of chocolate to an address with a diabetic person. There were a number of complaints,
and Williwonk’s sent a number of free boxes of chocolate to ease the situation.

Management would like to sell products using the Web but only has a few Web pages with
information about the company and an order form that could be printed. Web ordering does not exist.
One of the senior executives would like to sell customized chocolates with the name of a person on
each piece. Although the production area has assured management that this could be easily done,
there is no method to order customized chocolates.

Another senior executive has mentioned that Williwonk’s has partnered with several European
chocolate manufacturers and will be importing chocolate from a variety of countries. At present, this
must be done over the phone, by email, or by mail. The executive wants an internal Web site that will
enable employees to order directly from the partner companies. All this has led a number of
managers to request trend analysis. Too much inventory results in stale chocolate, while at other
times there is a shortage of a certain kind of chocolate.

Seasonal and holiday variation trends would help Williwonk’s maintain an adequate inventory.
The inventory control manager has insisted that all changes must be implemented before the next
holiday season. “The time for this to be complete is an absolute due date,” remarked Candy, a senior
manager. “Make sure that everything works perfectly before the site goes public,” she continues. “I
don’t want any customers receiving the wrong chocolates!” In addition, the order processing
manager has mentioned that the system must be secure.

You had been working for two weeks with Williwonk’s on some minor modifications for its
inventory information system when you overheard two managers discussing these occurrences. List
the possible opportunities or problems among them that might lend themselves to systems projects.

2. Where is most of the feedback on problems with Williwonk’s products coming from in Problem 1?
How reliable are the sources? Explain in a paragraph.

3. After getting to know them better, you have approached Williwonk’s management people with your
ideas on possible systems improvements that could address some of the problems or opportunities
given in Problem 1.
a. In two paragraphs, provide your suggestions for systems projects. Make any realistic

assumptions necessary.
b. Are there any problems or opportunities discussed in Problem 1 that are not suitable? Explain

your response.
4. Create a problem definition for Williwonk’s, as described in Problem 1. Estimate the weights of

importance. Include at least one requirement and one constraint.
5. Create a list of user requirements for the problem definition created in Problem 4.
6. Delicato, Inc., a manufacturer of precise measuring instruments for scientific purposes, has presented

you with a list of attributes that its managers think are probably important in selecting a vendor for
computer hardware and software. The criteria are not listed in order of importance.
1. Low price.
2. Precisely written software for engineering applications.
3. Vendor performs routine maintenance on hardware.
4. Training for Delicato employees.

a. Critique the list of attributes in a paragraph.
b. Using its initial input, help Delicato, Inc., draw up a more suitable list of criteria for selecting

computer hardware and software vendors.
7. SoftWear Silhouettes is a rapidly growing mail-order house specializing in all-cotton clothing.

Management would like to expand sales to the Web with the creation of an ecommerce site. The

CHAPTER 3 • PROJECT MANAGEMENT 95

Item Proposed System Costs Present System Costs

Year 1
Equipment Lease $20,000 $11,500

Salaries 30,000 50,000

Overhead 4,000 3,000

Development 30,000 —

Year 2
Equipment Lease $20,000 $10,500

Salaries 33,000 55,000

Overhead 4,400 3,300

Development 12,000 —

Year 3
Equipment Lease $20,000 $10,500

Salaries 36,000 60,000

Overhead 4,900 3,600

Development — —

Year 4
Equipment Lease $20,000 $10,500

Salaries 39,000 66,000

Overhead 5,500 4,000

Development — —

company has two full-time system analysts and one programmer. Company offices are located in a
small, isolated New England town, and the employees who handle the traditional mail-order business
have little computer training.
a. Considering the company’s situation, draw up a list of software attributes that SoftWear

Silhouettes should emphasize in its choice of software to create a Web site and integrate the mail-
order business with business from the Web site.

b. Would you recommend COTS software, custom software, or outsourcing to an ASP? State your
choice and defend it in a paragraph.

c. List the variables that contributed to your response in part b.
8. The following is 12 years’ demand for Viking Village, a game now available for handhelds and

smartphones.

a. Graph the demand data for Viking Village.
b. Determine the linear trend for Viking Village using a three-year moving average.

9. Do the data for Viking Village appear to have a cyclical variation? Explain.
10. Interglobal Paper Company has asked for your help in comparing its present computer system with a

new one its board of directors would like to see implemented. Proposed system and present system
costs are as follows:

Year Demand

1998 20,123

1999 18,999

2000 20,900

2001 31,200

2002 38,000

2003 41,200

2004 49,700

2005 46,400

2006 50,200

2007 52,300

2008 49,200

2009 57,600

a. Using break-even analysis, determine the year in which Interglobal Paper will break even.
b. Graph the costs and show the break-even point.

96 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Year Benefits

1 $55,000

2 75,000

3 80,000

4 85,000

11. The following are system benefits for Interglobal Paper Company (from Problem 10):

a. Use the costs of Interglobal Paper’s proposed system from Problem 10 to determine the payback
period (use the payback method).

b. Graph the benefits versus the costs and indicate the payback period.
12. Glenn’s Electronics, a small company, has set up a computer service. The table that follows shows

the revenue expected for the first five months of operation, in addition to the costs for office
remodeling, and so on. Determine the cash flow and accumulated cash flow for the company. When
is Glenn’s expected to show a profit?

July August September October November

Revenue $35,000 $36,000 $42,000 $48,000 $57,000

Costs
Office Remodeling $25,000 $8,000

Salaries 11,000 12,100 $13,300 $14,600 $16,000

Training 6,000 6,000

Equipment Lease 8,000 8,480 9,000 9,540 10,110

Supplies 3,000 3,150 3,300 3,460 3,630

Year Costs Benefits

1 $33,000 $21,000

2 34,600 26,200

3 36,300 32,700

4 38,100 40,800

5 40,000 51,000

6 42,000 63,700

13. Alamo Foods of San Antonio wants to introduce a new computer system for its perishable products
warehouse. The costs and benefits are as follows:

a. Given a discount rate of 8 percent (.08), perform present value analysis on the data for Alamo
Foods. (Hint: Use the formula

to find the multipliers for years 1 to 6.)
b. What is your recommendation for Alamo Foods?

14. a. Suppose the discount rate in Problem 13a changes to 13 percent (.13). Perform present value
analysis using the new discount rate.

b. What is your recommendation to Alamo Foods now?
c. Explain the difference between Problem 13b and Problem 14b.

15. Solve Problem 13 using an electronic spreadsheet program such as Excel.
16. Use a spreadsheet program to solve Problem 12.
17. Solve Problem 13 using a function for net present value, such as @NPV (x, range) in Excel.
18. Brian F. O’Byrne (“F,” he says, stands for “frozen.”) owns a frozen food company and wants to

develop an information system for tracking shipments to warehouses.
a. Using the data from the table in Figure 3.EX1, draw a Gantt chart to help Brian organize his

design project.
b. When is it appropriate to use a Gantt chart? What are the disadvantages? Explain in a paragraph.

1

111 + i 2 n

CHAPTER 3 • PROJECT MANAGEMENT 97

19. In addition to a Gantt chart, you’ve drawn Brian a PERT diagram so that you can communicate the
necessity to keep an eye on the critical path. Consult Figure 3.EX2, which was derived from the data
from Figure 3.EX1. List all paths, and calculate and identify the critical path.

Description

Draw data flow
Draw decision tree
Revise tree
Write up project
Organize data dictionary
Do output prototype
Revise output design
Write use cases
Design database

Task

A
B
C
D
E
F
G
H
I

Must Follow

None
A
B

C, I
A

None
F

None
H, E, and G

Time (Weeks)

5
4

10
4
7
2
9

10
8

FIGURE 3.EX1
Data to help in the organization of
a design project for creating an
information system that tracks
shipments of frozen foods to
warehouses.

Description

Interview executives
Interview staff in order fulfillment
Design input prototype
Design output prototype
Write use cases
Record staff reactions to prototypes
Develop system
Write up training manual
Train staff working in order fulfillment

Task

A
B
C
D
E
F
G
H
I

Must Follow

None
None

B
A, C
A, C
D

E, F
B, G

H

Time (Weeks)

6
3
2
3
4
2
5
3
2

FIGURE 3.EX3
Tasks to be performed during
systems development of an order
fulfillment system.

10

20

30

50

40

7060
A

F G

E

B

I

C
D

H

FIGURE 3.EX2
The PERT diagram from Brian’s
Frozen Foods.

20. Cherry Jones owns a homeopathic medicine company called Faithhealers. She sells vitamins and
other relatively nonperishable products for those who want choices regarding alternative medicine.
Cherry is developing a new system that would require her staff to be retrained. Given the information
in Figure 3.EX3, make a PERT diagram for her and identify the critical path. If Cherry could find a
way to save time on the “write use cases” phase, would it help? Why or why not?

21. Angus McIndoe wants to modernize his popular restaurant by adapting it more closely to the
preferences of his repeat customers—keeping track of his customers’ likes and dislikes. Information
such as where they like to sit, what they like to eat, and when they normally arrive at the restaurant
are all items of interest to him, since he believes that in this way he can better serve his customers.
Angus has asked you to develop a system for him that will help make his customers happy while
increasing his business.

You have heard what Angus had to say about his customers. There are certainly more
preferences that he can keep track of.

Develop a problem definition for Angus, similar to the one developed for Catherine’s Catering
in this chapter.

22. Recently, two analysts just out of college have joined your systems analyst group at the newly
formed company, Mega Phone. When talking to you about the group, they mention that some things
strike them as odd. One is that group members seem to look up to two group leaders, Bill and Penny,
not just one.

98 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

Their observation is that Bill seems pretty relaxed, whereas Penny is always planning and
scheduling activities. They have also observed that everyone “just seems to know what to do” when
they get into a meeting, even though no instructions are given. Finally, they have remarked on the
openness of the group in addressing problems as they arise, instead of letting things get out of hand.
a. By way of explanation to the new team members, label the types of leaders Bill and Penny

appear to be, respectively.
b. Explain the statement that “everyone just seems to know what to do.” What is guiding their

behavior?
c. What concept best describes the openness of the group that the new team members

commented on?
23. “I think it’s only fair to write up all the alternatives you’ve considered,” says Lou Cite, a personnel

supervisor for Day-Glow Paints. “After all, you’ve been working on this systems thing for a while
now, and I think my boss and everyone else would be interested to see what you’ve found out.” You
are talking with Lou as you prepare to put together the final systems proposal that your team will be
presenting to upper management.
a. In a paragraph, explain to Lou why your proposal will not (and should not) contain all the

alternatives that your team has considered.
b. In a paragraph, discuss the sorts of alternatives that should appear in the final systems proposal.

GROUP PROJECTS
1. The Weil Smile Clinic is a dental practice run by Drs. Bonnie and Jeff, and they need to keep the

necessary patient and insurance data safe and secure. They looked into online backup like SOS
Online, Spare Backup, Mozy Remote Backup, and Data Deposit Box. Look into the cost of these or
other services, then help Drs. Bonnie and Jeff make a decision. What are the intangible costs and
benefits of backing up this way? Should they use a backup system or find some other way? Defend
your analysis and recommendations.

2. Explore four or five voice-over IP (VoIP) providers. Make a list of costs including the setup fee,
monthly cost of the basic plan, monthly cost of the unlimited plan, and cost of an adapter or other
fees if required. Then make a list of attributes, such as free in-network calls, international calling,
virtual telephone numbers, teleconferencing, support for caller ID, and so on. Explain how a person
would use all of the quantitative and qualitative information to make an informed decision about
which VoIP provider to select. Are any other variables important? Would you recommend any type of
software to help compare these services?

3. Make a choice on a VoIP provider based on the analysis in Group Project 2.
4. With your group members, explore project management software such as Microsoft Project. What

features are available? Work with your group to list them. Have your group evaluate the usefulness of
the software for managing a systems analysis and design team project. In a paragraph, state whether
the software you are evaluating facilitates team member communication and management of team
activities, time, and resources. State which particular features support these aspects of any project.
Note whether the software falls short of these criteria in any regard.

5. Draw a fishbone diagram of possible problems that can occur when constructing a Web site for a
travel company that wants to sell vacations online for the next big travel period (either December
or June).

SELECTED BIBLIOGRAPHY
Alter, S. Information Systems: The Foundation of E-Business, 4th ed. Upper Saddle River, NJ: Prentice

Hall, 2002.
Bales, R. F. Personality and Interpersonal Behavior. New York: Holt, Rinehart and Winston, 1970.
Carnegie-Mellon Software Engineering Institute, “CBS Overview.” Available at: www.sei.cmu.edu/cbs/

overview.html. Last accessed July 15, 2009.
Construx Software Builders. Available at: www.construx.com. Last accessed July 15, 2009.
Costar Web site. Available at: www.softstarsystems.com. Last accessed July 15, 2009.
Glass, R. “Evolving a New Theory of Project Success.” Communications of the ACM, Vol. 42, No. 11, 1999,

pp. 17–19.
Levine, D. M., P. R. Ramsey, and M. L. Berenson. Business Statistics for Quality and Productivity. Upper

Saddle River, NJ: Prentice Hall, 1995.
Linberg, K. R. “Software Perceptions About Software Project Failure: A Case Study.” Journal of Systems

and Software, Vol. 49, Nos. 2 and 3, 1999, pp. 177–92.
Longstreet Consulting. www.ifpug.org. Last accessed July 15, 2009.
McBreen, P. Questioning Extreme Programming. Boston: Addison-Wesley Co., 2003.

www.sei.cmu.edu/cbs/overview.html
www.sei.cmu.edu/cbs/overview.html
www.construx.com
www.softstarsystems.com
www.ifpug.org

CHAPTER 3 • PROJECT MANAGEMENT 99

Schein, E. H. Process Consultation: Its Role in Organization Development. Reading, MA: Addison-
Wesley, 1969.

Shtub, A., J. F. Bard, and S. Globerson. Project Management: Processes, Methodologies, and Economics,
3d ed. Upper Saddle River, NJ: Pearson, 2005.

Software Product Research. Available at: www.spr.com. Last accessed July 15, 2009.
Stefik, M., G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, and L. Suchman. “Beyond the Chalkboard: Com-

puter Support for Collaboration and Problem Solving in Meetings.” Communications of the ACM, Vol.
30, No. 1, January 1987, pp. 32–47.

Vigder, M. R., W. M. Gentleman, and J. C. Dean. “Using COTS Software in Systems Development.” http://
www.nrc-cnrc.gc.ca/eng/projects/iit/commercial-software.html. Last accessed July 15, 2009.

Walsh, B. “Your Network’s Not Ready for E-Commerce.” Network Computing. Available at: www.
networkcomputing.com/922/922colwalsh.html. Last accessed July 15, 2009.

www.spr.com
http://www.nrc-cnrc.gc.ca/eng/projects/iit/commercial-software.html
http://www.nrc-cnrc.gc.ca/eng/projects/iit/commercial-software.html
www.networkcomputing.com/922/922colwalsh.html
www.networkcomputing.com/922/922colwalsh.html

100 PART I • SYSTEMS ANALYSIS FUNDAMENTALS

E P I S O D E 3
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Getting to Know U
Chip enters Anna’s office one day, saying, “I think the project will be a good one, even though it’s taking
some long hours to get started.”

Anna looks up from her screen and smiles. “I like what you’ve done in getting us organized,” she says.
“I hadn’t realized Micosoft Visio and Visible Analyst could help us this much with project management. I’ve
decided to do a PERT diagram for the data gathering portion of the project. It should help us plan our time and
work as a team on parallel activities.”

“Can I take a look at the PERT diagram?” asks Chip.
Anna shows him a screen with a PERT diagram on it (see Figure E3.1) and remarks, “This will help

immensely. It is much easier than planning haphazardly.”
“I notice that you have Gather Reports, Gather Records and Data Capture Forms, and Gather Qualita-

tive Documents as parallel tasks,” notes Chip, gazing at the screen.
“Yes,” replies Anna. “I thought that we would split up the time that it takes to gather the information.

We can also divide up the task of analyzing what we have learned.”
“I notice that you have a rather large number of days allocated for interviewing the users,” notes Chip.
“Yes,” replies Anna. “This activity also includes creating questions, sequencing them, and other tasks,

such as taking notes of the office environment and analyzing them. I’ve also assumed a standard of six pro-
ductive hours per day.”

“After we interview the users, we will want to create a problem definition for the system, listing the is-
sues and objectives,” continues Anna. “Once this is finished, we’ll have the users review it and assign
weights. When this is complete, the next step is to create a list of user requirements.”

“Sounds like a good plan,” Chip remarks after a thoughtful pause. “Should we get started with a ques-
tion list?”

Anna glances at her watch. “Not now, it’s getting late. I think we’ve made a lot of progress in setting
up our project. Let’s call it a day, or should I say evening? Remember, I got us tickets for the football game.”

Chip replies, “I haven’t forgotten. Let me get my coat, and we’ll walk over to the stadium together.”
Walking across campus later, Chip says, “I’m excited. It’s my first game here at CPU. What’s the team

mascot, anyway?”
“Chipmunks, of course,” says Anna.
“And the team colors?” Chip asks, as they enter the stadium.
“Blue and white,” Anna replies.
“Oh, that’s why everyone’s yelling, ‘Go Big Blue!’” Chip says, listening to the roar of the crowd.
“Precisely,” says Anna.

C, ,1

A, 4

B, 5

E 2

F, 4

D, 6

G, 15 I, 4

H, 14 J, 3

K, 15

20

3010 50 60 80 90

40 70

A Gather reports
B Gather records and data capture forms
C Gather qualitative documents
D Analyze reports
E Understand corporate culture
F Analyze records and forms

G Interview users
H Administer questionnaires
I Summarize interviews
J Summarize survey results
K Prototype system

FIGURE E3.1
A PERT diagram for Central
Pacific University that is used for
gathering information.

CHAPTER 3 • PROJECT MANAGEMENT 101

EXERCISES

E-1. Use Microsoft Visio or Visible Analyst to view the Gathering Information PERT diagram.

E-2. List all paths and calculate and determine the critical path for the Gathering Information PERT diagram.

E-3. Use Microsoft Visio or Visible Analyst to create the PERT diagram shown in Figure E3.2. It repre-
sents the activities involved in interviewing the users and observing their offices.

A, 1 B, 1 C, 2 E, 3

D, 1

8
F, 4

G, 2

H, 1

I, 2

10 20 30 40 60

70

80

50

Dummy
A
B
C
D
E
F
G
H
I

Write objectives
Determine whom to interview
Write questions
Prepare interviewee
Interview senior management
Interview operations management
Record and analyze observations
Summarize management interviews
Summarize operations interviews

FIGURE E3.2
A PERT diagram for Central
Pacific University that is used for
the interviewing users phase.

DurationPredecessorActivity

Determine overall prototype
screens and reports
Determine report and screen contents
Create report prototypes
Create screen prototypes
Obtain report prototype feedback
Obtain screen prototype feedback
Modify report prototypes
Modify screen prototypes
Obtain final approval

A

B
C
D
E
F
G
H
I

None

A
B
B
C
D
E
F

G, H

2

4
3
4
1
2
2
4
2

FIGURE E3.3
A list of activities and estimated
duration times for the CPU
project.

E-4. List all paths and calculate and determine the critical path for the Interviewing Users PERT diagram.

E-5. Use Visio or Visible Analyst to create a PERT diagram for creating system prototypes. The activity
information is shown in Figure E3.3.

E-6. Create the problem definition for the CPU case. Read the interview with Hy Perteks in the CPU case
found in Chapter 4 as well as the interviews found on the support Web site for Systems Analysis and
Design. Go to www.pearsonhighered.com/kendall and click the CPU Student Exercise link for the
8/e text. Then click the first link called CPU Interviews. You will need to read all five additional in-
terviews. There is a Next link in the lower right corner of the Web page to go to the next interview.

E-7. Write user requirements for the CPU case.

E-8. Design a test plan for the requirements created in Exercise E-7.

The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft
Project, or a Microsoft Access file that can be used to complete the exercises.

www.pearsonhighered.com/kendall
www.pearsonhighered.com/kendall

This page intentionally left blank

103

C H A P T E R 4

Information Gathering:
Interactive Methods

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Recognize the value of interactive methods for information gathering.

2. Construct interview questions to elicit human information requirements.

3. Structure interviews in a way that is meaningful to users.

4. Understand the concept of JAD and when to use it.

5. Write effective questions to survey users about their work.

6. Design and administer effective questionnaires.

There are three key interactive methods that you can use to elicit human
information requirements from organizational members.These three meth-
ods are interviewing, joint application design (JAD), and surveying people
through questionnaires. Although different in their implementation, these
methods have a great deal in common, too.The basis of their shared prop-

erties is talking with and listening to people in the organization to understand their interac-
tions with technology through a series of carefully composed questions.

Each of the three interactive methods for information gathering possesses its own estab-
lished process for you to follow in interacting with users. If followed, these systematic ap-
proaches will help ensure proper design and implementation of interviews, JAD workshops, and
questionnaires, as well as support insightful analysis of the resulting data. Unobtrusive meth-
ods (sampling, investigation, and observing a decision maker’s behavior and physical environ-
ment) that do not require the same degree of interactivity between analysts and users will be
covered in an upcoming chapter. By using interactive methods with unobtrusive methods you
will achieve a more complete portrait of the organization’s information requirements.

PA R T I I
Information

Requirements Analysis

INTERVIEWING
Before you interview someone else, you must in effect interview yourself. You need to know your
biases and how they will affect your perceptions. Your education, intellect, upbringing, emotions,
and ethical framework all serve as powerful filters for what you will be hearing in your interviews.

You need to think through the interview thoroughly before you go. Visualize why you are go-
ing, what you will ask, and what will make it a successful interview in your eyes. You must an-
ticipate how to make the interview fulfilling for the individual you interview, as well.

An information-gathering interview is a directed conversation with a specific purpose that
uses a question-and-answer format. In the interview you want to get the opinions of the interview-
ee and his or her feelings about the current state of the system, organizational and personal goals,
and informal procedures for interacting with information technologies.

104 PART II • INFORMATION REQUIREMENTS ANALYSIS

1. Read background material.
2. Establish interviewing objectives.
3. Decide whom to interview.
4. Prepare the interviewee.
5. Decide on question types and structure.

Steps in Planning the Interview
FIGURE 4.1
Steps the systems analyst follows
in planning the interview.

Above all, seek the opinions of the person you are interviewing. Opinions may be more im-
portant and more revealing than facts. For example, imagine asking the owner of a traditional
store who has recently added an online store how many customer refunds she typically gives for
Web transactions each week. She replies, “About 20 to 25 a week.” When you monitor the trans-
actions and discover that the average is only 10.5 per week, you might conclude that the owner
is overstating the facts and the problem.

Imagine instead that you ask the owner what her major concerns are and that she replies, “In
my opinion, customer returns of goods purchased over the Web are way too high.” By seeking
opinions rather than facts, you discover a key problem that the owner wants addressed.

In addition to opinions, you should try to capture the feelings of the interviewee. Remember
that the interviewee knows the organization better than you do. You can understand the organiza-
tion’s culture more fully by listening to the feelings of the respondent.

Goals are important information that can be gleaned from interviewing. Facts that you ob-
tain from hard data may explain past performance, but goals project the organization’s future. Try
to find out as many of the organization’s goals as possible from interviewing. You may not be able
to determine goals through any other data-gathering methods.

The interview is also a valuable time to explore key HCI (human–computer interaction) con-
cerns, including the ergonomic aspects, the system usability, how pleasing and enjoyable the sys-
tem is, and how useful it is in supporting individual tasks.

In the interview you are setting up a relationship with someone who is probably a stranger
to you. You need to build trust and understanding quickly, but at the same time you must main-
tain control of the interview. You also need to sell the system by providing needed information
to your interviewee. Do so by planning for the interview before you go so that conducting it is
second nature to you. Fortunately, effective interviewing can be learned. As you practice, you
will see yourself improving. Later in the chapter we discuss joint application design (JAD) (pro-
nounced as one word, jǎd, rhymes with add), which can serve as an alternative to one-on-one in-
terviewing in certain situations.

Five Steps in Interview Preparation
The five major steps in interview preparation are shown in Figure 4.1. These steps include a range
of activities from gathering basic background material to deciding who to interview.

READ BACKGROUND MATERIAL. Read and understand as much background information about
the interviewees and their organization as possible. This material can often be obtained on the
corporate Web site, from a current annual report, a corporate newsletter, or any publications sent
out to explain the organization to the public. Check the Internet for any corporate information
such as that in Standard and Poor’s.

As you read through this material, be particularly sensitive to the language the organizational
members use in describing themselves and their organization. What you are trying to do is build
up a common vocabulary that will eventually enable you to phrase interview questions in a way
that is understandable to your interviewee. Another benefit of researching your organization is to
maximize the time you spend in interviews; without such preparation you may waste time asking
general background questions.

ESTABLISH INTERVIEWING OBJECTIVES. Use the background information you gathered as well as
your own experience to establish interview objectives. There should be four to six key areas
concerning HCI, information processing, and decision-making behavior about which you will
want to ask questions. These areas include HCI concerns (the usefulness and usability of the

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 105

Open-Ended Interview Questions

• What’s your opinion of the current state of business-to-business
 ecommerce in your firm?
• What are the critical objectives of your department?
• Once the data are submitted via the Web site, how are they processed?
• Describe the monitoring process that is available online.
• What are some of the common data entry errors made in this department?
• What are the biggest frustrations you’ve experienced during the transition
 to ecommerce?

FIGURE 4.2
Open-ended interview questions
allow the respondent open options
for responding. The examples
were selected from different
interviews and are not shown in
any particular order.

system; how it fits physical aspects; how it suits a user’s cognitive capabilities, whether it is
engaging or aesthetically pleasing; and whether using the system is rewarded with desired
consequences), information sources, information formats, decision-making frequency, qualities
of information, and decision-making style.

DECIDE WHOM TO INTERVIEW. When deciding whom to interview, include key people at all
levels who will be affected by the system in some manner. Strive for balance so that as many
users’ needs are addressed as possible. Your organizational contact will also have some ideas
about whom should be interviewed.

PREPARE THE INTERVIEWEE. Prepare the person to be interviewed by calling ahead or sending an
email message and allowing the interviewee time to think about the interview. If you are doing
an in-depth interview, it is permissible to email your questions ahead of time to allow your
interviewee time to think over his or her responses. Because there are many objectives to fulfill
in the interview (including building trust and observing the workplace), however, interviews
should typically be conducted in person and not via email. Interviews should be kept to
45 minutes or an hour at the most. No matter how much your interviewees seem to want to extend
the interview beyond this limit, remember that when they spend time with you, they are not doing
their work. If interviews go over an hour, it is likely that the interviewees will resent the intrusion,
whether or not they articulate their resentment.

DECIDE ON QUESTION TYPES AND STRUCTURE. Write questions to cover the key areas of HCI and
decision making that you discovered when you ascertained interview objectives. Proper
questioning techniques are the heart of interviewing. Questions have some basic forms you need
to know. The two basic question types are open-ended and closed. Each question type can
accomplish something a little different from the other, and each has benefits and drawbacks. You
need to think about the effect each question type will have.

It is possible to structure your interview in three different patterns: a pyramid structure, a fun-
nel structure, or a diamond structure. Each is appropriate under different conditions and serves a
different function, and each one is discussed later in this chapter.

Question Types
OPEN-ENDED QUESTIONS. Open-ended questions include those such as “What do you think
about putting all the managers on an intranet?” “Please explain how you make a scheduling
decision.” “In what ways does the system extend your capability to do tasks that would not be
possible otherwise?” Consider the term open-ended. “Open” actually describes the interviewee’s
options for responding. They are open. The response can be two words or two paragraphs. Some
examples of open-ended questions are found in Figure 4.2.

The benefits of using open-ended questions are numerous and include the following:

1. Putting the interviewee at ease.
2. Allowing the interviewer to pick up on the interviewee’s vocabulary, which reflects his or

her education, values, attitudes, and beliefs.
3. Providing richness of detail.
4. Revealing avenues of further questioning that may have gone untapped.
5. Making it more interesting for the interviewee.
6. Allowing more spontaneity.

106 PART II • INFORMATION REQUIREMENTS ANALYSIS

Bipolar Interview Questions

• Do you use the Web to provide information to vendors?
• Do you agree or disagree that ecommerce on the Web lacks security?
• Do you want to receive a printout of your account status every month?
• Does your Web site maintain a FAQ page for employees with payroll
 questions?
• Is this form complete?

FIGURE 4.4
Bipolar interview questions are a
special kind of closed question.
The examples were selected from
different interviews and are not
shown in any particular order.

Closed Interview Questions

• How many times a week is the project repository updated?
• On average, how many calls does the call center receive monthly?
• Which of the following sources of information is most valuable to you?

° Completed customer complaint forms
° Email complaints from consumers who visit the Web site
° Face-to-face interaction with customers
° Returned merchandise

• List your top two priorities for improving the technology infrastructure.
• Who receives this input?

FIGURE 4.3
Closed interview questions limit
the respondent’s options. The
examples were selected from
different interviews and are not
shown in any particular order.

7. Making phrasing easier for the interviewer.
8. Using them in a pinch if the interviewer is caught unprepared.

As you can see, there are several advantages to using open-ended questions. There are, however,
also many drawbacks:

1. Asking questions that may result in too much irrelevant detail.
2. Possibly losing control of the interview.
3. Allowing responses that may take too much time for the amount of useful information

gained.
4. Potentially seeming that the interviewer is unprepared.
5. Possibly giving the impression that the interviewer is on a “fishing expedition” with no

real objective for the interview.

You must carefully consider the implications of using open-ended questions for interviewing.

CLOSED QUESTIONS. The alternative to open-ended questions is found in the other basic question
type: closed questions. Such questions are of the basic form “Is it easy to use the current system?”
and, “How many subordinates do you have?” The possible responses are closed to the
interviewee, because he or she can only reply with a finite number such as “None,” “One,” or
“Fifteen.” Some examples of closed questions can be found in Figure 4.3.

A closed question limits the response available to the interviewee. You may be familiar with
closed questions through multiple-choice exams in college. You are given a question and five re-
sponses, but you are not allowed to write down your own response and still be counted as having
correctly answered the question.

A special kind of closed question is the bipolar question. This type of question limits the in-
terviewee even further by only allowing a choice on either pole, such as yes or no, true or false,
agree or disagree. Examples of bipolar questions can be found in Figure 4.4.

The benefits of using closed questions of either type include the following:

1. Saving time.
2. Easily comparing interviews.
3. Getting to the point.
4. Keeping control over the interview.
5. Covering lots of ground quickly.
6. Getting to relevant data.

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 107

The drawbacks of using closed questions are substantial, however. They include the following:

1. Being boring for the interviewee.
2. Failing to obtain rich detail (because the interviewer supplies the frame of reference for the

interviewee).
3. Missing main ideas for the preceding reason.
4. Failing to build rapport between interviewer and interviewee.

Thus, as the interviewer, you must think carefully about the question types you will use.
Both open-ended and closed questions have advantages and drawbacks, as shown in

Figure 4.5. Notice that choosing one question type over the other actually involves a trade-off; al-
though an open-ended question affords breadth and depth of reply, responses to open-ended ques-
tions are difficult to analyze.

PROBES. A third type of question is the probe or follow-up. The strongest probe is the simplest:
the question, “Why?” Other probes are “Can you give me an example of a time you did not find
the system trustworthy?” and “Will you elaborate on that for me?” Some examples of probing
questions can be found in Figure 4.6. The purpose of the probe is to go beyond the initial answer
to get more meaning, to clarify, and to draw out and expand on the interviewee’s point. Probes
may be either open-ended or closed questions.

It is essential to probe. Most beginning interviewers are reticent about probing and conse-
quently accept superficial answers. They are usually grateful that employees have granted inter-
views and feel somewhat obligated to accept unqualified statements politely.

Arranging Questions in a Logical Sequence
Just as there are two generally recognized ways of reasoning—inductive and deductive—there
are two similar ways of organizing your interviews. A third way combines both inductive and de-
ductive patterns.

ClosedOpen-Ended

Low

Low

Low

Much

Much

Difficult

High

High

High

Little

Little

EasyEase of Analysis

Reliability of Data

Efficient Use of Time

Precision of Data

Breadth and Depth

Interviewer Skill Required

FIGURE 4.5
Attributes of open-ended and
closed questions.

Probes

•
•

•

•

•
•

Why?
Give an example of how ecommerce has been integrated into your
business processes.
Please give an illustration of the security problems you are experiencing
with your online bill payment system.
You mentioned both an intranet and an extranet solution. Please give an
example of how you think each differs.
What makes you feel that way?
Tell me step by step what happens after a customer clicks the “Submit”
button on the Web registration form.

FIGURE 4.6
Probes allow the systems analyst
to follow up on questions to get
more detailed responses. The
examples were selected from
different interviews and are not
shown in any particular order.

108 PART II • INFORMATION REQUIREMENTS ANALYSIS

USING A PYRAMID STRUCTURE. Inductive organization of interview questions can be visualized
as having a pyramid shape. Using this form, the interviewer begins with very detailed, often
closed, questions. The interviewer then expands the topics by allowing open-ended questions and
more generalized responses, as shown in Figure 4.7.

A pyramid structure should be used if you believe your interviewee needs to warm up to the
topic. Using a pyramid structure for question sequencing is also useful when you want an ending

What
specifically is

the problem you
are experiencing

with your firewall?

Have you considered other methods
to improve the security of

corporate data?

What do you think would make
security more effective here?

In general, how do you feel about the security of
data versus the importance of Internet access?

Pyramid
structures

start with a

specific question …

… and end
with a
general

one.

FIGURE 4.7
Pyramid structure for interviewing
goes from specific to general
questions.

C O N S U L T I N G O P P O R T U N I T Y 4 . 1

Strengthening Your Question Types

Strongbodies, a large, local chain of sports clubs, has experienced
phenomenal growth in the past five years. Management would like
to refine its decision-making process for purchasing new body-
building equipment. Currently, managers listen to customers, attend
trade shows, look at advertisements, and put in requests for new
equipment purchases based on their subjective perceptions. These
are then approved or denied by Harry Mussels.

Harry is the first person you will interview. He is a 37-year-old
division manager who runs five area clubs. He travels all over the
city to their widespread locations. He keeps an office at the East lo-
cation, although he is there less than a quarter of the time.

In addition, when Harry is present at a club, he is busy an-
swering business-related phone calls, solving on-the-spot prob-

lems presented by managers, and interacting with club members.
His time is short, and to compensate for that he has become an
extremely well-organized, efficient divisional manager. He can-
not grant you a lot of interview time. However, his input is im-
portant, and he feels he would be the main beneficiary of the
proposed system.

What type of interview question might be most suitable for
your interview with Harry? Why is this type most appropriate? How
will your choice of question type affect the amount of time you
spend in preparation for interviewing Harry? Write 5 to 10 ques-
tions of this type. What other techniques might you use to supple-
ment information unavailable through that type of question? Write
a paragraph to explain.

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 109

determination about the topic. Such is the case in the final question, “In general, how do you feel
about the security of data versus the importance of Internet access?”

USING A FUNNEL STRUCTURE. In the second kind of structure, the interviewer takes a deductive
approach by beginning with generalized, open-ended questions and then narrowing the possible
responses by using closed questions. This interview structure can be thought of as funnel shaped,
as that depicted in Figure 4.8. Using the funnel structure method provides an easy, nonthreatening
way to begin an interview. A funnel-shaped question sequence is also useful when the interviewee
feels emotional about the topic and needs freedom to express those emotions.

USING A DIAMOND-SHAPED STRUCTURE. Often a combination of the two structures, resulting in
a diamond-shaped interview structure, is best. This structure entails beginning in a very specific
way, then examining general issues, and finally coming to a very specific conclusion, as shown
in Figure 4.9.

The interviewer begins with easy, closed questions that provide a warm-up to the interview
process. In the middle of the interview, the interviewee is asked for opinions on broad topics that
obviously have no “right” answer. The interviewer then narrows the questions again to get spe-
cific questions answered, thus providing closure for both the interviewee and the interviewer. The
diamond structure combines the strengths of the other two approaches but has the disadvantage
of taking longer than either other structure.

The end of the interview is a natural place to ask one key question: “Is there anything we
haven’t touched on that you feel is important for me to know?” Considered a formula question by
the interviewee most of the time, the response will often be “No.” You are interested in the other
times, when this question opens the proverbial floodgates and much new data are presented,
though.

As you conclude the interview, summarize and provide feedback on your overall impres-
sions. Inform the interviewee about the subsequent steps to take and what you and other team
members will do next.Ask the interviewee with whom you should talk next. Set up future appoint-
ment times for follow-up interviews, thank the interviewee for his or her time, and shake hands.

Writing the Interview Report
Although the interview itself is complete, your work on the interview data is just beginning. You
need to capture the essence of the interview through a written report. It is imperative that you
write the interview report as soon as possible after the interview. This step is another way you can
ensure quality of interview data. The longer you wait to write up your interview, the more sus-
pect the quality of your data becomes.

What items will be available for
purchase on the Web site?

What are your reactions to the new
Web-based procurement system?

Is there any essential
item that has been

excluded from
the site?

Funnel structures

begin with a

general question …

… and end with

a specific one.

What departments are involved in implementing it?

FIGURE 4.8
Funnel structure for interviewing
begins with broad questions, then
funnels to specific questions.

110 PART II • INFORMATION REQUIREMENTS ANALYSIS

C O N S U L T I N G O P P O R T U N I T Y 4 . 2

Skimming the Surface

You are about to leave SureCheck Dairy after a preliminary
tour when another member of your systems analysis team calls
you at the dairy to say he cannot make his interview appointment
with the plant manager because of illness. The plant manager is
extremely busy, and you want to keep his enthusiasm for the proj-
ect going by doing things as scheduled. You also realize that with-
out the initial interview data, the rest of your data gathering will
be slowed. Although you have no interview questions prepared,
you make the decision to go ahead and interview the plant man-
ager on the spot.

You have learned that SureCheck is interested in processing its
own data on quantities and kinds of dairy products sold so that its

people can use that information to better control production of the
company’s large product line (it includes whole, skim, 2 percent,
and 1 percent milk, half-and-half, cottage cheese, yogurt, and
frozen novelties). Sales managers are currently sending their sales
figures to corporate headquarters, 600 miles away, and processing
turnaround seems slow. You will base your ad-libbed questions on
what you have just found out on the tour.

In the few minutes before your interview begins, decide on a
structure for it: funnel, pyramid, or diamond. In a paragraph, justify
why you would proceed with the interview structure you have cho-
sen based on the unusual context of this interview. Write a series of
questions and organize them in the structure you have chosen.

What five
kinds of information

are tracked by the free
Web site usage service you use?

What are the promotional activities you
feature on your Web site in exchange for this service?

What is the value of the usage information to you as a Webmaster?

What are two surprising items concerning end user
behavior on your site that you have discovered

by using this service?

Are “cookies” a better
way to measure

end user site
usage?

Diamond
structures begin

with a specific

question …

… move toward

general
questions …

… and end with a

specific question.

FIGURE 4.9
Diamond-shaped structure for
interviewing combines the
pyramid and funnel structures.

After this initial summary, go into more detail, noting main points of the interview and your
own opinions. Review the interview report with the respondent at a follow-up meeting. This step
helps clarify the meaning the interviewee had in mind and lets the interviewee know that you
are interested enough to take the time to understand his or her point of view and perceptions.

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 111

JOINT APPLICATION DESIGN
No matter how adept you become as an interviewer, you will inevitably experience situations in
which one-on-one interviews do not seem to be as useful as you would like. Personal interviews
are time consuming and subject to error, and their data are prone to misinterpretation. An alterna-
tive approach to interviewing users one by one, called joint application design (JAD), was devel-
oped by IBM. The motivation for using JAD is to cut the time (and hence the cost) required by
personal interviews, to improve the quality of the results of information requirements assessment,
and to create more user identification with new information systems as a result of the participa-
tive processes.

Although JAD can be substituted for personal interviews at any appropriate juncture during
the SDLC, it has usually been employed as a technique that allows you, as a systems analyst, to
accomplish requirements analysis and to design the user interface jointly with users in a group
setting. The many intricacies of this approach can only be learned in a paid seminar demonstrat-
ing proprietary methods. We can, however, convey enough information about JAD here to make
you aware of some of its benefits and drawbacks in comparison with one-on-one interviews.

Conditions That Support the Use of JAD
The following list of conditions will help you decide when the use of JAD may be fruitful. Con-
sider using joint application design when:

1. User groups are restless and want something new, not a standard solution to a typical
problem.

2. The organizational culture supports joint problem-solving behaviors among multiple levels
of employees.

3. Analysts forecast that the number of ideas generated via one-on-one interviews will not be
as plentiful as the number of ideas possible from an extended group exercise.

4. Organizational workflow permits the absence of key personnel during a two-to-four-day
block of time.

Who Is Involved?
Joint application design sessions include a variety of participants—analysts, users, executives,
and so on—who will contribute differing backgrounds and skills to the sessions. Your primary
concern here is that all project team members are committed to the JAD approach and become in-
volved. Choose an executive sponsor, a senior person who will introduce and conclude the JAD
session. Preferably, select an executive from the user group who has some sort of authority over
the IS people working on the project. This person will be an important, visible symbol of organi-
zational commitment to the systems project.

At least one IS analyst should be present, but the analyst usually takes a passive role, unlike
traditional interviewing in which the analyst controls the interaction. As the project analyst, you
should be present during JAD to listen to what users say and what they require. In addition, you
will want to give an expert opinion about any disproportionate costs of solutions proposed dur-
ing the JAD session itself. Without this kind of immediate feedback, unrealistic solutions with ex-
cessive costs may creep into the proposal and prove costly to discourage later on.

From eight to a dozen users can be chosen from any rank to participate in JAD sessions. Try
to select users who can articulate what information they need to perform their jobs as well as what
they desire in a new or improved computer system.

The session leader should not be an expert in systems analysis and design but rather someone
who has excellent communication skills to facilitate appropriate interactions. Note that you do not
want to use a session leader who reports to another person in the group. To avoid this possibility,
an organization may want to retain an outside management consultant to serve as session leader.
The point is to get a person who can bring the group’s attention to bear on important systems is-
sues, satisfactorily negotiate and resolve conflicts, and help group members reach a consensus.

Your JAD session should also include one or two observers who are analysts or technical ex-
perts from other functional areas to offer technical explanations and advice to the group during
the sessions. In addition, one scribe from the IS department should attend the JAD sessions to for-
mally write down everything that is done.

112 PART II • INFORMATION REQUIREMENTS ANALYSIS

H Y P E R C A S E ® E X P E R I E N C E 4 . 1

“ Well, I did warn you that things weren’t always smooth here
at MRE. By now you’ve met many of our key employees and are
starting to understand the ‘lay of the land.’Who would have thought
that some innocent decisions about systems, like whether to pur-
chase a COMTEX or Shiroma, would cause such hostility? Well,
live and learn, I always say. At least now you’ll know what you’re
up against when you have to start recommending software and
hardware!

“It’s funny that not all questions are created equal. I myself fa-
vor asking open-ended questions, but when I have to answer them,
it is not always easy.

HYPERCASE Questions
1. Using the interview questions posed in HyperCase, give five

examples of open-ended questions and five examples of
closed questions. Explain why your examples are correctly
classified as either open-ended or closed question types.

2. List three probing questions that are part of the Daniel Hill
interview. In particular, what did you learn by following up
on the questions you asked Daniel?

3. List three probing questions that are part of the Snowden
Evans interview. In particular, what did you learn by
following up on the questions you asked Snowden?

FIGURE 4.HC1
Pointing to a question in HyperCase will reveal an answer.

Where to Hold JAD Meetings
If at all possible, we recommend holding the two-to-four-day sessions off-site, away from the or-
ganization, in comfortable surroundings. Some groups use executive centers or even group deci-
sion support facilities that are available at major universities. The idea is to minimize the daily
distractions and responsibilities of the participants’ regular work. The room itself should comfort-
ably hold the number of people invited. Minimal presentation support equipment includes two
overhead projectors, a whiteboard, a flip chart, and easy access to a copier. Group decision sup-
port rooms will also provide networked PCs, a projection system, and software written to facili-
tate group interaction while minimizing unproductive group behaviors.

Schedule your JAD session when all participants can commit to attending. Do not hold the
sessions unless everyone who has been invited can actually attend. This rule is critical to the suc-
cess of the sessions. Ensure that all participants receive an agenda before the meeting, and con-

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 113

sider holding an orientation meeting for a half day one week or so before the workshop so that
those involved know what is expected of them. Such a premeeting allows you to move rapidly
and act confidently once the actual meeting is convened.

Accomplishing a Structured Analysis of Project Activities
IBM recommends that the JAD sessions examine these points in the proposed systems project:
planning, receiving, receipt processing/tracking, monitoring and assigning, processing, record-
ing, sending, and evaluating. For each topic, the questions who, what, how, where, and why
should also be asked and answered. Clearly, ad hoc interactive systems such as decision support
systems and other types of systems dependent on decision-maker style (including prototype sys-
tems) are not as easily analyzed with the structured approach of JAD.

As the analyst involved with the JAD sessions, you should receive the notes of the scribe and
prepare a specifications document based on what happened at the meeting. Systematically pre-
sent the management objectives as well as the scope and boundaries of the project. Specifics of
the system, including details on screen and report layouts, should also be included.

Potential Benefits of Using JAD in Place of Traditional Interviewing
There are four major potential benefits that you, the users, and your systems analysis team should
consider when you weigh the possibilities of using joint application design. The first potential
benefit is time savings over traditional one-on-one interviews. Some organizations have esti-
mated that JAD sessions have provided a 15 percent time savings over the traditional approach.

Hand-in-hand with time savings is the rapid development possible via JAD. Because user in-
terviews are not accomplished serially over a period of weeks or months, the development can
proceed much more quickly.

A third benefit to weigh is the possibility of improved ownership of the information system.
As analysts, we are always striving to involve users in meaningful ways and to encourage users
to take early ownership of the systems we are designing. Due to its interactive nature and high
visibility, JAD helps users become involved early in systems projects and treats their feedback
seriously. Working through a JAD session eventually helps reflect user ideas in the final design.

A final benefit of participating in JAD sessions is the creative development of designs. The
interactive character of JAD has a great deal in common with brainstorming techniques that gen-
erate new ideas and new combinations of ideas because of the dynamic and stimulating environ-
ment. Designs can evolve through facilitated interactions, rather than in relative isolation.

Potential Drawbacks of Using JAD
There are three drawbacks or pitfalls that you should also weigh when making a decision on
whether to do traditional one-on-one interviews or to use JAD. The first drawback is that JAD
requires the commitment of a large block of time from all participants. Because JAD requires a

C O N S U L T I N G O P P O R T U N I T Y 4 . 3

A Systems Analyst, I Presume?

“Know what I think of the work the last systems analyst team
did? The printouts created are a jungle. To figure out the cost of
raw materials to us, I have to cut my way through the overgrowth
of data, hacking my path with a pen. I cross out everything that’s
irrelevant. Sometimes I physically rip out the excess vegetation
until I reach the numbers I need,” says Henry Stanley, account-
ing supervisor for Zenith Glass Company. As you interview him,
he points unhappily to an untidy stack of mutilated printouts
sprouting beside his desk.

Identify the overriding metaphor Henry is using to describe the
printouts he is receiving and the accessibility of information in
them. In a paragraph, describe how this step helps you understand
Henry’s attitude toward any work proposed by your systems analy-
sis team. In a paragraph, adopt Henry’s metaphor and extend it in a
more positive sense during your interview with him.

two-to-four-day commitment, it is not possible to do any other activities concurrently or to time-
shift any activities, as is typically done in one-on-one interviewing.

A second pitfall occurs if preparation for the JAD sessions is inadequate in any regard or if
the follow-up report and documentation of specifications is incomplete. In these instances result-
ing designs could be less than satisfactory. Many variables need to come together correctly for
JAD to be successful. Conversely, many things can go wrong. The success of designs resulting
from JAD sessions is less predictable than that achieved through standard interviews.

Finally, the necessary organizational skills and organizational culture may not be suffi-
ciently developed to enable the concerted effort required to be productive in a JAD setting. In
the end you will have to judge whether the organization is truly committed to, and prepared for,
this approach.

USING QUESTIONNAIRES
The use of questionnaires is an information-gathering technique that allows systems analysts to
study attitudes, beliefs, behavior, and characteristics of several key people in the organization who
may be affected by the current and proposed systems. Attitudes are what people in the organization
say they want (in a new system, for instance); beliefs are what people think is actually true; behav-
ior is what organizational members do; and characteristics are properties of people or things.

Responses gained through questionnaires (also called surveys) using closed questions can be
quantified. If you are surveying people via email or the Web, you can use software to turn elec-
tronic responses directly into data tables for analysis using a spreadsheet application or statistical
software packages. Responses to questionnaires using open-ended questions are analyzed and in-
terpreted in other ways. Answers to questions on attitudes and beliefs are sensitive to the word-
ing chosen by the systems analyst.

Through the use of questionnaires, the analyst may be seeking to quantify what was found in
interviews. In addition, questionnaires may be used to determine how widespread or limited a sen-
timent expressed in an interview really is. Conversely, questionnaires can be used to survey a large
sample of system users to sense problems or raise important issues before interviews are scheduled.

Throughout this chapter, we compare and contrast questionnaires with interviews. There are
many similarities between the two techniques, and perhaps the ideal would be to use them in con-
junction with each other, either following up unclear questionnaire responses with an interview or
designing the questionnaire based on what is discovered in the interview. Each technique, however,
has its own specific functions, and it is not always necessary or desirable to use both.

Planning for the Use of Questionnaires
At first glance questionnaires may seem to be a quick way to gather massive amounts of data
about how users assess the current system, about what problems they are experiencing with their
work, and about what people expect from a new or modified system. Although it is true that you
can gather a lot of information through questionnaires without spending time in face-to-face in-
terviews, developing a useful questionnaire takes extensive planning time in its own right. When
you decide to survey users via email or the Web, you face additional planning considerations con-
cerning confidentiality, authentication of identity, and problems of multiple responses.

You must first decide what you are attempting to gain through using a survey. For instance,
if you want to know what percentage of users prefers a FAQ page as a means of learning about
new software packages, a questionnaire might be the right technique. If you want an in-depth
analysis of a manager’s decision-making process, an interview is a better choice.

Here are some guidelines to help you decide whether the use of questionnaires is appropri-
ate. Consider using questionnaires if:

1. The people you need to question are widely dispersed (different branches of the same
corporation).

2. A large number of people are involved in the systems project, and it is meaningful to know
what proportion of a given group (for example, management) approves or disapproves of a
particular feature of the proposed system.

3. You are doing an exploratory study and want to gauge overall opinion before the systems
project is given any specific direction.

114 PART II • INFORMATION REQUIREMENTS ANALYSIS

4. You wish to be certain that any problems with the current system are identified and
addressed in follow-up interviews.

Once you have determined that you have good cause to use a questionnaire and have pin-
pointed the objectives to be fulfilled through its use, you can begin formulating questions.

Writing Questions
The biggest difference between the questions used for most interviews and those used on ques-
tionnaires is that interviewing permits interaction between the questions and their meanings. In
an interview the analyst has an opportunity to refine a question, define a muddy term, change the
course of questioning, respond to a puzzled look, and generally control the context.

Few of these opportunities are possible on a questionnaire. Thus, for the analyst, questions
must be transparently clear, the flow of the questionnaire cogent, the respondent’s questions an-
ticipated, and the administration of the questionnaire planned in detail. (A respondent is the per-
son who responds to or answers the questionnaire.)

The basic question types used on the questionnaire are open-ended and closed, as discussed
for interviewing. Due to the constraints placed on questionnaires, some additional discussion of
question types is warranted.

OPEN-ENDED QUESTIONS. Recall that open-ended questions (or statements) are those that leave
all possible response options open to the respondent. For example, open-ended questions on a
questionnaire might read, “Describe any problems you are currently experiencing with output
reports” or “In your opinion, how helpful are the user manuals for the current system’s accounting
application?”

When you write open-ended questions for a questionnaire, anticipate what kind of response
you will get. For instance, if you ask a question such as, “How do you feel about the system?” the
responses are apt to be too broad for accurate interpretation or comparison. Therefore, even when
you write an open-ended question, it must be narrow enough to guide respondents to answer in a
specific way. (Examples of open-ended questions can be found in Figure 4.10.)

Open-ended questions are particularly well suited to situations in which you want to get at
organizational members’ opinions about some aspect of the system, whether product or process.
In such cases you will want to use open-ended questions when it is impossible to list effectively
all the possible responses to the question.

CLOSED QUESTIONS. Recall that closed questions (or statements) are those that limit or close the
response options available to the respondent. For example, in Figure 4.11 the statement in
question 23 (“Below are the six software packages currently available. Please check the software
package(s) you personally use most frequently”) is closed. Notice that respondents are not asked
why the package is preferred, nor are they asked to select more than one, even if that is a more
representative response.

Closed questions should be used when the systems analyst is able to list effectively all the
possible responses to the question and when all the listed responses are mutually exclusive, so
that choosing one precludes choosing any of the others.

Use closed questions when you want to survey a large sample of people. The reason becomes
obvious when you start imagining how the data you are collecting will look. If you use only open-
ended questions for hundreds of people, correct analysis and interpretation of their responses be-
comes impossible without the aid of a computerized content analysis program.

There are trade-offs involved in choosing either open-ended or closed questions for use on
questionnaires. Figure 4.12 summarizes these trade-offs. Notice that responses to open-ended
questions can help analysts gain rich, exploratory insights as well as breadth and depth on a topic.
Although open-ended questions can be written easily, responses to them are difficult and time
consuming to analyze.

When we refer to the writing of closed questions with either ordered or unordered answers,
we often refer to the process as scaling. The use of scales in surveys is discussed in detail in a later
section.

WORD CHOICE. Just as with interviews, the language of questionnaires is an extremely important
aspect of their effectiveness. Even if the systems analyst has a standard set of questions

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 115

116 PART II • INFORMATION REQUIREMENTS ANALYSIS

concerning systems development, it is wise to write them to reflect the business’s own
terminology.

Respondents appreciate the efforts of someone who bothers to write a questionnaire reflect-
ing their own language usage. For instance, if the business uses the term supervisors instead of
managers, or units rather than departments, incorporating the preferred terms in the questionnaire
helps respondents relate to the meaning of the questions. Responses will be easier to interpret ac-
curately, and respondents will be more enthusiastic overall.

To check whether language used on the questionnaire is that of the respondents, try some
sample questions on a pilot (test) group. Ask them to pay particular attention to the appropriate-
ness of the wording and to change any words that do not ring true.

Here are some guidelines to use when choosing language for your questionnaire:

1. Use the language of respondents whenever possible. Keep wording simple.
2. Work at being specific rather than vague in wording. Avoid overly specific questions as well.

53. What are the most frequent problems you
experience with computer output?A.

B.

C.

54. Of the problems you listed above, what is the single
most troublesome?

55. Why?

Open-ended

questions can

ask the
respondent

for lists …

… or detailed

responses …

… or short

answers.

Below are questions about yourself. Please fill in the
blanks to the best of your ability.67. How long have you worked for this company?Years and Months68. How long have you worked in the same industry?Years and Months69. In what other industries have you worked?

FIGURE 4.10
Open-ended questions used for
questionnaires.

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 117

Answer questions 23 and 24 by checking the appropriate box.23. Below are the six software packages currently
available. Please check the software package(s)
you personally use most frequently.[] Microsoft Excel [] Microsoft Access

[] Microsoft PowerPoint [] Microsoft Windows Live Mail
[] Oracle SCM [] Visible Analyst24. "The sales figures are usually late."[] Agree

[] DisagreeAnswer questions 25 and 26 by circling the appropriate number.
25. "When the sales figures are prepared by computer data

services they are late."
Never Rarely Sometimes Often Always

1 2
3

4 5

Answer questions 45–48 by circling the appropriate response. 45. The division I am currently in is called
Investments
Operations
Marketing

46. My educational background can best be described as High School
Some College
Bachelor’s Degree Master’s Degree or HigherMy gender is

Male
Female

Closed questions

may require the

respondent to

check a box …

… or circle a

number …

… or circle the

answer itself.

FIGURE 4.11
Closed questions on
questionnaires help ensure
responses.

Open-Ended Closed

Slow Fast

High Low

High Low

Easy Difficult

Difficult Easy

Speed of Completion

Exploratory Nature

Breadth and Depth

Ease of Preparation

Ease of Analysis

FIGURE 4.12
Trade-offs between the use of
open-ended and closed questions
on questionnaires.

118 PART II • INFORMATION REQUIREMENTS ANALYSIS

3. Keep questions short.
4. Do not patronize respondents by talking down to them through low-level language choices.
5. Avoid bias in wording. Avoiding bias also means avoiding objectionable questions.
6. Target questions to the correct respondents (that is, those who are capable of responding).

Don’t assume too much knowledge.
7. Ensure that questions are technically accurate before including them.
8. Use software to check whether the reading level is appropriate for the respondents.

Using Scales in Questionnaires
Scaling is the process of assigning numbers or other symbols to an attribute or characteristic for
the purpose of measuring that attribute or characteristic. Scales are often arbitrary and may not
be unique. For example, temperature is measured in a number of ways; the two most common are
the Fahrenheit scale (where water freezes at 32 degrees and boils at 212 degrees) and the Celsius
scale (where freezing occurs at 0 degrees and boiling at 100 degrees).

MEASUREMENT. There are two different forms of measurement scales commonly used by
systems analysts:

1. nominal scales and
2. interval scales.

Nominal scales are used to classify things. A question such as:

What type of software do you use the most?

1 � A Word Processor

2 � A Spreadsheet

3 � A Database

4 � An Email Program

uses a nominal scale. Obviously, nominal scales are the weakest forms of measurement. Gener-
ally, all the analyst can do with them is obtain totals for each classification.

Interval scales possess the characteristic that the intervals between each of the numbers are
equal. Due to this characteristic, mathematical operations can be performed on the questionnaire
data, resulting in a more complete analysis. Examples of interval scales are the Fahrenheit and
Celsius scales, which measure temperature.

The foregoing example of the Information Center is definitely not that of an interval scale,
but by anchoring the scale on either end, the analyst may want to assume the respondent perceives
the intervals to be equal:

How useful is the support given by the Technical Support Group?

Not Useful at All Extremely Useful

1 2 3 4 5

If the systems analyst makes this assumption, more quantitative analysis is possible.

VALIDITY AND RELIABILITY. There are two measures of performance in constructing scales:
validity and reliability. The systems analyst should be aware of these concerns.

Validity is the degree to which the question measures what the analyst intends to measure.
For example, if the purpose of the questionnaire is to determine whether the organization is ready
for a major change in computer operations, do the questions measure that?

Reliability measures consistency. If the questionnaire was administered once and then again
under the same conditions and if the same results were obtained both times, the instrument is said
to have external consistency. If the questionnaire contains subparts and these parts have equiva-
lent results, the instrument is said to have internal consistency. Both external and internal consis-
tency are important.

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 119

CONSTRUCTING SCALES. The actual construction of scales is a serious task. Careless construction
of scales can result in one of the following problems:

1. Leniency.
2. Central tendency.
3. Halo effect.

Leniency is a problem caused by respondents who are easy raters. A systems analyst can
avoid the problem of leniency by moving the “average” category to the left (or right) of center.

Central tendency is a problem that occurs when respondents rate everything as average. The
analyst can improve the scale (1) by making the differences smaller at the two ends, (2) by ad-
justing the strength of the descriptors, or (3) by creating a scale with more points.

The halo effect is a problem that arises when the impression formed in one question carries
into the next question. For example, if you are rating an employee about whom you have a very
favorable impression, you may give a high rating in every category or trait, regardless of whether
or not it is a strong point of the employee’s. The solution is to place one trait and several employ-
ees on each page, rather than one employee and several traits on a page.

Designing the Questionnaires
Many of the same principles that are relevant to the design of forms for data input (as covered in
Chapter 12) are important here as well. Although the intent of the questionnaire is to gather infor-
mation on attitudes, beliefs, behavior, and characteristics whose impact may substantially alter
users’work, respondents are not always motivated to respond. Remember that organizational mem-
bers as a whole tend to receive too many surveys, many of which are often ill-conceived and trivial.

A well-designed, relevant questionnaire can help overcome some of this resistance to re-
spond. Here are some rules for designing a good questionnaire:

1. Allow ample white space.
2. Allow ample space to write or type in responses.
3. Make it easy for respondents to clearly mark their answers.
4. Be consistent in style.

When you design questionnaires for the Web, apply the same rules you use when designing
paper questionnaires. Most software packages allow you to insert one of the commonly used data
entry formats shown in Figure 4.13. Following the four guidelines should help you gain a better
response rate to the questionnaire.

One-line text box

Name PurposeAppearance

Scrolling text box

Check box

Radio button

Drop-down menu

Push button

Used to obtain a small amount of text and
limit the answer to a few words

Used to obtain one or more paragraphs of text

Used to obtain a yes-no answer (e.g., Do you
wish to be included on the mailing list?)

Used to obtain a yes-no or true-false answer

Used to obtain more consistent results
(Respondent is able to choose the appropriate
answer from a predetermined list [e.g., a list of
state abbreviations])

Most often used for an action (e.g., a respondent
pushes a button marked “Submit” or “Clear”)

FIGURE 4.13
When designing a Web survey,
keep in mind that there are
different ways to capture
responses.

120 PART II • INFORMATION REQUIREMENTS ANALYSIS

C O N S U L T I N G O P P O R T U N I T Y 4 . 4

The Unbearable Questionnaire

“I'm going to go into a depression or at least a slump if someone
doesn’t figure this out soon,” say Penny Stox, office manager for
Carbon, Carbon, & Rippy, a large brokerage firm. Penny is sitting
across a conference table from you and two of her most productive
account executives, By Lowe and Sal Hy. You are all mulling over
the responses to a questionnaire that has been distributed among the
firm’s account executives, which is shown in Figure 4.C1.

“We need a crystal ball to understand these,” By and Sal call
out together.

“Maybe it reflects some sort of optimistic cycle, or some-
thing,” Penny says as she reads more of the responses. “Who de-
signed this gem, anyway?”

“Rich Kleintz,” By and Sal call out in unison.
“Well, as you can see, it’s not telling us anything!” Penny

exclaims.
Penny and her staff are dissatisfied with the responses they

have received on the unbearable questionnaire, and they feel that
the responses are unrealistic reflections of the amount of informa-
tion account executives want. In a paragraph, state why these prob-
lems are occurring. On a separate sheet, change the scaling of the
questions to avoid these problems.

Circle the appropriate number for each source of information described.
1. Industry Reports

AboutLess
the Same

More
1 2 3 4 52. Trend Analysis

AboutLess
the Same

More
1 2 3 4 53. Computer-Generated Graphs

AboutLess
the Same

More
1 2 3 4 54. Investment Advisory Services

AboutLess
the Same

More
1 2 3 4 5

5. Point and Figure Charts

AboutLess
the Same

More

1
2

3
4

5
6. Computerized Portfolio Analysis

AboutLess
the Same

More

1
2

3
4

5
7. Hot Tips

AboutLess
the Same

More

1
2

3
4

5

We need to

change this

questionnaire.

 -Penny

FIGURE 4.C1
Questionnaire developed for the brokerage firm of Carbon, Carbon, & Rippy by Rich Kleintz.

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 121

QUESTION ORDER. There is no best way to order questions on the questionnaire. Once again, as you
order questions, you must think about your objectives in using the questionnaire and then determine
the function of each question in helping you to achieve your objectives. It is also important to see the
questionnaire through the respondent’s eyes. Some guidelines for ordering questions are:

1. Place questions that are important to respondents first.
2. Cluster items of similar content together.
3. Introduce less controversial questions first.

You want respondents to feel as unthreatened by and interested in the questions being asked as
possible, without getting overwrought about a particular issue.

C O N S U L T I N G O P P O R T U N I T Y 4 . 5

Order in the Courts

“I love my work,” Tennys says, beginning the interview with a
volley. “It’s a lot like a game. I keep my eye on the ball and never
look back,” he continues. Tennyson “Tennys” Courts is a manager
for Global Health Spas, Inc., which has popular health and recre-
ation spas worldwide.

“Now that I’ve finished my MBA, I feel like I’m on top of the
world with Global,” Tennys says. “I think I can really help this out-
fit shape up with its computers and health spas.”

Tennys is attempting to help your systems group, which is devel-
oping a system to be used by all 80 outlets (where currently each group

handles its paperwork in its own way). “Can I bounce this off you?”
he asks Terri Towell, a member of your team of systems analysts. “It’s
a questionnaire I designed for distribution to all spa managers.”
Ever the good sport, Terri tells Tennys that she’d love to take a look
at the form. But back in the office, Terri puts the ball in your court.
Systematically critique Tennys’s technique as depicted in Figure
4.C2, and explain to him point by point what it needs to be a match-
less questionnaire with a winning form. Building on your critique,
tell Tennys what he should do to rewrite the form as a Web survey
instead.

QUESTIONNAIRE FOR ALL MANAGERS OF HEALTH SPAS

URGENTFILL OUT IMMEDIATELY AND RETURN

PERSONALLY TO YOUR DIVISION MANAGER. YOUR NEXT

PAYCHECK WILL BE WITHHELD UNTIL IT IS CONFIRMED

THAT YOU HAVE TURNED THIS IN.

In 10 words or fewer, what complaints have you lodged about

the current computer system in the last six months to a year?

Are there others who feel the same way in your outlet as you

do? Who? List their names and positions.

1. 2.

3. 4.

5.

7.

What is the biggest problem you have when communicating

your information requirements to headquarters? Describe it

briefly.

How much computer downtime did you experience last year?

1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 -

Is there any computer equipment you never use?

Description Serial Number

Do you want it removed? Agree Neutral Disagree

In your opinion, what’s next as far as computers and Global

Health Spas are concerned?

Thanks for filling this out. • • • • • • • • • • • • • • • •
Terri
 Please help

me improve this

form.
 Tennys

FIGURE 4.C2
Questionnaire developed for managers of Global Health Spas by Tennys Courts.

122 PART II • INFORMATION REQUIREMENTS ANALYSIS

Administering Questionnaires
RESPONDENTS. Deciding who will receive the questionnaire is handled in conjunction with the
task of setting up objectives for its results. Sampling, which is covered in Chapter 5, helps the
systems analyst to determine what sort of representation is necessary and hence what kind of
respondents should receive the questionnaire.

Recipients are often chosen as representative because of their rank, length of service with the
company, job duties, or special interest in the current or proposed system. Be sure to include
enough respondents to allow for a reasonable sample in the event that some questionnaires are
not returned or some response sheets are incorrectly completed and thus must be discarded.

METHODS OF ADMINISTERING THE QUESTIONNAIRE. The systems analyst has several options for
administering the questionnaire, and the choice of administration method is often determined by
the existing business situation. Options for administering the questionnaire include the following:

1. Convening all concerned respondents together at one time.
2. Personally handing out blank questionnaires and taking back completed ones.
3. Allowing respondents to self-administer the questionnaire at work and drop it in a centrally

located box.
4. Mailing questionnaires to employees at branch sites and supplying a deadline, instructions,

and return postage.
5. Administering the questionnaire electronically either via email or on the Web.

Each of these five methods has advantages and disadvantages. Most commonly, respondents
are allowed to self-administer the questionnaire. Response rates with this method are a little lower
than with the other methods, because people may forget about the form, lose it, or purposely ig-
nore it. Self-administration, however, allows people to feel that their anonymity is ensured and
may result in less guarded answers from some respondents. Both email and Web surveys fall into
the category of self-administered questionnaires.

Administering the questionnaire electronically, either via email or posted on the Web, is one
way to quickly reach current system users. Costs of duplication are minimized. In addition, re-
sponses can be made at the convenience of the respondent and then can be automatically collected
and stored electronically. Some software permits respondents to begin answering a survey, save
their answers, and return to it for completion if they are interrupted. Reminders to respondents can
be easily and inexpensively sent via email, as can notifications to the analyst about when the respon-
dent has opened the email. Some software now turns email data into data tables for use in spread-
sheet or statistical analysis software. One of the popular services for creating and administering
online surveys used by consultants can be found at SurveyMonkey.com, www.surveymonkey.com,
a Portland, Oregon, company started in 1999, which recently added email marketing services called
MailChimp to their product offerings.

Research shows that respondents are willing to answer questions about highly sensitive mat-
ters via the Internet. Thus, questions that may be difficult to pose in person regarding systems
problems may be acceptable to ask on a Web survey.

SUMMARY
This chapter covers three of the key interactive methods for information gathering that the systems analyst
can use, including interviewing, JAD, and construction of questionnaires. During the process of interview-
ing analysts, listen for HCI concerns relating to ergonomics, aesthetics, usability, and usefulness, as well as
goals, feelings, opinions, and informal procedures in interviews with organizational decision makers. Inter-
views are planned question-and-answer dialogues between two people. Analysts use the interview to de-
velop their relationship with a client, to observe the workplace, and to collect data. Interviews should
preferably be conducted in person.

The five steps to take in planning the interview are to read background material, establish interviewing
objectives, decide whom to interview, prepare the interviewee, and decide on question types and structure.

Questions are of two basic types: open-ended or closed. Open-ended questions leave open all response
options for the interviewee. Closed questions limit the possible options for response. Probes or follow-up
questions can be either open-ended or closed, but they ask the respondent for a more detailed reply.

Interviews can be structured in three basic ways: pyramid, funnel, or diamond. Pyramid structures be-
gin with detailed, closed questions and broaden to more generalized questions. Funnel structures begin with

www.surveymonkey.com

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 123

open-ended, general questions and then funnel down to more specific, closed questions. Diamond-shaped
structures combine the strengths of the other two structures, but they take longer to conduct. Trade-offs are
involved when deciding how structured to make interview questions and question sequences.

To cut both the time and cost of personal interviews, analysts may want to consider joint application
design (JAD) instead. Using JAD, analysts can both analyze human information requirements and design a
user interface with users in a group setting. Careful assessment of the particular organizational culture will
help the analyst judge whether JAD is suitable.

By using questionnaires (surveys), systems analysts can gather data on HCI concerns, attitudes, be-
liefs, behavior, and characteristics from key people in the organization. Surveys are useful if people in the
organization are widely dispersed, many people are involved with the systems project, exploratory work
is necessary before recommending alternatives, or there is a need for problem sensing before interviews
are conducted.

Once objectives for the survey are set, the analyst can begin writing either open-ended or closed ques-
tions. Ideally, the questions should be simple, specific, short, free of bias, not patronizing, technically accu-
rate, addressed to those who are knowledgeable, and written at an appropriate reading level. The systems
analyst may want to use scales either to measure the attitudes or characteristics of respondents or to have re-
spondents act as judges for the subject of the questionnaire. Scaling is the process of assigning numbers or
other symbols to an attribute or characteristic.

Consistent control of the questionnaire format and style can result in a better response rate. Web sur-
veys can be designed to encourage consistent responses. In addition, the meaningful ordering and cluster-
ing of questions is important for helping respondents understand the questionnaire. Surveys can be
administered in a variety of ways, including electronically via email or the Web, or with the analyst pres-
ent in a group of users.

H Y P E R C A S E ® E X P E R I E N C E 4 . 2

“You’ve probably noticed by now that not everyone enjoys fill-
ing out questionnaires at MRE. We seem to get more questionnaires
than most organizations. I think it’s because many of the employ-
ees, especially those from the old Training Unit, value the contribu-
tions of questionnaire data in our work with clients. When you
examine the questionnaire that Snowden distributed, you’ll proba-
bly want not only to look at the results but also to critique it from a
methods standpoint. I always feel strongly that we can improve our
internal performance so that eventually we can better serve our
clients. The next time we construct a questionnaire, we want to be
able to improve three things: the reliability of the data, the validity
of the data, and the response rate we get.”

HYPERCASE Questions
1. What evidence of questionnaires have you found at MRE?

Be specific about what you have found and where.
2. Critique the questionnaire that Snowden circulated. What can

be done to improve its reliability, validity, and response rate?
Provide three practical suggestions.

3. Write a short questionnaire to follow up on some aspects of
the merger between Management Systems and the Training
Unit at MRE that are still puzzling you. Be sure to observe
all the guidelines for good questionnaire design.

4. Redesign the questionnaire you wrote in question 3 so that it
can be used as a Web survey.

KEYWORDS AND PHRASES

bipolar closed questions
central tendency
closed questions
diamond-shaped structure
funnel structure
halo effect
human–computer interaction (HCI)
informal procedures
interval scale
interviewee feelings
interviewee goals

interviewee opinions
joint application design (JAD)
leniency
nominal scale
open-ended questions
probes
pyramid structure
questionnaire
reliability
survey respondents
validity

124 PART II • INFORMATION REQUIREMENTS ANALYSIS

REVIEW QUESTIONS
1. What kinds of information should be sought in interviews?
2. List the five steps in interview preparation.
3. Define what is meant by open-ended interview questions. Give eight benefits and five drawbacks of

using them.
4. When are open-ended questions appropriate for use in interviewing?
5. Define what is meant by closed interview questions. Give six benefits and four drawbacks of using them.
6. When are closed questions appropriate for use in interviewing?
7. What is a probing question? What is the purpose of using a probing question in interviews?
8. Define what is meant by pyramid structure. When is it useful to employ it in interviews?
9. Define what is meant by funnel structure. When is it useful to employ it in interviews?

10. Define what is meant by diamond-shaped structure. When is it useful to employ it in interviews?
11. Define joint application design (JAD).
12. List the situations that warrant use of JAD in place of personal organizational interviews.
13. List the potential benefits of using joint application design.
14. List the three potential drawbacks of using JAD as an alternative to personal interviews.
15. What kinds of information is the systems analyst seeking through the use of questionnaires or surveys?
16. List four situations that make the use of questionnaires appropriate.
17. What are the two basic question types used on questionnaires?
18. List two reasons why a systems analyst would use a closed question on a questionnaire.
19. List two reasons why a systems analyst would use an open-ended question on a questionnaire.
20. What are the seven guidelines for choosing language for the questionnaire?
21. Define what is meant by scaling.
22. What are two kinds of information or scales that are most commonly used by systems analysts?
23. What are nominal scales used for?
24. Give an example of an interval scale.
25. When should the analyst use interval scales?
26. Define reliability as it refers to the construction of scales.
27. Define validity as it refers to the construction of scales.
28. List three problems that can occur because of careless construction of scales.
29. What are four actions that can be taken to ensure that the questionnaire format is conducive to a good

response rate?
30. Which questions should be placed first on the questionnaire?
31. Why should questions on similar topics be clustered together?
32. What is an appropriate placement of controversial questions?
33. List five methods for administering the questionnaire.
34. What considerations are necessary when questionnaires are Web-based?

PROBLEMS
1. As part of your systems analysis project to update the automated accounting functions for Xanadu

Corporation, a maker of digital cameras, you will interview Leo Blum, the chief accountant. Write
four to six interview objectives covering his use of information sources, information formats,
decision-making frequency, desired qualities of information, and decision-making style.
a. In a paragraph, write down how you will approach Leo to set up an interview.
b. State which structure you will choose for this interview. Why?
c. Leo has four subordinates who also use the system. Would you interview them also? Why or why

not?
d. Would you also try to interview customers (visitors to the Web site)? Are there better ways to get

the opinions of customers? Why or why not?
e. Write three open-ended questions that you will email to Leo prior to your interview. Write a

sentence explaining why it is preferable to conduct an interview in person rather than via email.
2. Here are five questions written by one of your systems analysis team members. Her interviewee is

the local manager of LOWCO, an outlet of a national discount chain, who has asked you to work on
a management information system to provide inventory information. Review these questions for your
team member.
1. When was the last time you thought seriously about your decision-making process?
2. Who are the trouble makers in your store, I mean the ones who will show the most resistance to

changes in the system that I have proposed?
3. Are there any decisions you need more information about to make them?
4. You don’t have any major problems with the current inventory control system, do you?

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 125

5. Tell me a little about the output you’d like to see.
a. Rewrite each question to be more effective in eliciting information.
b. Order your questions in either a pyramid, funnel, or diamond-shaped structure, and label the

questions with the name of the structure you used.
c. What guidelines can you give your team member for improving her interviewing questions

for the future? Make a list of them.
3. Ever since you walked through the door, your interviewee, Max Hugo, has been shuffling papers,

looking at his watch, and drumming on his desk with his fingers. Based on what you know about
interviews, you guess that Max is nervous because of the other work he needs to do. In a paragraph,
describe how you would deal with this situation so that the interview can be accomplished with
Max’s full attention. (Max cannot reschedule the interview for a different day.)

4. Write a series of six closed questions that cover the subject of decision-making style for the manager
described in Problem 2.

5. Write a series of six open-ended questions that cover the subject of decision-making style for the
manager described in Problem 2.

6. Examine the interview structure presented in the sequencing of the following questions:
1. How long have you been in this position?
2. What are your key responsibilities?
3. What reports do you receive?
4. How do you view the goals of your department?
5. How would you describe your decision-making process?
6. How can that process best be supported?
7. How frequently do you make those decisions?
8. Who is consulted when you make a decision?
9. What is the one decision you make that is essential to departmental functioning?

a. What structure is being used? How can you tell?
b. Restructure the interview by changing the sequence of the questions (you may omit some if

necessary). Label the reordered questions with the name of the structure you have used.
7. The following is the first interview report filed by one of your systems analysis team members: “In

my opinion, the interview went very well. The subject allowed me to talk with him for an hour and a
half. He told me the whole history of the business, which was very interesting. The subject also
mentioned that things have not changed all that much since he has been with the firm, which is about
16 years. We are meeting again soon to finish the interview, because we did not have time to go into
the questions I prepared.”
a. In two paragraphs, critique the interview report. What critical information is missing?
b. What information is extraneous to the interview report?
c. If what is reported actually occurred, what three suggestions do you have to help your teammate

conduct a better interview next time?
8. Cab Wheeler is a newly hired systems analyst with your group. Cab has always felt that

questionnaires are a waste. Now that you will be doing a systems project for MegaTrucks, Inc., a
national trucking firm with branches and employees in 130 cities, you want to use a questionnaire to
elicit some opinions about the current and proposed systems.
a. Based on what you know about Cab and MegaTrucks, give three persuasive reasons why he

should use a survey for this study.
b. Given your careful arguments, Cab has agreed to use a questionnaire but strongly urges that all

questions be open-ended so as not to constrain the respondents. In a paragraph, persuade Cab
that closed questions are useful as well. Be sure to point out trade-offs involved with each
question type.

9. “Every time we get consultants in here, they pass out some goofy questionnaire that has no meaning
to us at all. Why don’t they bother to personalize it, at least a little?” asks Ray Dient, head of
emergency systems. You are discussing the possibility of beginning a systems project with Pohattan
Power Company (PPC) of Far Meltway, New Jersey.
a. What steps will you follow to customize a standardized questionnaire?
b. What are the advantages of adapting a questionnaire to a particular organization? What are the

disadvantages?
10. A sample question from the draft of the Pohattan Power Company questionnaire reads:

I have been with the company:
20–upwards years
10–15 years upwards
5–10 years upwards
less than a year
Check one that most applies.

126 PART II • INFORMATION REQUIREMENTS ANALYSIS

a. What kind of a scale is the question’s author using?
b. What errors have been made in the construction of the question, and what might be the possible

responses?
c. Rewrite the question to achieve clearer results.
d. Where should the question you’ve written appear on the questionnaire?

11. Also included on the PPC questionnaire is this question:
When residential customers call, I always direct them to our Web site to get an answer.

Sometimes Never Always Usually

1 2 3 4

a. What type of scale is this one intended to be?
b. Rewrite the question and possible responses to achieve better results.

12. Figure 4.EX1 is a questionnaire designed by an employee of Green Toe Textiles, which specializes in
manufacturing men’s socks. Di Wooly wrote the questionnaire because, as the office manager at
headquarters in Juniper, Tennessee, she is concerned with the proposed purchase and implementation
of a new computer system.

Hi! All EmployeesWhat’s new? According to the grapevine, I hear we’re in for a new computer. Here

are some questions for you to think about.a. How long have you used the old computer?
b. How often does it go down?c. Who repairs it for you?d. When was the last time you suggested a new improvement to the computer

 system and it was put into use? What was it?
e. When was the last time you suggested a new improvement to the computer

 system and nobody used it? What was it?
f. Do you use a VDT or printer or both?g. How fast do you type?h. How many people need to access the database regularly at your branch? Is there

 anyone not using the computer now who would like to?

FIGURE 4.EX1
Questionnaire developed
by Di Wooly.

a. Provide a one-sentence critique for each question given.
b. In a paragraph, critique the layout and style in terms of white space used, room for responses, ease

of responding, and so on.
13. Based on what you surmise Ms. Wooly is trying to get through the questionnaire, rewrite and reorder

the questions (use both open-ended and closed questions) so that they follow good practice and result in
useful information for the systems analysts. Indicate next to each question that you write whether it is
open-ended or closed, and write a sentence indicating why you have written the question this way.

14. Redesign the questionnaire you created for Ms. Wooly in Problem 13 for use on email. Write a
paragraph saying what changes were necessary to accommodate email users.

15. Redesign the questionnaire you created for Ms. Wooly in Problem 13 as a Web survey. Write a
paragraph saying what changes were necessary to accommodate Web users.

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 127

GROUP PROJECTS
1. With your group members, role-play a series of interviews with various system users at Maverick

Transport. Each member of your group should choose one of the following roles: company president,
information technology director, dispatcher, customer service agent, or truck driver. Those group
members playing roles of Maverick Transport employees should attempt to briefly describe their job
responsibilities, goals, and informational needs.

Remaining group members should play the roles of systems analysts and devise interview
questions for each employee. If there are enough people in your group, each analyst may be assigned
to interview a different employee. Those playing the roles of systems analysts should work together
to develop common questions that they will ask, as well as questions tailored to each individual
employee. Be sure to include open-ended, closed, and probing questions in your interviews.

Maverick Transport is attempting to change from outdated and unreliable technology to more
state-of-the-art, dependable technology. The company is seeking to move from dumb terminals
attached to a mainframe because it wants to use PCs in some way, and is also interested in
investigating a satellite system for tracking freight and drivers. In addition, the company is interested
in pursuing ways to cut down on the immense storage requirements and difficult access of the
troublesome handwritten, multipart forms that accompany each shipment.

2. Conduct all five interviews in a role-playing exercise. If there are more than 10 people in your group,
permit two or more analysts to ask questions.

3. With your group, write a plan for a JAD session that takes the place of personal interviews. Include
relevant participants, suggested setting, and so on.

4. Using the interview data you gained from the group exercise on Maverick Transport in Project 1,
meet with your group to brainstorm the design of a questionnaire for the hundreds of truck drivers
that Maverick Transport employs. Recall that Maverick is interested in implementing a satellite
system for tracking freight and drivers. There are other systems that may affect the drivers as well.
As your group constructs the questionnaire, consider the drivers’ likely level of education and any
time constraints the drivers are under for completing such a form.

5. Using the interview data you gained from the group exercise on Maverick Transport in Project 1,
your group should meet to design an email or Web questionnaire for surveying the company’s 20
programmers (15 of whom have been hired in the past year) about their skills, ideas for new or
enhanced systems, and so on. Investigate the Web survey options available at SurveyMonkey.com.
As your group constructs the programmer survey, consider what you have learned about users in the
other interviews as well as what vision the director of information technology holds for the company.

SELECTED BIBLIOGRAPHY
Ackroyd, S., and J. A. Hughes. Data Collection Context, 2d ed. New York: Addison-Wesley, 1992.
Cash, C. J., and W. B. Stewart, Jr. Interviewing Principles and Practices, 12th ed. New York: McGraw-

Hill/Irwin, 2007.
Cooper, D. R., and P. S. Schindler. Business Research Methods, 10th ed. New York: McGraw-Hill/Irwin,

2007.
Deetz, S. Transforming Communication, Transforming Business: Building Responsive and Responsible

Workplaces. Cresskill, NJ: Hampton Press, 1995.
Emerick, D., K. Round, and S. Joyce. Exploring Web Marketing and Project Management. Upper Saddle

River, NJ: Prentice Hall PTR, 2000.
Gane, C. Rapid System Development. New York: Rapid System Development, 1987.
Georgia Tech’s Graphic, Visualization, and Usability Center. “GVU WWW Survey through 1998.” Avail-

able at: http://www.cc.gatech.edu/gvu/user_surveys/survey-1998-10/. Last accessed July 15, 2009.
Hessler, R. M. Social Research Methods. New York: West, 1992.
Joint Application Design. GUIDE Publication GPP-147. Chicago: GUIDE International, 1986.
Peterson, R. A. Constructing Effective Questionnaires. Thousand Oaks, CA: Sage Publications, 1999.
Strauss, J., and R. Frost. E-Marketing, 5th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2008.
Wansink, B., S. Sudman, and N. M. Bradburn. Asking Questions: The Definitive Guide to Questionnaire

Design—For Market Research, Political Polls, and Social and Health Questionnaires. New York:
Wiley, 2004.

http://www.cc.gatech.edu/gvu/user_surveys/survey-1998-10/

128 PART II • INFORMATION REQUIREMENTS ANALYSIS

E P I S O D E 4
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

I’ll Listen Now, Ask Questions Later
“I’ve scheduled preliminary interviews with five key people. Because you’ve been so busy with Visible Ana-
lyst, I decided to do the first round of interviews myself,” Anna tells Chip as they begin their morning meeting.

“That’s fine with me,” Chip says. “Just let me know when I can fill in. Who will you be talking to
first? Dot?”

“No secret there, I guess,” replies Anna. “She’s critical to the success of the system. Her word is it when
it comes to whether a project will fly or not.”

“Who else?” asks Chip.
“I’ll see who Dot refers me to, but I set up appointments with Mike Crowe, the hardware and mainte-

nance expert; Cher Ware, the software specialist; and Paige Prynter, CPU’s financial analyst.”
“Don’t forget Hy Perteks,” says Chip.
“Right. The Computing Support Center will be important to our project,” says Anna. “Let me call and

see when he’s available.”
After a brief phone conversation with Hy, Anna turns once again to Chip.
“He’ll meet with me later today,” Anna confirms.
After completing her interviews, Anna sits at her desk, reviewing the interview summaries and the

memos that were gathered during the summer. Several stacks of papers are neatly filed in expansion folders.
“We have so much information,” she remarks to Chip, “yet I sense that we are only working with the tip

of the iceberg. I don’t have a solid feeling for the difficulties of faculty members and research staff. Are there
additional problems we haven’t heard about?”

Chip looks up from his work of trying to extract key points for defining the problems. “I wonder if we
should do more interviews, or perhaps gather more documents,” he says.

“But how many interviews should we conduct and who should we interview?” Anna replies. “Suppose
we interview several staff members and base the new system on the results. We could interview the wrong
people and design a system to satisfy only their needs, missing key problems that the majority of faculty and
staff need to have solved.”

“I see what you mean,” Chip answers. “Perhaps we should design a questionnaire and survey the fac-
ulty and research staff.”

“Great idea!” Anna says. “How should we decide which questions to include on the survey?”
“Let’s speak with some key people and base the survey on the results. A good starting point would be

Hy Perteks, because he is always talking with the faculty and staff. I’ll give him a call and arrange a meet-
ing,” Chip says.

Chip arranged the meeting for the following morning. It would be held in a conference room adjacent
to the Computing Support Center.

“Thanks for meeting with us on such short notice,” Chip opens. “We’re thinking about surveying
the faculty and research staff to obtain additional information that will help us define the system
concerns.”

“I think it’s a tremendous idea,” Hy replies. “I would also like to find out what type of software
should be available in the Computing Support Center and the type of training we should provide. Infor-
mation about the major package types used should be obtained,” Hy continues. “Web creation and video
software is essential. We should find out which package each user likes and, equally important, which ver-
sion of the package. I know that many are using Dreamweaver and others are using Freeway Pro. Data-
base software also varies although many are using Access. Same for video creation, with Camtasia being
the most popular.

“Another consideration would be what type of specialized software is used by groups of faculty mem-
bers,” muses Hy. “Many of the people in the math department are using Mathcad. Others are using various
software packages for a number of courses. For instance, the information science people are using Visio, but
a few are using Visible Analyst. I’ve also heard that we’re getting some biology and astronomy software.
And the art department uses Macs almost exclusively. Many of the faculty are getting heavily into software
for image construction, such as Photoshop and Flash.”

“Other than software packages and versions, what types of information should we capture?”
asks Chip.

CHAPTER 4 • INFORMATION GATHERING: INTERACTIVE METHODS 129

“I would like to know what level of expertise each person has,” responds Hy. “No doubt, some are be-
ginners, whereas others have a good knowledge but have not mastered all the features of a particular pack-
age. Some are experts. They know the software inside and out. I’m interested in the beginners and
intermediate users, because we should be providing different training for them. Knowing who’s an expert
helps, too.”

“Is there anything else you feel we should find out about in the survey?” asks Chip.
“The only other thing that I worry about are problems that result in a faculty or staff member not using

the software,” Hy replies.
“What do you mean?” asks Chip.
“Well, suppose a person has the software but it is installed incorrectly or displays some sort of security

or access rights message,” replies Hy. “I’ve had some inquiries about this matter recently. One person said
that they were working with Windows Vista with their data on a USB hard drive, and it would not grant them
access rights. There’s a faculty member in math, Rhoda Booke, who has consistently shown interest in hard-
ware and software issues. I’ve helped her a number of times, and she’s always friendly and grateful. You
should interview her for sure.”

“Thanks once again for all your help,” says Chip. “We’ll get back to you later with the results of the
survey.”

Anna arranges a meeting with Rhoda and explains the nature of the project and why she was selected
as a faculty representative. The meeting was held in a small conference room in the math department.

“We’d like to have the faculty perspective on problems encountered with computers and the associated
software,” says Anna. “Our goal is to provide the faculty with the best possible resources with the least num-
ber of problems.”

“I’m really glad to be a part of the project,” exclaims Rhoda. “I’ve been using classroom software for
about 10 years or so, and what a learning experience it has been! Thank goodness that Hy is available as a
resource. I’ve taken hours of his time, and it’s been well worth the effort. I feel much more productive, and
the students are using software that helps them grasp the material more thoroughly.”

“That’s good, but are there some difficulties that you’ve been experiencing?” asks Chip.
“Well, becoming familiar with the software is a major hurdle. I spent a good portion of last summer,

when I wasn’t working on my book, learning how to use some of the classroom software for both algebra
and calculus. The stuff’s great, but I got stuck several times and had to call for help. It’s necessary to under-
stand the software to prepare lesson plans and explain to the students how to use it.”

“How about problems with installing the software or hardware?” Anna asks.
“Oh, yes!” exclaims Rhoda. “I tried to install the software, and it went smoothly until the part where I

went to receive updates from their Web site, and there were some problems with registration,” laughs Rhoda.
“Then there were setup problems,” Rhoda continues. “I needed to figure out what to install on the net-

work and what to include on the local hard drive. Some of the laptops gave us ‘Not enough memory’error mes-
sages, and we learned that they had never been updated. The physics faculty had the same problem.”

“Are there any other concerns you feel that we should include on our survey to the faculty and research
staff?” Chip asks.

“It would be useful to know who is using the same software in different departments and what soft-
ware is supplied by which vendor. Perhaps if we purchase many packages from one vendor, we could get
a larger discount for software. The department software budget is already overwhelmed,” Rhoda says.

“Thanks for all your help,” Anna says. “If you think of any additional questions we should include on
the survey, please do not hesitate to call us.”

Back in their office, the analysts start compiling a list of the issues to be contained on the survey.
“We certainly need to ask about the software in use and about training needs,” remarks Anna. “We

should also address the problems that are occurring.”
“Agreed,” replies Chip. “I feel that we should include questions on software packages, vendors, ver-

sions, level of expertise, and training concerns. What I’m not so sure about is how to obtain information on
problems the faculty and staff are encountering. How should we approach these issues?”

“Well,” replies Anna, “we should focus on matters with which they are familiar. We might ask ques-
tions about the type of problems that are occurring, but certainly not technical ones. And the survey should
not ask any questions that we could easily look up answers to, such as ‘Who is the vendor for the software?’”

“I see,” replies Chip. “Let’s divide the questions into categories. Some would be closed questions and
some would be open-ended. Then there’s the matter of which structure to use.”

“We’ll use Zoomerang to administer the survey on the Web,” continues Anna. “Along with email re-
minders about the cutoff date for the survey.”

130 PART II • INFORMATION REQUIREMENTS ANALYSIS

EXERCISES
The first three exercises require that you visit the Web site to obtain the text of the interviews with CPU staff
members. Please visit the Web site at www.pearsonhighered.com/kendall and look for the “CPU Interviews.”

E-1. Analyze the five interviews. In a paragraph, discuss what type of structure each interview had.

E-2. List each interview, 1 through 5, and then write a paragraph for each, discussing ways that Anna might
improve on her interviews for next time.

E-3. Analyze the questions used in the five interviews. In a paragraph, discuss the question types used and
whether they were appropriate for getting needed information.

E-4. From the list of concerns presented earlier in this chapter, select the issues that would best be phrased
as closed questions.

E-5. From the list of concerns, select the issues that would best be phrased as open-ended questions.

E-6. On the basis of Exercises E-4 and E-5, design a questionnaire to be sent to the faculty and research
staff.

E-7. Pilot your questionnaire by having other students in class fill it out. On the basis of their feedback and
your capability to analyze the data you receive, revise your questionnaire.

www.pearsonhighered.com/kendall

131

C H A P T E R 5

Information Gathering:
Unobtrusive Methods

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Recognize the value of unobtrusive methods for information gathering.

2. Understand the concept of sampling for human information requirements analysis.

3. Construct useful samples of people, documents, and events for determining human
information requirements.

4. Create an analyst’s playscript to observe decision-maker activities.

5. Apply the STROBE technique to observe and interpret the decision maker’s environment
and interaction with technologies.

Just by being present in an organization, the systems analyst changes it.
However, unobtrusive methods such as sampling, investigation, and ob-
serving a decision maker’s behavior and interaction with his or her physi-
cal environment are less disruptive than other ways of eliciting human
information requirements. Unobtrusive methods are considered to be in-

sufficient information-gathering methods when used alone. Rather, they should be used in con-
junction with one or many of the interactive methods studied in the previous chapter. This is
called a multiple methods approach. Using both interactive and unobtrusive methods in ap-
proaching the organization is a wise practice that will result in a more complete picture of hu-
man information requirements.

SAMPLING
Sampling is the process of systematically selecting representative elements of a population.
When these selected elements are examined closely, it is assumed that the analysis will reveal
useful information about the population as a whole.

The systems analyst has to make a decision on two key issues. First, there are many reports,
forms, output documents, memos, and Web sites that have been generated by people in the orga-
nization. Which of these should the systems analyst pay attention to, and which should the sys-
tems analyst ignore?

Second, a great many employees can be affected by the proposed information system. Which
people should the systems analyst interview, seek information from via questionnaires, or ob-
serve in the process of carrying out their decision-making roles?

132 PART II • INFORMATION REQUIREMENTS ANALYSIS

The Need for Sampling
There are many reasons a systems analyst would want to select either a representative sample of
data to examine or representative people to interview, question, or observe. They include:

1. Containing costs.
2. Speeding up the data gathering.
3. Improving effectiveness.
4. Reducing bias.

Examining every scrap of paper, talking with everyone, and reading every Web page from the
organization would be far too costly for the systems analyst. Copying reports, asking employees for
valuable time, and duplicating unnecessary surveys would result in much needless expense.

Sampling helps accelerate the process by gathering selected data rather than all data for the
entire population. In addition, the systems analyst is spared the burden of analyzing data from the
entire population.

Effectiveness in data gathering is an important consideration as well. Sampling can help im-
prove effectiveness if information that is more accurate can be obtained. Such sampling is accom-
plished, for example, by talking to fewer employees but asking them questions that are more
detailed. In addition, if fewer people are interviewed, the systems analyst can afford the time to
follow up on missing or incomplete data, thus improving the effectiveness of data gathering.

Finally, data gathering bias can be reduced by sampling. When the systems analyst interviews
an executive of the corporation, for example, the executive is involved with the project, be-
cause this person has already given a certain amount of time to the project and would like it to
succeed. When the systems analyst asks for an opinion about a permanent feature of the installed
information system, the executive interviewed may provide a biased evaluation, because there is
little possibility of changing it.

Sampling Design
A systems analyst must follow four steps to design a good sample:

1. Determine the data to be collected or described.
2. Determine the population to be sampled.
3. Choose the type of sample.
4. Decide on the sample size.

These steps are described in detail in the following subsections.

DETERMINING THE DATA TO BE COLLECTED OR DESCRIBED. The systems analyst needs a realistic
plan about what will be done with the data once they are collected. If irrelevant data are gathered,
then time and money are wasted in the collection, storage, and analysis of useless data.

The duties and responsibilities of the systems analyst at this point are to identify the vari-
ables, attributes, and associated data items that need to be gathered in the sample. The objectives
of the study must be considered as well as the type of data-gathering method (investigation, in-
terviews, questionnaires, observation) to be used. The kinds of information sought when using
each of these methods are discussed in more detail in this and subsequent chapters.

DETERMINING THE POPULATION TO BE SAMPLED. Next, the systems analyst must determine what
the population is. In the case of hard data, the systems analyst needs to decide, for example, if the
last two months are sufficient, or if an entire year’s worth of reports are needed for analysis.

Similarly, when deciding whom to interview, the systems analyst has to determine whether
the population should include only one level in the organization or all the levels, or maybe the an-
alyst should even go outside of the system to include the reactions of customers, vendors, suppli-
ers, or competitors. These decisions are explored further in the chapters on interviewing,
questionnaires, and observation.

CHOOSING THE TYPE OF SAMPLE. The systems analyst can use one of four main types of samples,
as pictured in Figure 5.1. They are convenience, purposive, simple, and complex. Convenience
samples are unrestricted, nonprobability samples. A sample could be called a convenience sample
if, for example, the systems analyst posts a notice on the company’s intranet asking for everyone

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 133

Sample elements are
 selected directly
 without restrictions

Convenience Simple random

Sample elements are
 selected according
 to specific criteria

Complex random
(systematic, stratified,

and cluster)
Purposive

Not Based on Probability Based on Probability

The systems

analyst should

use a complex

random sample

if possible.

FIGURE 5.1
Four main types of samples the
analyst has available.

interested in working with the new sales performance reports to come to a meeting at 1 P.M. on
Tuesday the 12th. Obviously, this sample is the easiest to arrange, but it is also the most unreliable.
A purposive sample is based on judgment.

A systems analyst can choose a group of individuals who appear knowledgeable and who are
interested in the new information system. Here the systems analyst bases the sample on criteria
(knowledge about and interest in the new system), but it is still a nonprobability sample. Thus,
purposive sampling is only moderately reliable. If you choose to perform a simple random sam-
ple, you need to obtain a numbered list of the population to ensure that each document or person
in the population has an equal chance of being selected. This step often is not practical, especially
when sampling involves documents and reports. The complex random samples that are most ap-
propriate for the systems analyst are (1) systematic sampling, (2) stratified sampling, and (3) clus-
ter sampling.

In the simplest method of probability sampling, systematic sampling, the systems analyst
would, for example, choose to interview every kth person on a list of company employees. This
method has certain disadvantages, however. You would not want to use it to select every kth day
for a sample because of the potential periodicity problem. Furthermore, a systems analyst would
not use this approach if the list were ordered (for example, a list of banks from the smallest to the
largest), because bias would be introduced.

Stratified samples are perhaps the most important to the systems analyst. Stratification is the
process of identifying subpopulations, or strata, and then selecting objects or people for sampling
in these subpopulations. Stratification is often essential if the systems analyst is to gather data ef-
ficiently. For example, if you want to seek opinions from a wide range of employees on different
levels of the organization, systematic sampling would select a disproportionate number of em-
ployees from the operational control level. A stratified sample would compensate for this. Strat-
ification is also called for when the systems analyst wants to use different methods to collect data
from different subgroups. For example, you may want to use a survey to gather data from middle
managers, but you might prefer to use personal interviews to gather similar data from executives.

Sometimes the systems analyst must select a group of people or documents to study. This
process is referred to as cluster sampling. Suppose an organization had 20 help desks scattered
across the country. You may want to select one or two of these help desks under the assumption
that they are typical of the remaining ones.

DECIDING ON THE SAMPLE SIZE. Obviously, if everyone in the population viewed the world the
same way or if each of the documents in a population contained exactly the same information as
every other document, a sample size of one would be sufficient. Because that is not the case, it is
necessary to set a sample size greater than one but less than the size of the population itself.

It is important to remember that the absolute number is more important in sampling than the
percentage of the population. We can obtain satisfactory results sampling 20 people in 200 or
20 people in 2,000,000.

134 PART II • INFORMATION REQUIREMENTS ANALYSIS

The Sample Size Decision
The sample size often depends on the cost involved or the time required by the systems analyst, or
even the time available by people in the organization. This subsection gives the systems analyst some
guidelines for determining the required sample size under ideal conditions, for example, to determine
what percentage of input forms contain errors, or alternatively what proportion of people to interview.

The systems analyst needs to follow seven steps, some of which involve subjective judg-
ments, to determine the required sample size:

1. Determine the attribute (in this case, the type of errors to look for).
2. Locate the database or reports in which the attribute can be found.
3. Examine the attribute. Estimate p, the proportion of the population having the attribute.
4. Make the subjective decision regarding the acceptable interval estimate, i.
5. Choose the confidence level and look up the confidence coefficient (z value) in a table.
6. Calculate �p, the standard error of the proportion, as follows:

7. Determine the necessary sample size, n, using the following formula:

The first step, of course, is to determine which attribute you will be sampling. Once this is done,
you can find out where this data is stored, perhaps in a database, on a form, or in a report.

It is important to estimate p, the proportion of the population having the attribute, so that you
set the appropriate sample size. Many textbooks on systems analysis suggest using a heuristic of
0.25 for p(1 - p). This value almost always results in a sample size larger than necessary because
0.25 is the maximum value of p(1 - p), which occurs only when p = 0.50. When p = 0.10, as is
more often the case, p(1 - p) becomes 0.09, resulting in a much smaller sample size.

Steps 4 and 5 are subjective decisions. The acceptable interval estimate of ±0.10 means that
you are willing to accept an error of no more than 0.10 in either direction from the actual propor-
tion, p. The confidence level is the desired degree of certainty, say, for example, 95 percent. Once
the confidence level is chosen, the confidence coefficient (also called a z value) can be looked up
in a table like the one found in this chapter.

Steps 6 and 7 complete the process by taking the parameters found or set in steps 3 through
5 and entering them into two equations to eventually solve for the required sample size.

Example
The foregoing steps can best be illustrated by an example. Suppose the A. Sembly Company,
a large manufacturer of shelving products, asks you to determine what percentage of orders
contain errors. You agree to do this job and perform the following steps. You:

1. Determine that you will be looking for orders that contain mistakes in names,
addresses, quantities, or model numbers.

2. Locate copies of order forms from the past six months.
3. Examine some of the order forms and conclude that only about 5 percent (0.05)

contain errors.
4. Make a subjective decision that the acceptable interval estimate will be ±0.02.
5. Choose a confidence level of 95 percent. Look up the confidence coefficient (z

value) in Figure 5.2. The z value equals 1.96.
6. Calculate �p as follows:

7. Determine the necessary sample size, n, as follows:

n =
p11 - p 2

�2
p

+ 1 =
0.0510.95 2

10.0102 2 10.0102 2
+ 1 = 458

�p =
i

z
=

0.02

1.96
= 0.0102

n =
p11 - p 2

�2
p

+ 1

�p =
i

z

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 135

99% 2.58
98 2.33
97 2.17
96 2.05
95 1.96
90 1.65
80 1.28
50 0.67

Confidence
Level

Confidence
Coefficient
(z value)

First decide on

the confidence

level …

… then look up

the z value.

FIGURE 5.2
A table of area under a normal
curve can be used to look up a
value once the systems analyst
decides on the confidence level.

The conclusion, then, is to set the sample size at 458. Obviously, a greater confidence level or a
smaller acceptable interval estimate would require a larger sample size. If we keep the acceptable
interval estimate the same but increase the confidence level to 99 percent (with a z value of 2.58),
the necessary sample size becomes 1,827, a figure much larger than the 458 we originally decided
to sample.

C O N S U L T I N G O P P O R T U N I T Y 5 . 1

Trapping a Sample

“Real or fake? Fake or real? Who would have thought it, even
five years ago?” howls Sam Pelt, a furrier who owns stores in New
York; Washington, D.C.; Beverly Hills; and Copenhagen. Sylva
Foxx, a systems analyst with her own consulting firm, is talking
with Sam for the first time. Currently, P & P, Ltd. (which stands for
Pelt and Pelt’s son) is using a PC that supports package software for
a select customer mailing list, accounts payable and accounts re-
ceivable, and payroll.

Sam is interested in making some strategic decisions that will
ultimately affect the purchasing of goods for his four fur stores. He
feels that although the computer might help, other approaches
should also be considered.

Sam continues, “I think we should talk to all the customers when
they come in the door. Get their opinions. You know, some of them are
getting very upset about wearing fur from endangered species.
They’re very environmentally minded. They prefer fake to real, if they
can save a baby animal. Some even like fakes better, calling them ‘fun
furs.’And I can charge almost the same for a good look-alike.

“It’s a very fuzzy proposition, though. If I get too far away from
my suppliers of pelts, I may not get what I want when I need it. They
see the fake fur people as worms, worse than moths! If I deal with
them, the real fur men might not talk to me. They can be animals. On
the other hand, I feel strange showing fakes in my stores. All these
years, we’ve prided ourselves on having only the genuine article.”

Sam continues, in a nearly seamless monologue, “I want to
talk to each and every employee, too.”

Sylva glances at him furtively and begins to interrupt. “But
that will take months, and purchasing may come apart at the seams
unless they know soon what—.”

Pelt interrupts, “I don’t care how long it takes, if we get the
right answers. But they have to be right. Not knowing how to solve
this dilemma about fake furs is making me feel like a leopard with-
out its spots.”

Sylva talks to Sam Pelt a bit longer and then ends the interview
by saying, “I’ll talk it all over with the other analysts at the office
and let you know what we come up with. I think we can outfox the
other furriers if we use software to help us sample opinions, rather
than trapping unsuspecting customers into giving an opinion. But
I’ll let you know what they say. This much is for sure: If we can
sample and not talk to everybody before making a decision, every
coat you sell will have a silver lining.”

As one of the systems analysts who is part of Sylva Foxx’s
firm, suggest some ways that Sam Pelt can use software on the PC
he has to adequately sample the opinions of his customers, store
managers, buyers, and any others you feel will be instrumental in
making the strategic decision regarding the stocking of fake furs in
what has always been a real fur store. Suggest a type of sample for
each group and justify it. The constraints you are subject to include
the need to act quickly so as to remain competitive, the need to re-
tain a low profile so that competing furriers are unaware of your
fact gathering, and the need to keep costs of data gathering to a rea-
sonable level.

136 PART II • INFORMATION REQUIREMENTS ANALYSIS

DETERMINING SAMPLE SIZE WHEN INTERVIEWING. There are no magic formulas to help the
systems analyst set the sample size for interviewing. The overriding variable that determines how
many people the systems analyst should interview in depth is the time an interview takes. A true
in-depth interview and follow-up interview is very time consuming for both the interviewer and
the participant.

A good rule of thumb is to interview at least three people on every level of the organization
and at least one from each of the organization’s functional areas (as described in Chapter 2) who
will work directly with a new or updated system. Remember also that one does not have to inter-
view more people just because it is a larger organization. If the stratified sample is done properly,
a small number of people will adequately represent the entire organization.

INVESTIGATION
Investigation is the act of discovery and analysis of data. While investigating evidence in an or-
ganization, the analyst acts like Sherlock Holmes, the fabled detective from 221B Baker Street.

As the systems analyst works to understand users, their organization, and its information re-
quirements, it will become important to examine different types of hard data that offer informa-
tion unavailable through any other method of data gathering. Hard data reveal where the
organization has been and where its members believe it is going. To piece together an accurate
picture, the analyst needs to examine both quantitative and qualitative hard data.

Analyzing Quantitative Documents
Many quantitative documents are available for interpretation in any business, and they include re-
ports used for decision making, performance reports, records, and a variety of forms. All these
documents have a specific purpose and audience for which they are targeted.

REPORTS USED FOR DECISION MAKING. A systems analyst needs to obtain some of the
documents that are used in running the business. These documents are often paper reports
regarding the status of inventory, sales, or production. Many of these reports are not complex, but
they serve mainly as feedback for quick action. For example, a sales report may summarize the
amount sold and the type of sales. In addition, sales reports might include graphical output
comparing revenue and income over a set number of periods. Such reports enable the decision
maker to spot trends easily.

Production reports include recent costs, current inventory, recent labor, and plant informa-
tion. Beyond these key reports, many summary reports are used by decision makers to provide
background information, spot exceptions to normal occurrences, and afford strategic overviews
of organizational plans.

PERFORMANCE REPORTS. Most performance reports take on the general form of actual versus
intended performance. One important function of performance reports is to assess the size of the
gap between actual and intended performance. It is also important to be able to determine if that
gap is widening or narrowing as an overall trend in whatever performance is being measured.
Figure 5.3 shows a clear improvement in sales performance over two to three months. The analyst
will want to note if performance measurement is available and adequate for key organizational
areas.

RECORDS. Records provide periodic updates of what is occurring in the business. If the record is
updated in a timely fashion by a careful recorder, it can provide much useful information to the
analyst. Figure 5.4 is a manually completed payment record for an apartment rental. There are
several ways that the analyst can inspect a record, many of which are indicative of their usability:

1. Checking for errors in amounts and totals.
2. Looking for opportunities for improving the recording form design.
3. Observing the number and type of transactions.
4. Watching for instances in which the computer can simplify the work (i.e., calculations and

other data manipulation).

DATA CAPTURE FORMS. Before you set out to change the information flows in the organization,
you need to be able to understand the system that is currently in place. You or one of your team

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 137

Number of
Batches

Produced

Number of
Batches

Rejected

Percentage Amount
Away from
5% Goal

Week

Rejected
2/2 245 19 7.8 2.8
2/9 229 19 8.3 3.3

2/16 219 14 6.3 1.3
2/23 252 13 5.2 0.2
3/2 245 13 5.3 0.3
3/9 260 13 5.0 * * *

3/16 275 14 5.1 0.1
3/23 260 13 5.0 * * *

3/30 260 13 5.0 * * *
4/6 244 12 4.9 * * *

4/13 242 11 4.5 * * *

4/20 249 11 4.4 * * *

4/27 249 11 4.4 * * *
 * * * indicates met or exceeded the < 5% goal

… and trends.

Performance

reports
show goals …

FIGURE 5.3
A performance report showing
improvement.

C O N S U L T I N G O P P O R T U N I T Y 5 . 2

A Rose by Any Other Name...Or Quality, Not Quantities

“I think we have everything we need. I’ve sampled financial state-
ments, sales figures for each branch, wastage for each shop—we have
it all. With all these numbers, we should be able to figure out how to
keep Fields in the green, or at least at the forefront of the flower busi-
ness. We can even show Seymour Fields himself how his new com-
puter system can make it all happen,” says Rod Golden, a junior
systems analyst working for a medium-sized consulting group.

The firm, under the supervision of its head systems analyst,
Clay Potts, has been working on a systems project for the entire
chain of 15 successful florist shops and indoor floral markets called
Fields. Each of three Midwestern cities has five Fields outlets.

“Although it’s just a budding enterprise now, eventually we
want to grow with offshoots to half a dozen states,” says Seymour
Fields, the owner. “I want to reap the benefits of all the happiness
we’ve sown so far. I think we can do it by playing my hunches about
what is the best time to purchase flowers at each European market
we buy from, and then we should prune back our purchases.

“Over the past three years, I’ve written lots of memos to our
managers about this plan. They’ve written some good ones back,
too. I think we’re ready to stake out some territory on this soon,”
continues Seymour, painting a rosy picture of Fields’s future.

“I agree,” says Rod. “When I come back from my analysis of
these figures,” he says, indicating a large stack of material he has
unearthed from Fields field offices, “we’ll be able to deliver.”

Three weeks later, Rod returns to Clay with wilting confi-
dence. “I don’t know what to make of all this. I can’t seem to get at
what’s causing the company’s growth, or how it’s managed.
They’ve been expanding, but I’ve been through all the figures, and
nothing really seems to make sense yet.”

Clay listens empathetically, then says, “You’ve given me a
germ of an idea. What we need is some cross-pollination, a breath
of fresh air. We need to dig a little deeper. Did you examine any-
thing but their bottom line?”

Rod looks startled and replies, “No, I—uh—what do you mean?”
How can Clay Potts tactfully explain to Rod Golden that ex-

amination of qualitative as well as quantitative documents could be
important to delivering an accurate assessment of Fields’s potential
to be a more fruitful enterprise? In a paragraph, recommend some
specific documents that should be read. List the specific steps Rod
should follow in evaluating qualitative documents obtained from
Fields. Write a paragraph to explain how qualitative documents help
in presenting an overall account of Fields’s success.

138 PART II • INFORMATION REQUIREMENTS ANALYSIS

PAYMENT RECORD: Tot. 31175/0 + 81299 + Rent =
TOTAL INITIAL PAYMENT REQUIRED:

855 55
910

H/S dep.
4

Date Date Receipt Paid to Total Secur- Clean- 31700 81299 Other Amount Balance

Due Paid Number Noon Rent ity ing Tax Dates Amt. Descr. Amt. Paid Due

TV 10/3 MO! 8/28 8/28 106642 9/30 1031.32 202 115 44.20 25 414.82 15 1430.52 0

10/1 10/3 107503 10/31 910

910 0

11/1 11/1 10935 11/16 485.28

485.28 0

C1H/S9-16 11/17 11/8 11200 11/23 212.31

212.31 0

Bill 1 MO 11/24Prorated
H/S should becreated towardrefund deposit

BLDG. #

NAME

Orig. Move-in Date
d

Exp.

x #

Base Refrig- Furni-
Total Secur- Clean-

31700
Daily

Rent erator ture
Rent ity ing

Tax
Rate

8-28
same

1Kendall
1st

PROJ. NAME
#

KEY SIGNATURE
RENT POTENTIAL

1175/0 81299

PRORATE
A/C Util. HMSR T.V. Maid

31175/0 81299 Days
Totals

DEPOSITPOTENTIAL

Deposits
Memo Only

31175/0

OAK. FC 562

H/S
rent 30.33

1.30 910
39

200 115
31.63 340

910

1430.52

15.00
121.32

5.20

Watch for places

the computer can

simplify the work.

Observe the

number and type

of transactions.

Check for errors.
Look foropportunitiesfor improvementin design.

FIGURE 5.4
A manually completed payment
record.

members may want to collect and catalog a blank copy of each form (official or unofficial) that
is in use. (Sometimes businesses have a person already charged with forms management, who
would be your first source for forms in use.)

Blank forms, along with their instructions for completion and distribution, can be compared
with filled-in forms to see if any data items are consistently left blank on the forms; whether the
people who are supposed to receive the forms actually do get them; and if they follow standard
procedures for using, storing, and discarding them. Remember to print out any Web-based forms
that require users to print them. Alternatively, electronic versions that can be submitted via the
Web or email can be identified and stored in a database for later inspection.

To proceed when creating a catalog of forms to help you understand the information flow
currently in use in the business:

1. Collect examples of all the forms in use, whether officially sanctioned by the business or
not (official versus bootleg forms).

2. Note the type of form (whether printed in-house, handwritten, computer-generated in-
house, online forms, Web fill-in forms, printed externally and purchased, etc.).

3. Document the intended distribution pattern.
4. Compare the intended distribution pattern with who actually receives the form.

Although this procedure is time consuming, it is useful. Another approach is to sample data
capture forms that have already been completed. Remember to check databases that store con-
sumer data when sampling input from ecommerce transactions. The analyst must keep in mind

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 139

many particular questions, as illustrated in Figure 5.5. They include the following aspects of HCI
relating to usability, aesthetics, and usefulness:

1. Is the form filled out in its entirety? If not, what items have been omitted, and are they
consistently omitted? Why?

2. Are there forms that are never used? Why? (Check the design and appropriateness of each
form for its purported function.)

3. Are all copies of forms circulated to the proper people or filed appropriately? If not, why
not? Can people who must access online forms do so?

4. If there is a paper form that is offered as an alternative to a Web-based form, compare the
completion rates for both.

5. Are “unofficial” forms being used on a regular basis? (Their use might indicate a problem
in standard procedures or may indicate political battles in the organization.)

Date Store Name
Store NumberItem Requested Cases Item Requested CasesMilk (1/2 gals.)

Milk (quarts)Whole
Whole2%
2%1%
1%Skim
SkimButtermilk
Buttermilk

Chocolate
ChocolateYogurt

Plain
Pineapple

Vanilla
Dutch Apple

Peach
BananaBlueberry
Mixed Fruit

Boysenberry
Raspberry

Strawberry
Lemon

Ice Cream
Deluxe Pints

Deluxe Quarts
Deluxe 1/2 Gallons

Premium Pints
Skinny Minnies

Premium QuartsRequested by (employee number) Total Cases Ordered
Reason for Shortage
Driver Number Route Number

FarmfreshReorder of Shorted Dairy Products

Official form can

overwhelm people

by asking for too

much information.

There may be

no logical order

to the form.

Is the total

really needed?

“Bootleg” forms

arise to simplify

the problem.

Store
Date

Driver
Product shorted

Cases needed

Dairy manager’s initials

FIGURE 5.5
Questions to ask about official and
bootleg forms that are already
filled out.

140 PART II • INFORMATION REQUIREMENTS ANALYSIS

Analyzing Qualitative Documents
Qualitative documents include email messages, memos, signs on bulletin boards and in work ar-
eas, Web pages, procedure manuals, and policy handbooks. Many of these documents are rich in
details revealing the expectations for behavior of others that their writers hold and the ways in
which users expect to interact with information technologies.

Although many systems analysts are apprehensive about analyzing qualitative documents,
they need not be. Several guidelines can help analysts take a systematic approach to this sort of
analysis. Many of these relate to the affective, emotional, and motivational aspects of HCI, as well
as interpersonal relationships in the organization.

1. Examine documents for key or guiding metaphors.
2. Look for insiders versus outsiders or an “us against them” mentality.
3. List terms that characterize good or evil and appear repeatedly in documents.
4. Look for the use of meaningful messages and graphics posted on common areas or on

Web pages.
5. Recognize a sense of humor, if present.

Examining documents for key or guiding metaphors is done because language shapes behav-
ior; thus, the metaphors we employ are critical. For example, an organization that discusses em-
ployees as “part of a great machine” or “cogs in a wheel” might be taking a mechanistic view of
the organization. Notice that the guiding metaphor in the memo in Figure 5.6 is, “We’re one big
happy family.” The analyst can use this information to predict the kinds of metaphors that will be
persuasive in the organization. Obviously, if one department is battling another, it may be impos-
sible to gain any cooperation on a systems project until the politics are resolved in a satisfactory
manner. Assessing the use of humor provides a quick and accurate barometer of many HCI, in-
terpersonal, and organizational variables, including which subculture a person belongs to and
what kind of morale exists.

MEMOS. Along with the five preceding guidelines, the analyst should also consider who sends
memos and who receives them. Typically, most information flows downward and horizontally
rather than upward in organizations, and extensive email systems mean messages are sent to many

MEMO

To: All Night Call Desk StaffFrom: S. Leep, Night ManagerDate: 2/15/2010Re: Get Acquainted Party Tonight

It’s a pleasure to welcome two new 11-7 Call Desk staff members,
Twyla Tine and Al Knight. I’m sure they’ll enjoy working
here. Being together in the wee hours makes us feel like
one big happy family. Remember for your breaks tonight
that some of the crew has brought in food. Help yourself
to the spread you find in the break room, and welcome to
the clan, Twyla and Al.

FIGURE 5.6
Analysis of memos provides
insight into the metaphors that
guide the organization’s thinking.

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 141

work groups and individuals. Memos reveal a lively, continuing dialogue in the organization.
Analysis of memo content will provide you with a clear idea of the values, attitudes, and beliefs
of organizational members.

SIGNS OR POSTERS ON BULLETIN BOARDS OR IN WORK AREAS. Although signs may seem
incidental to what is happening in the organization, they serve as subtle reinforcers of values to
those who read them. Slogans posted such as “Quality Is Forever” or “Safety First” give the
analyst a sense of the official organizational culture.

CORPORATE WEB SITES. Web sites used for business-to-consumer (B2C) ecommerce as well as
those used for business-to-business (B2B) transactions should also be viewed by the analyst.
Examine the contents for metaphors, humor, use of design features (such as color, graphics,
animation, and hyperlinks), and the meaning and clarity of any messages provided. Think about
the Web site from three dimensions: technical, aesthetic, and managerial. Are there
discrepancies between the stated goals of the organization and what is presented to the intended
viewer? How much customization of the Web site is available for each user? How much
personalization of the Web site is possible? If you are not designing ecommerce sites for the
organization, how does what you see on its Web site affect the systems you are investigating?
Remember to note the level of interactivity of the Web site or sites, the accessibility of the
messages, and the security level.

MANUALS. Other qualitative documents the analyst should examine are organizational
manuals, including manuals for computer operating procedures and online manuals. Manuals
should be analyzed following the five guidelines spelled out previously. Remember that
manuals present the “ideal,” the way machines and people are expected to behave. It is
important to recall that printed manuals are rarely kept current and are sometimes relegated to
a shelf, unused.

POLICY HANDBOOKS. The last type of qualitative document we consider is the policy handbook.
Although these documents typically cover broad areas of employee and corporate behavior, you
can be primarily concerned with those that address policies about computer services, use, access,
security, and charges. Examining policies allows the systems analyst to gain an awareness of the
values, attitudes, and beliefs guiding the corporation.

H Y P E R C A S E ® E X P E R I E N C E 5 . 1

“We’re glad you find MRE an interesting place to consult. Ac-
cording to the grapevine, you’ve been busy exploring the home of-
fice. I know, there’s so much going on. We find it hard to keep track
of everything ourselves. One thing we’ve made sure of over the
years is that we try to use the methods that we believe in. Have you
seen any of our reports? How about the data that were collected on
one of Snowden’s questionnaires? He seems to favor questionnaires
over any other method. Some people resent them, but I think you
can learn a lot from the results. Some people have been good about
cooperating on these projects. Have you met Kathy Blandford yet?”

HYPERCASE Questions
1. Use clues from the case to evaluate the Training Unit’s

computer experience and its staff’s feeling about the PSRS.

What do you think the consensus is in the Training Unit
toward a computerized project tracking system?

2. What reports and statements are generated by the Training
Unit during project development? List each with a brief
description.

3. According to the interview results, what are the problems
with the present project tracking system in the Training Unit?

4. Describe the “project management conflict” at MRE. Who is
involved? Why is there a conflict?

5. How does the Management Systems Unit keep track of
project progress? Briefly describe the method or system.

142 PART II • INFORMATION REQUIREMENTS ANALYSIS

OBSERVING A DECISION MAKER’S BEHAVIOR
Observing decision makers, their physical environment, and their interaction with their physi-
cal, ergonomic environment is an important unobtrusive method for the systems analyst.
Through observing activities of decision makers, the analyst seeks to gain insight about what is
actually done, not just what is documented or explained. In addition, through observation of the
decision maker, the analyst attempts to see firsthand the relationships that exist between deci-
sion makers and other organizational members. Observation of decision makers’ interactions
with technologies can also reveal important clues regarding HCI concerns, such as how well the
system fits with the user.

Observing a Typical Manager’s Decision-Making Activities
Managers’ workdays have been described as a series of interruptions punctuated by short bursts
of work. In other words, pinning down what a manager “does” is a slippery proposition even un-
der the best of circumstances. For the systems analyst to grasp adequately how managers charac-
terize their work, interactive interviews and questionnaires are used. Observation, however,
allows the analyst to see firsthand how managers gather, process, share, and use information and
technology to get work done.

Although it is possible to describe and document how managers make decisions using boxes
and arrows, we are primarily describing humans and their activities. Therefore, we suggest that
systems analysts use a more humanistic approach to describe what managers do. This method is
called the analyst’s playscript. With this technique the “actor” is the decision maker who is ob-
served “acting” or making decisions. In setting up a playscript, the actor is listed in the left-hand
column and all his or her actions are listed in the right-hand column, as shown in Figure 5.7.
All activities are recorded with action verbs, so that a decision maker would be described as
“talking,” “sampling,” “corresponding,” and “deciding.”

Playscript is an organized and systematic approach that demands the analyst be able to un-
derstand and articulate the action taken by each observed decision maker. This approach eventu-
ally assists the systems analyst in determining what information is required for major or frequent
decisions made by the observed people. For instance, from the quality assurance manager exam-
ple in the playscript, it becomes clear that even though this decision maker is on the middle man-
agement level, he or she still requires a fair amount of external information to perform the
required activities of this specific job.

OBSERVING THE PHYSICAL ENVIRONMENT
Observing the activities of decision makers is just one way to assess their information require-
ments. Observing the physical environment where decision makers work also reveals much
about their human information requirements. Most often, such observing means systematically
examining the offices of decision makers, because offices constitute their primary workplace.
Decision makers influence and are in turn influenced by their physical environments and by
their interactions with the technology that takes place there. Many HCI concerns can be identi-
fied through structured observation and confirmed with other techniques, such as interviews or
questionnaires.

Structured Observation of the Environment (STROBE)
Film critics sometimes use a structured form of criticism called mise-en-scène analysis to system-
atically assess what is in a single shot of the film. They look at editing, camera angle, set decor,
and the actors and their costumes to find out how they are shaping the meaning of the film as in-
tended by the director. Sometimes the film’s mise-en-scène will contradict what is said in the di-
alogue. For information requirements analysis, the systems analyst can take on a role similar to
that of the film critic. It often is possible to observe the particulars of the surroundings that will
confirm or negate the organizational narrative (also called “stories” or “dialogue”) that is found
through interviews or questionnaires.

The method for STRuctured OBservation of the Environment is referred to as STROBE. Suc-
cessful application of STROBE requires that an analyst explicitly observe seven concrete ele-

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 143

ments commonly found in offices. The seven observable elements and some key questions that
may arise are listed in Figure 5.8. These elements can reveal much about the way a decision maker
gathers, processes, stores, and shares information, as well as about the decision maker’s credibil-
ity in the workplace.

OFFICE LOCATION. One of the first elements a systems analyst should observe is the location of
a particular decision maker’s office with respect to other offices. Accessible offices tend to
increase interaction frequency and informal messages, whereas inaccessible offices tend to
decrease the interaction frequency and increase task-oriented messages. Offices distributed along
the perimeter of the building usually result in a report or memo being held up in one of the offices,
whereas office clusters encourage information sharing. It is also likely that the people whose

Playscript
Analysis

Company:
Analyst: Scenario:

Date:

Solid Steel Shelving
Quality Assurance

L. Bracket
1/3/2010

Quality Assurance Asks shop floor supervisor for the dayʼs

Manager
production reportShop Floor
Prints out daily computerized production

Supervisor
report

Discusses recurring problems in production
runs with quality assurance (QA) managerQuality Assurance Reads production report

Manager

Compares current report with other reports
from the same week

Inputs data from daily production run into
QA model on computer

Observes onscreen results of QA model
Calls steel suppliers to discuss deviations
from quality standardsShop Floor
Attends meeting on new quality specifications

Supervisor
with quality assurance manager and vice
president of productionQuality Assurance Drafts letter to inform suppliers on new

Manager
quality specifications agreed on in meetingSends draft to vice president via emailVice President of Reads drafted letter

Production

Returns corrections and comments via email
Quality Assurance Reads corrected letter on email
Manager

Rewrites letter to reflect changes

Decision Maker (Actor) Information-Related Activity (Script)

FIGURE 5.7
A sample page from the analyst’s
playscript describing decision
making.

144 PART II • INFORMATION REQUIREMENTS ANALYSIS

offices are separated from others may tend to view the organization differently and so drift further
apart from other organization members in their objectives.

DESK PLACEMENT. Placement of a desk in the office can provide clues to the exercise of power by
the decision maker. Executives who enclose a visitor in a tight space with the visitor’s back to the
wall while allowing themselves a lot of room put themselves into the strongest possible power
position. An executive who positions his or her desk facing the wall with a chair at the side for a
visitor is probably encouraging participation and equal exchanges. The systems analyst should
notice the arrangement of the office furniture and in particular the placement of the desk. Figure 5.9
shows an example of desk placement as well as many of the other elements of STROBE, such as
props, stationary office equipment, lighting, color, and external sources of information.

Office location
Who has the corner office? Are the key
decision makers dispersed over separate
floors?

Desk placement
Does the placement of the desk encourage
communication? Does the placement
demonstrate power?

Stationary equipment
Does the decision maker prefer to gather
and store information personally? Is the
storage area large or small?

Props
Is there evidence that the decision maker
uses a PC, smartphone, or tablet computer
in the office?

External information sources

Office lighting and color

Clothing worn by decision makers

Does the decision maker get much
information from external sources such as
trade journals or the Web?

Is the lighting set up to do detailed work or
more appropriate for casual communication?
Are the colors warm and inviting?

Does the decision maker show authority by
wearing conservative suits? Are employees
required to wear uniforms?

Questions an Analyst Might InvestigateObservable Element
FIGURE 5.8
Seven concrete observable
elements of STROBE and
examples of questions an analyst
may want to ask.

*
SEKR

 CD-RWs Fluorescent
lighting

Trade journals
in bookcase

PC
on desk

File cabinet

FIGURE 5.9
Observe a decision maker’s office
for clues concerning his or her
personal storage, processing, and
sharing of information.

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 145

STATIONARY OFFICE EQUIPMENT. File cabinets, bookshelves, and other large equipment for storing
items are all included in the category of stationary office equipment. If there is no such equipment, it
is likely the decision maker stores very few items of information personally. If there is an abundance
of such equipment, it is presumed the decision maker stores and values much information.

PROPS. The term props (an abbreviation of the theatre/film term properties) refers to all the small
equipment used to process information, including smartphones, calculators, PCs, pens, pencils,

C O N S U L T I N G O P P O R T U N I T Y 5 . 3

Don’t Bank on Their Self-Image
or Not Everything Is Reflected in a Mirror

“I don’t want any power here,” demurs Dr. Drew Charles, med-
ical director of the regional blood center where your systems group
has just begun a project. “I’m up to my neck in work just keeping
the regional physicians informed so they follow good blood-
banking practices,” he says, as he shields his eyes from the bright
sunlight streaming into his office. He clicks off the display con-
nected to his PC and turns his attention to you and the interview.

Dr. Charles is dressed in a conservative, dark wool suit and is
wearing a red-striped silk necktie. He continues, “In fact, I don’t
make decisions. I’m here purely in a positive support role.” He pulls
out the organizational chart shown in Figure 5.C1 to illustrate his
point. “It is as clear as a fracture. The chief administrator is the expert
on all administrative matters. I am the medical consultant only.”

Dr. Charles’s office is stacked high not only with medical jour-
nals such as Transfusion but also with yellowed copies of old BYTE
magazines and the latest issues of Business Week. Each Business Week
is opened to a different page, as if the doctor were in the process of de-
vouring each morsel of information. The overflow journals, however,
are not stored meticulously on metal bookshelves as expected. In sharp
contrast to the gleaming new equipment you saw being used in the
donor rooms, the journals are piled a foot high on an old blood-do-
nating bed that has been long retired from its intended use.

Next, you decide to interview the chief administrator, Craig
Bunker, to whom Dr. Charles has alluded. Fifteen minutes after the
scheduled start of your appointment, Bunker’s secretary, Dawn
Upshaw, finally allows you to enter his office. Bunker, who has just
finished a phone call, is dressed in a light-blue sport coat, checkered
slacks, light-blue shirt, and a necktie. “How are you doing? I’ve just
been checking around to see how everything’s perking along,” Bunker
says by way of introduction. He is outgoing and very friendly.

As you glance around the room, you notice that there are no
filing cabinets, nor is there a PC such as the one Dr. Charles was us-
ing. There are lots of photos of Craig Bunker’s family, but the only
item resembling a book or magazine is the center’s newsletter,
Bloodline. As the interview begins in earnest, Bunker cheerfully
launches into stories about the Pennsylvania Blood Center, where
he held the position of assistant administrator six years ago.

Finally, you descend the stairs to the damp basement level of
the Heath Lambert Mansion. The bloodmobiles have just returned,
and processed blood has been shipped to area hospitals. You decide
to talk with Sang Kim, a bloodmobile driver; Jenny McLaughlin,
the distribution manager; and Roberta Martin, a lab technician who
works the night shift.

Roberta begins, “I don’t know what we’d do without the doc-
tor.” In the same vein, though, Sang feeds the conversation by re-
marking, “Yeah, he helped us by thinking up a better driving
schedule last week.”

Jenny adds, “Dr. Charles is invaluable in setting the inventory
levels for each hospital, and if it wasn’t for him, we wouldn’t have
our new software, let alone our new network.”

As one of the systems analysis team members assigned to the
blood center project, develop an anecdotal checklist using
STROBE to help you systematically interpret the observations you
made about the offices of Dr. Charles and Craig Bunker. Consider
any disparities between a decision maker’s clothing, what a deci-
sion maker states, and what is said by others; between office loca-
tion and what is stated; and between office equipment and policies
stated. In addition, in a paragraph, suggest possible follow-up inter-
views and observations to help settle any unresolved questions.

Blood
Collection

Blood
Distribution

Accounting Computer
Systems

Secretarial Laboratory Nursing Research

Medical
Director

Chief
Administrator

FIGURE 5.C1
Organizational chart of the regional blood center.

146 PART II • INFORMATION REQUIREMENTS ANALYSIS

and rulers. The presence of handhelds, calculators, and PCs suggests that a decision maker who
possesses such equipment is more likely to use it personally than one who must leave the room
to use it.

EXTERNAL INFORMATION SOURCES. A systems analyst needs to know what type of information
is used by the decision maker. Observation of the type of publications stored in the office can
reveal whether the decision maker is looking for external information (found in trade journals,
news items about other companies in the industry, and so on) or relies more on internal
information (company reports, intraoffice correspondence, policy handbooks). The analyst
should also observe whether the decision maker prefers to get external information from the Web.

OFFICE LIGHTING AND COLOR. Lighting and color play an important role in how a decision maker
gathers information. An office lighted with warm, incandescent lighting indicates a tendency
toward more personal communication. An executive in a warmly lit office will gather more
information informally, whereas another organizational member working in a brightly lit, brightly
colored office may gather information through more formal memos and official reports.

CLOTHING WORN BY DECISION MAKERS. Much has been written about the clothing worn by
executives and others in authority. The systems analyst can gain an understanding of the
credibility exhibited by managers in the organization by observing the clothing they wear on the
job. The two-piece suit for a man or the skirted suit for a woman represents the maximum
authority, according to some researchers who have studied perceptions of executive appearance.
Casual dressing by leaders tends to open the door for more participative decision making, but such
attire often results in some loss of credibility in the organization if the predominant culture values
traditional, conservative clothing.

Through the use of STROBE, the systems analyst can gain a better understanding of how
managers gather, process, store, and use information. A summary of the characteristics exhibited
by decision makers and the corresponding observable elements is shown in Figure 5.10.

Applying Strobe
One way to implement STROBE is through the use of an anecdotal checklist with meaningful
shorthand symbols. This approach to STROBE was useful in ascertaining the information re-
quirements for four key decision makers in a franchise clothing store.

As Figure 5.11 shows, five shorthand symbols were used by the systems analysts to evaluate
how observation of the STROBE elements compared with the organizational narrative generated
through interviews. The five symbols are as follows:

1. A check mark means the narrative is confirmed.
2. An “X” means the narrative is reversed.
3. An oval or eye-shaped symbol serves as a cue for the systems analyst to look further.

Gathers information informally

Seeks extraorganizational information

Processes data personally

Stores information personally

Exercises power in decision making

Exhibits credibility in decision making

Shares information with others

Warm, incandescent lighting and colors

Trade journals present in office

PCs, or tablet computers present in office

Equipment/files present in office

Desk placed for power

Wears authoritative clothing

Office easily accessible

Corresponding Elements
in the Physical EnvironmentCharacteristics of Decision Makers

FIGURE 5.10
A summary of decision-maker
characteristics that correspond to
observable elements in the
physical environment.

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 147

M A C A P P E A L

Collecting data unobtrusively seems easy until one realizes that all the data collected must be organized,
stored, and retrieved for analysis. The simplest solution is software called Yojimbo from Bare Bones
software. It is inexpensive and easy to use. Just drag the items you want to collect into Yojimbo and
search for them when you want to retrieve them. A more structured approach is to use an application like
DEVONthink Professional Office. The metaphor of an office is a bit ambitious, because using the ap-
plication is more like tossing all sorts of data in a desk drawer, then figuring out how to organize it at a
later date. DEVONthink accepts Microsoft Word, Excel, and PowerPoint files as well as anything from
iWork. It can keep track of bookmarks and Web pages, images, and PDF files. A built-in OCR reader
helps input pages directly.

When it is time to access the information, DEVONthink can help a systems analyst search,
classify, and show relationships among items with the help of artificial intelligence. DEVONthink
doesn’t help an analyst determine the sample size or keep track of errors, but it does help collect,
store, retrieve, use, and share information gathered by the analyst.

FIGURE 5.MAC
DEVONthink Professional Office from DEVONtechnologies.

4. A square means observation of the STROBE elements modifies the narrative.
5. A circle means the narrative is supplemented by what is observed.

When STROBE is implemented in this manner, the first step is to write down key organiza-
tional themes growing out of interviews. Then the elements of STROBE are observed and
recorded. When narrative and observations are then compared, one of the five appropriate sym-
bols is used to characterize the relationship. The analyst thus creates a table that first documents
and then aids in the analysis of observations.

148 PART II • INFORMATION REQUIREMENTS ANALYSIS

Anecdotal List with Symbols for Applying STROBENarrative Portrayed byOrganization Members
Office Location
and Equipment

Office Lighting,
Color, and Graphics

Clothing of the
Decision Maker

Key

Confirm the narrative

Negate or reverse the narrative

Cue to look further

Modify the narrative

Supplement the narrative

Information is readilyflowing on all levels.

Adams says, “I figure outthe percentages myself.”

Vinnie says, “I like to readup on these things.”
Ed says, “The right handdoesn’t always know whatthe left hand is doing.”

Adams says, “Our companydoesn’t change much.”

The operations staffworks all night sometimes.

Vinnie says, “We do thingsthe way Mr. Adams wants to.”

Julie says, “Stanley doesn’tseem to care sometimes.”

FIGURE 5.11
An anecdotal list with symbols for
use in applying STROBE.

SUMMARY
This chapter has covered unobtrusive methods for information gathering, including sampling; investigation
of quantitative and qualitative data in current and archived forms; and the observation of the decision maker’s
activities through the use of the analyst’s playscript, as well as observation of the decision maker’s physical
environment through the use of STROBE.

The process of systematically selecting representative elements of a population is called sampling. The
purpose of sampling is to select and study documents such as invoices, sales reports, and memos, or perhaps
to select and interview, give surveys to, or observe members of the organization. Sampling can reduce cost,
speed data gathering, potentially make the study more effective, and possibly reduce the bias in the study.

A systems analyst must follow four steps in designing a good sample. First, there is a need for deter-
mining the population itself. Second, the type of sample must be decided. Third, the sample size is calcu-
lated. Finally, the data that need to be collected or described must be planned.

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 149

The types of samples useful to a systems analyst are convenience samples, purposive samples, simple
random samples, and complex random samples. The last type includes the subcategories of systematic sam-
pling and stratified sampling. There are several guidelines to follow when determining sample size.

Systems analysts need to investigate current and archival data and forms, which reveal where the orga-
nization has been and where its members believe it is going. Both quantitative and qualitative documents

H Y P E R C A S E ® E X P E R I E N C E 5 . 2

“We’re proud of our building here in Tennessee. In fact, we
used the architectural firm of I. M. Paid to carry the same theme,
blending into the local landscape while still reaching out to our
clients throughout all the branches. We get lots of people coming
through just to admire the building once they catch on to where it is
exactly. In fact, by Tennessee standards, we get so many sightseers
that it might as well be the pyramids! Well, you can see for yourself
as you go through. The East Atrium is my favorite place: plenty of
light, a huge skylight overhead. Yet it has always fascinated me that
the building and its furnishings might tell a story quite different
from the one its occupants tell.

“Sometimes employees complain that the offices all look the
same. The public rooms are spectacular, though. Even the canteen
is inviting. Most people can’t say that about their cafeterias at
work. You’ll notice that we all personalize our offices, anyway. So
even if the offices were of the ‘cookie cutter’ kind, their occu-
pants’ personalities seem to take over as soon as they have been
here a while. What have you seen? Was there anything that sur-
prised you so far?”

HYPERCASE Questions
1. Use STROBE to compare and contrast Evans’s and

Ketcham’s offices. What sort of conclusion about each
person’s use of information technology can you draw from
your observations? How compatible do Evans and Ketcham
seem in terms of the systems they use? What other clues to
their storage, use, and sharing of information can you
discover based on your observations of their offices?

2. Carefully examine Kathy Blandford’s office. Use STROBE
to confirm, reverse, or negate what you have learned during
your interview with her. List anything you found out about
Ms. Blandford from observing her office that you did not
know from the interview.

3. Carefully examine the contents of the MRE reception area
using STROBE. What inferences can you make about the
organization? List them. What interview questions would
you like to ask, based on your observations of the reception
area? Make a list of people you would like to interview and
the questions you would ask each of them.

FIGURE 5.HC1
There are hidden clues in HyperCase. Use STROBE to discover them.

150 PART II • INFORMATION REQUIREMENTS ANALYSIS

KEYWORDS AND PHRASES

analyst’s playscript
business-to-business (B2B) ecommerce
business-to-consumer (B2C) ecommerce
clothing worn by decision makers
cluster sampling
complex random sample
confidence level
convenience sample
corporate Web sites
desk placement
external information sources
office lighting and color

office location
props (handheld devices and PCs)
purposive sample
sample population
sampling
simple random sample
stationary office equipment
stratified sampling
STROBE
systematic observation
systematic sampling

REVIEW QUESTIONS
1. Define what is meant by sampling.
2. List four reasons why the systems analyst would want to sample data or select representative people

to interview.
3. What are the four steps to follow to design a good sample?
4. List the three approaches to complex random sampling.
5. Define what is meant by stratification of samples.
6. What effect on sample size does using a greater confidence level have when sampling attribute data?
7. What is the overriding variable that determines how many people the systems analyst should

interview in depth?
8. What information about the decision maker does the analyst seek to gain from observation?
9. List five steps to help the analyst observe the decision maker’s typical activities.

10. In the technique known as the analyst’s playscript, who is the actor?
11. In the analyst’s playscript, what information about managers is recorded in the right-hand column?
12. Noting that the idea of STROBE originally came from the world of film, what does the systems

analyst’s role resemble?
13. List the seven concrete elements of the decision maker’s physical environment that can be observed

by the systems analyst using STROBE.

PROBLEMS
1. Cheyl Stake is concerned that too many forms are being filled out incorrectly. She feels that about 8

percent of all the forms have an error.
a. How large a sample size should Ms. Stake use to be 99 percent certain she will be within 0.02?
b. How large a sample size should Ms. Stake use to be 90 percent certain she will be within 0.02?
c. Explain the difference between parts a and b in words.
d. Suppose Ms. Stake will accept a confidence level of 95 percent that she will be within 0.02.

What will the sample size of forms be now?

need to be analyzed. Because documents are persuasive messages, it must be recognized that changing them
might well change the organization.

Analysts use observation as an information-gathering technique. Through observation they gain insight
into what is actually done as users interact with information technology. One way to describe how decision
makers behave is to use an analyst’s playscript that documents each of the major players’ activities.

In addition to observing a decision maker’s behavior, the systems analyst should observe the decision
maker’s surroundings for important clues as to how well the system fits the user. One method is Structured
Observation of the Environment (STROBE). A systems analyst uses STROBE in the same way that a film
critic uses a method called mise-en-scène analysis to analyze a shot in a film.

Several concrete elements in the decision maker’s environment can be observed and interpreted. These
elements include (1) office location, (2) placement of the decision maker’s desk, (3) stationary office equip-
ment, (4) props such as handheld devices and PCs, (5) external information sources such as trade journals
and use of the Web, (6) office lighting and color, and (7) clothing worn by the decision maker. STROBE can
be used to gain a better understanding of how decision makers actually gather, process, store, and share in-
formation in order to get their work done.

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 151

2. “I see that you have quite a few papers there. What all do you have in there?” asks Betty Kant, head
of the MIS task force that is the liaison group between your systems group and Sawder’s Furniture
Company. You are shuffling a large bundle of papers as you prepare to leave the building.

“Well, I’ve got some financial statements, production reports from the last six months, and some
performance reports that Sharon gave me that cover goals and work performance over the last six
months,” you reply as some of the papers fall to the floor. “Why do you ask?”

Betty takes the papers from you and puts them on the nearest desk. She answers, “Because you
don’t need all this junk. You’re here to do one thing, and that’s talk to us, the users. Bet you can’t
read one thing in there that’ll make a difference.”
a. The only way to convince Betty of the importance of each document is to tell her what you are

looking for in each one. Use a paragraph to explain what each kind of document contributes to
the systems analyst’s understanding of the business.

b. While you are speaking with Betty, you realize you actually need other quantitative documents as
well. List any you are missing.

3. You’ve sampled the email messages that have been sent to several middle managers of Sawder’s
Furniture Company, which ships build-your-own particleboard furniture across the country. Here is
one that repeats a message found in several other memos:

To: Sid, Ernie, Carl

From: Imogene

Re: Computer/printer supplies

Date: November 10, 2009

It has come to my attention that I have been waging a war against requests for computer and printer
supplies (writable CDs, toner, paper, etc.) that are all out of proportion to what has been negotiated
for in the current budget. Because we’re all good soldiers here, I hope you will take whatever our
supply sergeant says is standard issue. Please, no “midnight requisitioning” to make up for shortages.
Thanks for being Gl in this regard; it makes the battle easier for us all.
a. What metaphor(s) is (are) being used? List the predominant metaphor and other phrases that play

on that theme.
b. If you found repeated evidence of this idea in other email messages, what interpretation would

you have? Use a paragraph to explain.
c. In a paragraph, describe how the people in your systems analysis group can use the information

from the email messages to shape their systems project for Sawder’s.
d. In interviews with Sid, Ernie, and Carl, there has been no mention of problems with obtaining

enough computer and printer supplies. In a paragraph, discuss why such problems may not come
up in interviews and discuss the value of examining email messages and other memos in addition
to interviewing.

4. “Here’s the main policy manual we’ve put together over the years for system users,” says Al
Bookbinder, as he blows the dust off the manual and hands it to you. Al is a document keeper for the
systems department of Prechter and Gumbel, a large manufacturer of health and beauty aids.
“Everything any user of any part of the system needs to know is in what I call the Blue Book. I mean
it’s chockablock with policies. It’s so big, I’m the only one with a complete copy. It costs too much to
reproduce it.” You thank Al and take the manual with you. When you read through it, you are
astonished at what it contains. Most pages begin with a message such as: “This page supersedes page
23.1 in manual Vol. II. Discard previous inserts; do not use.”
a. List your observations about the frequency of use of the Blue Book.
b. How user friendly are the updates in the manual? Write a sentence explaining your answer.
c. Write a paragraph commenting on the wisdom of having all-important policies for all systems

users in one book.
d. Suggest a solution that incorporates the use of online policy manuals for some users.

5. “I think I’ll be able to remember most everything he does,” says Ceci Awll. Ceci is about to interview
Biff Welldon, vice president of strategic planning of OK Corral, a steak restaurant chain with 130
locations. “I mean, I’ve got a good memory. I think it’s much more important to listen to what he
says than to observe what he does anyway.” As one of your systems analysis team members, Ceci has
been talking with you about the desirability of writing down her observations of Biff’s office and
activities during the interview.
a. In a paragraph, persuade Ceci that listening is not enough in interviews and that observing and

recording those observations are also important.
b. Ceci seems to have accepted your idea that observation is important but still doesn’t know what

to observe. Make a list of items and behaviors to observe, and in a sentence beside each behavior,
indicate what information Ceci should hope to gain through observation of it.

152 PART II • INFORMATION REQUIREMENTS ANALYSIS

6. “We’re a progressive company, always looking to be ahead of the power curve. We’ll give anything a
whirl if it’ll put us ahead of the competition, and that includes every one of us,” says I. B. Daring, an
executive with Michigan Manufacturing (2M). You are interviewing him as a preliminary step in a
systems project, one in which his subordinates have expressed interest. As you listen to I. B., you
look around his office to see that most of the information he has stored on shelves can be classified as
internal procedures manuals. In addition, you notice a PC on a back table of I. B.’s office. The
display screen is covered with dust, and the manuals stacked beside the PC are still encased in their
original shrink-wrap. Even though you know that 2M uses an intranet, no cables are visible going to
or from I. B.’s PC. On the wall behind I. B.’s massive mahogany desk you see five framed oil
portraits of 2M’s founders, all clustered around a gold plaque bearing the corporate slogan, which
states, “Make sure you’re right, then go ahead.”
a. What is the organizational narrative or storyline as portrayed by I. B. Daring? Rephrase it in your

own words.
b. List the elements of STROBE that you have observed during your interview with I. B.
c. Next to each element of STROBE that you have observed, write a sentence on how you would

interpret it.
d. Construct a table with the organizational story line down the left-hand side of the page and the

elements of STROBE across the top. Using the symbols from the “anecdotal list” application of
STROBE, indicate the relationship between the organizational story line as portrayed by I. B.
and each element you have observed (that is, indicate whether each element of STROBE
confirms, reverses, causes you to look further, modifies, or supplements the narrative).

e. Based on your observations of STROBE and your interview, state in a paragraph what problems
you are able to anticipate in getting a new system approved by I. B. and others. In a sentence or
two, discuss how your diagnosis might have been different if you had only talked to I. B. over
the phone or had read his written comments on a systems proposal.

GROUP PROJECTS
1. Assume your group will serve as a systems analysis and design team for a project designed to

computerize or enhance the computerization of all business aspects of a 15-year-old, national U.S.
trucking firm called Maverick Transport. Maverick is a less-than-a-truckload (LTL) carrier. The
people in management work from the philosophy of just in time (JIT), in which they have created a
partnership that includes the shipper, the receiver, and the carrier (Maverick Transport) for the
purpose of transporting and delivering the materials required just in time for their use on the
production line. Maverick maintains 626 tractors for hauling freight, and has 45,000 square feet of
warehouse space and 21,000 square feet of office space.
a. Along with your group members, develop a list of sources of archival data that should be

checked when analyzing the information requirements of Maverick.
b. When this list is complete, devise a sampling scheme that would permit your group to get a clear

picture of the company without having to read each document generated in its 15-year history.
2. Arrange to visit a local organization that is expanding or otherwise enhancing its information

systems. To allow your group to practice the various observation methods described in this chapter,
assign either of these two methods to each team member: (1) developing the analyst’s playscript, or
(2) using STROBE. Many of these strategies can be employed during one-on-one interviews,
whereas some require formal organizational meetings. Try to accomplish several objectives during
your visit to the organization by scheduling it at an appropriate time, one that permits all team
members to try their assigned method of observation. Using multiple methods such as interviewing
and observation (often simultaneously) is the only cost-effective way to get a true, timely picture of
the organization’s information requirements.

3. The members of your group should meet and discuss their findings after completing Project 2. Were
there any surprises? Did the information garnered through observation confirm, reverse, or negate
what was learned in interviews? Were any of the findings from the observational methods in direct
conflict with each other? Work with your group to develop a list of ways to address any puzzling
information (for example, by doing follow-up interviews).

CHAPTER 5 • INFORMATION GATHERING: UNOBTRUSIVE METHODS 153

SELECTED BIBLIOGRAPHY
Cooper, D. R., and P. S. Schindler, Business Research Methods. New York: McGraw-Hill/Irwin, 2007.
Edwards, A. and R. Talbot. The Hard-Pressed Researcher. New York: Longman, 1994.
Kendall, J. E. “Examining the Relationship Between Computer Cartoons and Factors in Information Systems

Use, Success, and Failure: Visual Evidence of Met and Unmet Expectations.” The DATA BASE for
Advances in Information Systems, Vol. 28, No. 2, Spring 1997, pp. 113–126.

Kendall, J. E., and K. E. Kendall. “Metaphors and Methodologies: Living Beyond the Systems Machine.”
MIS Quarterly, Vol. 17, No. 2, June 1993, pp. 149–171.

Kendall J. E., and K. E. Kendall. “Metaphors and Their Meaning for Information Systems Development.”
European Journal of Information Systems, 1994, pp. 37–47.

Kendall, K. E., and J. E. Kendall. “Observing Organizational Environments: A Systematic Approach for In-
formation Analysts.” MIS Quarterly, Vol. 5, No. 1, 1981, pp. 43–55.

Kendall, K. E., and J. E. Kendall. “STROBE: A Structured Approach to the Observation of the Decision-
Making Environment.” Information and Management, Vol. 7, No. 1, 1984, pp. 1–11.

Kendall, K. E., and J. E. Kendall. “Structured Observation of the Decision-Making Environment: A Valid-
ity and Reliability Assessment.” Decision Sciences, Vol. 15, No. 1, 1984, pp. 107–118.

Markus, M. L., and A. S. Lee. “Special Issue on Intensive Research in Information Systems: Using Quali-
tative, Interpretive, and Case Methods to Study Information Technology—Second Installment.” MIS
Quarterly, Vol. 24, No. 1, March 2000, p. 1.

Schultze, U. “A Confessional Account of an Ethnography About Knowledge Work.” MIS Quarterly, Vol. 24,
No. 1, March 2000, pp. 3–41.

Shultis, R. L. “‘Playscript’—A New Tool Accountants Need.” NAA Bulletin, Vol. 45, No. 12, August 1964,
pp. 3–10.

Webb, E. J., D. T. Campbell, R. D. Schwartz, and L. Sechrest. Nonreactive Measures in the Social Sciences,
2d ed. Stamford, CT: CENGAGE Learning, 1981.

E P I S O D E 5
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Seeing Is Believing
“Chip, I know the interviews took a long time, but they were worth it,” Anna says defensively as Chip enters
her office with a worried look on his face.

“I’m sure of that,” Chip says. “You really made a good impression on them. People have stopped me in
the hall and said they’re glad we’re working on the new system. I’m not worried about the interviews them-
selves. But I was concerned that we didn’t have time to discuss observations before you did them.”

“Rest assured, I was all eyes,” Anna laughs. “I used a technique called STROBE, or Structured Obser-
vation of the Environment, to see our decision maker’s habitats systematically. You’ll be interested in these
notes I wrote up for each person I interviewed,” says Anna, as she hands Chip her written, organized obser-
vations from each interview.

EXERCISES
These exercises require that you visit the Web site to obtain observations of the decision makers’ offices.
Please visit the Web site at www.pearsonhighered.com/kendall and look for “CPU Observations of Decision
Makers’ Offices.”

E-1. Based on Anna’s written observation of Dot’s office and clothing, use STROBE to analyze Dot as a
decision maker. In two paragraphs, compare and contrast what you learned in Dot’s interview and
what you learned via STROBE.

E-2. After examining Anna’s written observations about Mike Crowe’s office, use STROBE to analyze
Mike as a decision maker. What differences (if any) did you see between Mike in his interview and
Mike in Anna’s observations? Use two paragraphs to answer.

E-3. Use STROBE to analyze Anna’s written observations about Cher Ware and Paige Prynter. Use two
paragraphs to compare and contrast the decision-making style of each person as it is revealed by his
or her offices and clothing.

E-4. Use STROBE to analyze Anna’s written observations about Hy Perteks. Now compare your analysis
with Hy’s interview. Use two paragraphs to discuss whether STROBE confirms, negates, reverses, or
serves as a cue to look further in Hy’s narrative. (Include any further questions you would ask Hy to
clarify your interpretation.)

154 PART II • INFORMATION REQUIREMENTS ANALYSIS

www.pearsonhighered.com/kendall

155

C H A P T E R 6

Agile Modeling
and Prototyping

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:
1. Understand the roots of agile modeling in prototyping and the four main types of

prototyping.

2. Use prototyping for human information requirements gathering.

3. Understand the concept of RAD for use in human information requirements gathering and
interface design.

4. Understand agile modeling and the core practices that differentiate it from other
development methodologies.

5. Learn the importance of values critical to agile modeling.

6. Understand how to improve efficiency for users who are knowledge workers using either
structured methods or agile modeling.

This chapter explores agile modeling, which is a collection of innovative,
user-centered approaches to systems development. You will learn the val-
ues and principles, activities, resources, practices, processes, and tools as-
sociated with agile methodologies. Agile approaches have their roots in
prototyping, so this chapter begins with prototyping to provide a proper

context for understanding, and then takes up the agile approach in the last half of the chapter.
Prototyping of information systems is a worthwhile technique for quickly gathering spe-

cific information about users’ information requirements. Generally speaking, effective proto-
typing should come early in the SDLC, during the requirements determination phase.

Prototyping is included at this point in the text to underscore its importance as an
information-gathering technique. When using prototyping in this way, the systems analyst
is seeking initial reactions from users and management to the prototype, user suggestions
about changing or cleaning up the prototyped system, possible innovations for it, and revi-
sion plans detailing which parts of the system need to be done first or which branches of
an organization to prototype next.

One special instance of prototyping that uses an object-oriented approach is called rapid
application development (RAD). Prototyping and RAD can also be used as an alternative
method to SDLC.

156 PART II • INFORMATION REQUIREMENTS ANALYSIS

PROTOTYPING
As the systems analyst presenting a prototype of the information system, you are keenly inter-
ested in the reactions of users and management to the prototype. You want to know in detail how
they react to working with the prototype and how good the fit is between their needs and the pro-
totyped features of the system. Reactions are gathered through observation, interviews, and feed-
back sheets (possibly questionnaires) designed to elicit each person’s opinion about the prototype
as he or she interacts with it.

Information gathered in the prototyping phase allows the analyst to set priorities and redirect
plans inexpensively, with a minimum of disruption. Because of this feature, prototyping and plan-
ning go hand-in-hand.

Kinds of Prototypes
The word prototype is used in many different ways. Rather than attempting to synthesize all these
uses into one definition or trying to mandate one correct approach to the somewhat controversial
topic of prototyping, we illustrate how each of several conceptions of prototyping may be use-
fully applied in a particular situation, as shown in Figure 6.1.

PATCHED-UP PROTOTYPE. The first kind of prototyping has to do with constructing a system that
works but is patched up or patched together. In engineering this approach is referred to as
breadboarding: creating a patched-together, working model of an (otherwise microscopic)
integrated circuit.

An example in information systems is a working model that has all the necessary features but
is inefficient. In this instance of prototyping, users can interact with the system, getting accus-
tomed to the interface and types of output available. The retrieval and storage of information may
be inefficient, however, because programs were written rapidly with the objective of being work-
able rather than efficient.

Feature 3

Feature 1

Feature 5

Selected Features Prototype

Nonoperational PrototypePatched-Up Prototype

First-of-a-Series Prototype

Facility 3
Facility 2

Facility 1

Input Process Output

FIGURE 6.1
Four kinds of prototypes
(clockwise, starting from the
upper left).

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 157

NONOPERATIONAL PROTOTYPE. The second conception of a prototype is that of a nonworking
scale model that is set up to test certain aspects of the design. An example of this approach is a
full-scale model of an automobile that is used in wind tunnel tests. The size and shape of the auto
are precise, but the car is not operational. In this case only features of the automobile essential to
wind tunnel testing are included.

A nonworking scale model of an information system might be produced when the coding re-
quired by the applications is too extensive to prototype but when a useful idea of the system can
be gained through the prototyping of the input and output only. In this instance, processing, be-
cause of undue cost and time, would not be prototyped. Users could still make decisions on the
utility of the system, based on their use of prototyped input and output.

FIRST-OF-A-SERIES PROTOTYPE. A third conception of prototyping involves creating a first full-
scale model of a system, often called a pilot. An example is prototyping the first airplane of a
series, then seeing if it flies before building a second. The prototype is completely operational and
is a realization of what the designer hopes will be a series of airplanes with identical features.

This type of prototyping is useful when many installations of the same information system
are planned. The full-scale working model allows users to experience realistic interaction with
the new system, but it minimizes the cost of overcoming any problems that it presents. For exam-
ple, when a retail grocery chain intends to use electronic data interchange (EDI) to check in sup-
pliers’ shipments in a number of outlets, a full-scale model might be installed in one store so users
could work through any problems before the system is implemented in all the others.

SELECTED FEATURES PROTOTYPE. A fourth conception of prototyping concerns building an
operational model that includes some, but not all, of the features that the final system will have.
An analogy would be a new retail shopping mall that opens before the construction of all shops
is complete.

When prototyping information systems in this way, some, but not all, essential features are
included. For example, users may view a system menu on a screen that lists six features: add a
record, update a record, delete a record, search a record for a key word, list a record, or scan a
record. In the prototyped system, however, only three of the six may be available for use, so that
the user may add a record (feature 1), delete a record (feature 3), and list a record (feature 5). User
feedback can help analysts understand what is working and what isn’t. It can also help with sug-
gestions on what features to add next.

When this kind of prototyping is done, the system is accomplished in modules so that if the
features that are prototyped are evaluated by users as successful, they can be incorporated into the
larger, final system without undertaking immense work in interfacing. Prototypes done in this
manner are part of the actual system. They are not just a mock-up as in nonoperational prototyp-
ing considered previously. Unless otherwise mentioned, all further references to prototyping in
this chapter refer to the selected-features prototype.

Prototyping as an Alternative to the SDLC
Some analysts argue that prototyping should be considered as an alternative to the SDLC. Recall
that the SDLC, introduced in Chapter 1, is a logical, systematic approach to follow in the devel-
opment of information systems.

Complaints about going through the SDLC process center around two interrelated concerns.
The first concern is the extended time required to go through the development life cycle. As the
investment of analyst time increases, the cost of the delivered system rises proportionately.

The second concern about using the SDLC is that user requirements change over time. Dur-
ing the long interval between the time that user requirements are analyzed and the time that the
finished system is delivered, user requirements are evolving. Thus, because of the extended de-
velopment cycle, the resulting system may be criticized for inadequately addressing current user
information requirements.

A corollary of the problem of keeping up with user information requirements is the sugges-
tion that users cannot really know what they do or do not want until they see something tangible.
In the traditional SDLC, it often is too late to change an unwanted system once it is delivered.

To overcome these problems, some analysts propose that prototyping be used as an alterna-
tive to the SDLC. When prototyping is used in this way, the analyst effectively shortens the time

158 PART II • INFORMATION REQUIREMENTS ANALYSIS

between ascertainment of human information requirements and delivery of a workable system. In
addition, using prototyping instead of the traditional SDLC might overcome some of the prob-
lems of accurately identifying user information requirements.

Drawbacks to supplanting the SDLC with prototyping include prematurely shaping a system
before the problem or opportunity being addressed is thoroughly understood. Also, using proto-
typing as an alternative may result in producing a system that is accepted by specific groups of
users but that is inadequate for overall system needs.

The approach we advocate here is to use prototyping as a part of the traditional SDLC. In this
view prototyping is considered as an additional, specialized method for ascertaining users’ infor-
mation requirements as they interact with prototypes and provide feedback for the analyst.

DEVELOPING A PROTOTYPE
Prototyping is a superb way to elicit feedback about the proposed system and about how readily
it is fulfilling the information needs of its users, as depicted in Figure 6.2. The first step of proto-
typing is to estimate the costs involved in building a module of the system. If costs of program-
mers’ and analysts’ time as well as equipment costs are within the budget, building of the
prototype can proceed. Prototyping is an excellent way to facilitate the integration of the infor-
mation system into the larger system and culture of the organization.

Modify your design

based on reactions

to your prototype

FIGURE 6.2
Analysts should modify their
original screen designs based on
user reactions to the prototype.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 159

Guidelines for Developing a Prototype
Once the decision to prototype has been made, four main guidelines must be observed when in-
tegrating prototyping into the requirements determination phase of the SDLC:

1. Work in manageable modules.
2. Build the prototype rapidly.
3. Modify the prototype in successive iterations.
4. Stress the user interface.

As you can see, the guidelines suggest ways of proceeding with the prototype that are necessar-
ily interrelated. Each guideline is explained in the following subsections.

WORKING IN MANAGEABLE MODULES. When prototyping some of the features of a system into
a workable model, it is imperative that the analyst work in manageable modules. One distinct
advantage of prototyping is that it is not necessary or desirable to build an entire working system
for prototype purposes.

A manageable module is one that allows users to interact with its key features but can be built
separately from other system modules. Module features that are deemed less important are pur-
posely left out of the initial prototype. As you will see later in this chapter, this is very similar to
the agile approach that emphasizes small releases.

BUILDING THE PROTOTYPE RAPIDLY. Speed is essential to the successful prototyping of an
information system. Recall that one complaint voiced against following the traditional SDLC is
that the interval between requirements determination and delivery of a complete system is far too
long to address evolving user needs effectively.

Analysts can use prototyping to shorten this gap by using traditional information-gathering
techniques to pinpoint salient information requirements, and then quickly make decisions that
bring forth a working model. In effect the user sees and uses the system very early in the SDLC
instead of waiting for a finished system to gain hands-on experience.

Putting together an operational prototype both rapidly and early in the SDLC allows the an-
alyst to gain valuable insight into how the remainder of the project should go. By showing users
very early in the process how parts of the system actually perform, rapid prototyping guards
against overcommitting resources to a project that may eventually become unworkable. Later,

C O N S U L T I N G O P P O R T U N I T Y 6 . 1

Is Prototyping King?

“As you know, we’re an enthusiastic group. We’re not a dynasty
yet, but we’re working on it,” Paul LeGon tells you. Paul (intro-
duced in Consulting Opportunity 2.3), at 24 years of age, is the “boy
king” of Pyramid, Inc., a small but successful independent book-
publishing firm that specializes in paperback books outside of the
publishing mainstream. As a systems analyst, you have been hired
by Pyramid, Inc., to help develop a computerized warehouse inven-
tory and distribution information system.

“We’re hiring lots of workers,” Paul continues, as if to con-
vince you of the vastness of Pyramid’s undertaking. “And we feel
Pyramid is positioned perfectly as far as our markets in the north,
south, east, and west are concerned.

“My assistant, Ceil Toom, and I have been slaving away, think-
ing about the new system. And we’ve concluded that what we re-
ally need is a prototype. As a matter of fact, we’ve tunneled through
a lot of material. Our fascination with the whole idea has really
pyramided.”

As you formulate a response to Paul, you think back over the
few weeks you’ve worked with Pyramid, Inc. You think that the
business problems its information system must resolve are very
straightforward. You also know that the people in the company are
on a limited budget and cannot afford to spend like kings. Actually,
the entire project is quite small.

Ceil, building on what Paul has said, tells you, “We don’t mean
to be too wrapped up with it, but we feel prototyping represents the
new world. And that’s where we all want to be. We know we need
a prototype. Have we convinced you?”

Based on Paul’s and Ceil’s enthusiasm for prototyping and
what you know about Pyramid’s needs, would you support con-
struction of a prototype? Why or why not? Formulate your decision
and response in a letter to Paul LeGon and Ceil Toom. Present a jus-
tification for your decision based on overall criteria that should be
met to justify prototyping.

160 PART II • INFORMATION REQUIREMENTS ANALYSIS

C O N S U L T I N G O P P O R T U N I T Y 6 . 2

Clearing the Way for Customer Links

World’s Trend (see Chapter 7 for a detailed corporate descrip-
tion) is building a Web site on which to sell clearance merchandise
usually sold through the Web and through its catalog operation. As
a newly hired Web consultant, Lincoln Cerf finds himself in a very
cold, wintry city, fighting his way through several inches of snow
to meet with one of the systems team members, Mary Maye, at
World’s Trend headquarters.

Mary welcomes Lincoln, saying, “At least the weather doesn’t
seem to affect our Web sales! They’re brisk no matter what.” Lin-
coln groans appreciatively at her weak attempt at humor, smiles,
and says, “I gathered from your email last week that you are trying
to determine the type of information that needs to be displayed on
our clearance Web site.”

Mary replies, “Yes, I’m trying to get it organized in the best pos-
sible way. Our customers are all so busy. I know photos of all our mer-
chandise can take a long time to appear on the page if a customer is
accessing the Web via a slower modem from home.” Mary continues
by saying, “Linc, I’m not even that concerned about how to design our
clearance site at this time. I am worried, though, about how much in-
formation we need to include on a page. For example, when items are
on clearance, not all colors and sizes are available. Which do you think

is better, to include some basic information and let the customer click
a button to ask for more information, or to be as complete as possible
on one page? If I use the linking method, then I could fit more items
on the screen . . . but it might be too orderly. Customers like the look
and feel of a sale in which merchandise is kind of jumbled together.”

Linc continues her line of thought, saying, “Yeah, I wonder
how customers want the information organized. Have you actually
watched them use the Web? I mean, do they look for shoes when
they buy a suit? If so, should shoes appear on the suit page or be
linked in some way?”

Mary comments, “Those are my questions, too. Then I wonder
if we should just try this approach for men’s clothes first, before we
implement it for women’s clothing. What if men’s and women’s ap-
proaches to shopping on the Web are different?”

As a third member of the World’s Trend Web site development
group, respond in a brief written report to Lincoln and Mary about
whether you should use a prototype to elicit recommendations from
potential customers about the proposed Web site. What type of pro-
totype is appropriate? Consider each form of prototype and explain
why each type would apply (or would not apply) to this problem.
Devote a paragraph to each explanation.

when RAD is discussed, you again see the importance of rapid systems building. In addition, ag-
ile modeling also builds on the practice of quick turnaround times.

MODIFYING THE PROTOTYPE. A third guideline for developing the prototype is that its
construction must support modifications. Making the prototype modifiable means creating it in
modules that are not highly interdependent. If this guideline is observed, less resistance is
encountered when modifications in the prototype are necessary.

The prototype is generally modified several times, going through several iterations. Changes
in the prototype should move the system closer to what users say is important. Each modification
necessitates another evaluation by users.

The prototype is not a finished system. Entering the prototyping phase with the idea that the
prototype will require modification is a helpful attitude that demonstrates to users how necessary
their feedback is if the system is to improve.

STRESSING THE USER INTERFACE. The user’s interface with the prototype (and eventually the
system) is very important. Because what you are really trying to achieve with the prototype is to get
users to further articulate their information requirements, they must be able to interact easily with the
system’s prototype. They should be able to see how the prototype will enable them to accomplish
their tasks. For many users the interface is the system. It should not be a stumbling block.

Although many aspects of the system will remain undeveloped in the prototype, the user in-
terface must be well developed enough to enable users to pick up the system quickly and not be
put off. Online, interactive systems using GUI interfaces are ideally suited to prototypes.
Chapter 14 describes in detail the considerations that are important in designing HCI.

Disadvantages of Prototyping
As with any information-gathering technique, there are several disadvantages to prototyping. The
first is that it can be quite difficult to manage prototyping as a project in the larger systems effort.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 161

The second disadvantage is that users and analysts may adopt a prototype as a completed system
when it is in fact inadequate and was never intended to serve as a finished system. Analysts need
to work to ensure that communication with users is clear regarding the timetable for interacting
with and improving the prototype.

The analyst needs to weigh these disadvantages against the known advantages when decid-
ing whether to prototype, when to prototype, and how much of the system to prototype.

Advantages of Prototyping
Prototyping is not necessary or appropriate in every systems project, as we have seen. The advan-
tages, however, should also be given consideration when deciding whether to prototype. The three
major advantages of prototyping are the potential for changing the system early in its develop-
ment, the opportunity to stop development on a system that is not working, and the possibility of
developing a system that more closely addresses users’ needs and expectations.

Successful prototyping depends on early and frequent user feedback, which analysts can use
to modify the system and make it more responsive to actual needs. As with any systems effort,
early changes are less expensive than changes made late in the project’s development. In the later
part of the chapter, you will see how the agile approach to development uses an extreme form of
prototyping that requires an on-site customer to provide feedback during all iterations.

Prototyping Using COTS Software
Sometimes the quickest way to prototype is through the modular installation of COTS soft-
ware. Although the concept of COTS software can be easily grasped by looking at familiar and
relatively inexpensive packages such as the Microsoft Office products, some COTS software

C O N S U L T I N G O P P O R T U N I T Y 6 . 3

To Hatch a Fish

“Just be a little patient. I think we need to add a few more features
before we turn it over to them. Otherwise, this whole prototype will
sink, not swim,” says Sam Monroe, a member of your systems
analysis team. All four members of the team are sitting together in
a hurriedly called meeting, and they are discussing the prototype
that they are developing for an information system to help managers
monitor and control water temperature, number of fish released,
and other factors at a large, commercial fish hatchery.

“They’ve got plenty to do already. Why, the system began with
four features and we’re already up to nine. I feel like we’re swim-
ming upstream on this one. They don’t need all that. They don’t
even want it,” argues Belle Uga, a second member of the systems
analysis team. “I don’t mean to carp, but just give them the basics.
We’ve got enough to tackle as it is.”

“I think Monroe is more on target,” volunteers Wally Ide, a
third member of the team, baiting Belle a little. “We have to show
them our very best, even if it means being a few weeks later in
hatching our prototype than we promised.”

“Okay,” Belle says warily, “but I want the two of you to tell
the managers at the hatchery why we aren’t delivering the proto-
type. I don’t want to. And I’m not sure they’ll let you off the hook
that easily.”

Monroe replies, “Well, I guess we could, but we probably
shouldn’t make a big deal out of being later than we wanted. I don’t
want to rock the boat.”

Wally chimes in, “Yeah. Why point out our mistakes to every-
one? Besides, when they see the prototype, they’ll forget any com-
plaints they had. They’ll love it.”

Belle finds a memo in her notebook from their last meeting
with the hatchery managers and reads it aloud. “Agenda for meet-
ing of September 22. ‘Prototyping—the importance of rapid devel-
opment, putting together the user analyst team, getting quick
feedback for modification. . . .’” Belle’s voice trails off, omitting
the last few agenda items. In the wake of her comments, Monroe
and Wally look unhappily at each other.

Monroe speaks first. “I guess we did try to get everyone
primed for receiving a prototype quickly and to be involved from
day one.” Noting your silence up until now, Monroe continues,
“But still waters run deep. What do you think we should do next?”
he asks you.

As the fourth member of the systems analysis team, what ac-
tions do you think should be taken? In a one- or two-paragraph
email message to your teammates, answer the following questions:
Should more features be added to the hatchery system prototype be-
fore giving it to the hatchery managers to experiment with? How
important is the rapid development of the prototype? What are the
trade-offs involved in adding more features to the prototype versus
getting a more basic prototype to the client when it was promised?
Complete your message with a recommendation.

162 PART II • INFORMATION REQUIREMENTS ANALYSIS

C O N S U L T I N G O P P O R T U N I T Y 6 . 4

This Prototype Is All Wet

“It can be changed. It’s not a finished product, remember,” af-
firms Sandy Beach, a systems analyst for RainFall, a large manu-
facturer of fiberglass bathtub and shower enclosures for bathrooms.
Beach is anxiously reassuring Will Lather, a production scheduler
for RainFall, who is poring over the first hard-copy output produced
for him by the prototype of the new information system.

“Well, it’s okay,” Lather says quietly. “I wouldn’t want to
bother you with anything. Let’s see, . . . yes, here they are,” he says
as he finally locates the monthly report summarizing raw materials
purchased, raw materials used, and raw materials in inventory.

Lather continues paging through the unwieldy computer print-
out. “This will be fine.” Pausing at a report, he remarks, “I’ll just
have Miss Fawcett copy this part for the people in Accounting.”
Turning a few more pages, he says, “And the guy in Quality Assur-
ance should really see this column of figures, although the rest of it
isn’t of much interest to him. I’ll circle it and make a copy of it for
him. Maybe I should phone part of this in to the warehouse, too.”

As Sandy prepares to leave, Lather bundles up the pages of the
reports, commenting, “The new system will be a big help. I’ll make
sure everybody knows about it. Anything will be better than the ‘old
monster’ anyway. I’m glad we’ve got something new.”

Sandy leaves Will Lather’s office feeling a little lost at sea.
Thinking it over, he starts wondering why Accounting, Quality As-
surance, and the warehouse aren’t getting what Will thinks they
should. Sandy phones a few people, and he confirms that what

Lather has told him is true. They need the reports and they’re not
getting them.

Later in the week Sandy approaches Lather about rerouting the
output as well as changing some of the features of the system. These
modifications would allow Lather to get onscreen answers regard-
ing what-if scenarios about changes in the prices suppliers are
charging or changes in the quality rating of the raw materials avail-
able from suppliers (or both), as well as allow him to see what
would happen if a shipment was late.

Lather is visibly upset with Sandy’s suggestions for altering
the prototype and its output. “Oh, don’t do it on my account. It’s
okay really. I don’t mind taking the responsibility for routing infor-
mation to people. I’m always showering them with stuff anyway.
Really, this is working pretty well. I would hate to have you take it
away from us at this point. Let’s just leave it in place.”

Sandy is pleased that Lather seems so satisfied with the proto-
typed output, but he is concerned about Lather’s unwillingness to
change the prototype, because he has been encouraging users to
think of it as an evolving product, not a finished one.

Write a brief report to Sandy listing changes to the prototype
prompted by Lather’s reactions. In a paragraph, discuss ways that
Sandy can calm Lather’s fears about having the prototype “taken
away.” Discuss in a paragraph some actions that can be taken before
a prototype is tried out to prepare users for its evolutionary nature.

is elaborate and expensive, but highly useful. One example of rapid implementation of COTS
software can be found in Catholic University’s use of the ERP COTS software package called
PeopleSoft, which is handling many of its Web-based functions.

Catholic University, along with a higher education consulting group and PeopleSoft, success-
fully undertook rapid implementation of a recruiting and admissions module of their COTS soft-
ware. They launched the implementation in April 1999, and by that October they had successfully
implemented recruiting and admissions for undergraduates. By November of the same year, they
implemented the same functions for graduate students. Other modules of the PeopleSoft COTS
software that are implemented at Catholic University include a complete online course catalog,
online registration, and the capability for students to check grades, transcripts, bills, and financial
aid payments online from anywhere.

Users’ Role in Prototyping
The users’ role in prototyping can be summed up in two words: honest involvement. Without user
involvement there is little reason to prototype. The precise behaviors necessary for interacting
with a prototype can vary, but it is clear that the user is pivotal to the prototyping process. Real-
izing the importance of the user to the success of the process, the members of the systems analy-
sis team must encourage and welcome input and guard against their own natural resistance to
changing the prototype.

There are three main ways a user can be of help in prototyping:

1. Experimenting with the prototype.
2. Giving open reactions to the prototype.
3. Suggesting additions to or deletions from the prototype.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 163

Users should be free to experiment with the prototype. In contrast to a mere list of systems
features, the prototype allows users the reality of hands-on interaction. Mounting a prototype on
an interactive Web site is one way to facilitate this interaction.

Another aspect of the users’ role in prototyping requires that they give open reactions to the
prototype. Analysts need to be present at least part of the time when experimentation is occur-
ring. They can then observe users’ interactions with the system, and they are bound to see inter-
actions they never planned. A filled-in form for observing user experimentation with the
prototype is shown in Figure 6.3. Some of the variables you should observe include user reac-
tions to the prototype, user suggestions for changing or expanding the prototype, user innovations
for using the system in completely new ways, and any revision plans for the prototype that aid in
setting priorities.

A third aspect of the users’ role in prototyping is their willingness to suggest additions to or
deletions from the features being tried. The analyst’s role is to elicit such suggestions by assuring
users that the feedback they provide is taken seriously, by observing users as they interact with
the system, and by conducting short, specific interviews with users concerning their experiences
with the prototype. Although users will be asked to articulate suggestions and innovations for the
prototype, in the end it is the analyst’s responsibility to weigh this feedback and translate it into
workable changes where necessary. To facilitate the prototyping process, the analyst must clearly
communicate the purposes of prototyping to users, along with the idea that prototyping is valu-
able only when users are meaningfully involved.

RAPID APPLICATION DEVELOPMENT
Rapid application development (RAD) is an object-oriented approach to systems development
that includes a method of development as well as software tools. It makes sense to discuss RAD
and prototyping in the same chapter, because they are conceptually very close. Both have as their
goal the shortening of time typically needed in a traditional SDLC between the design and imple-
mentation of the information system. Ultimately, both RAD and prototyping are trying to meet

Observer Name

DateSystem or Project Name
Company or Location

Program Name or Number
VersionUser 1 User 2 User 3 User 4

User Name
Period Observed
User Reactions

User Suggestions

Innovations

Revision Plans

Michael Cerveris
1/06/2010Cloud Computing Data Center Aquarius Water FiltersPrev. Maint.

1
Andy H. Pam H.1/06/2010 1/06/2010Generally

favorable,
got excited
about project

Excellent!

Add the date
when maintenance
was performed.

Place a form
number on top
for reference.
Place word
WEEKLY in title.

Modify on
1/08/2010
Review with
Andy and Pam.

Prototype Evaluation Form

FIGURE 6.3
An important step in prototyping
is to properly record user
reactions, user suggestions,
innovations, and revision plans.

164 PART II • INFORMATION REQUIREMENTS ANALYSIS

Identify Objectives
and Information
Requirements

Introduce the
New System

Build the
System

Requirements
Planning Implementation

RAD Design Workshop

Work with Users
to Design System

FIGURE 6.4
The RAD design workshop is the
heart of the interactive
development process.

rapidly changing business requirements more closely. Once you have learned the concepts of pro-
totyping, it is much easier to grasp the essentials of RAD, which can be thought of as a specific
implementation of prototyping.

Some developers are looking at RAD as a helpful approach in new ecommerce, Web-based
environments in which so-called first-mover status of a business might be important. In other
words, to deliver an application to the Web before their competitors, businesses may want their
development team to experiment with RAD.

Phases of RAD
There are three broad phases to RAD that engage both users and analysts in assessment, design,
and implementation. Figure 6.4 depicts these three phases. Notice that RAD involves users in
each part of the development effort, with intense participation in the business part of the design.

REQUIREMENTS PLANNING PHASE. In the requirements planning phase, users and analysts meet
to identify objectives of the application or system and to identify information requirements
arising from those objectives. This phase requires intense involvement from both groups; it is not
just signing off on a proposal or document. In addition, it may involve users from different levels
of the organization (as covered in Chapter 2). In the requirements planning phase, when
information requirements are still being addressed, you may be working with the CIO (if it is a
large organization) as well as with strategic planners, especially if you are working with an
ecommerce application that is meant to further the strategic aims of the organization. The
orientation in this phase is toward solving business problems. Although information technology
and systems may even drive some of the solutions proposed, the focus will always remain on
reaching business goals.

RAD DESIGN WORKSHOP. The RAD design workshop phase is a design-and-refine phase that can
best be characterized as a workshop. When you imagine a workshop, you know that participation
is intense, not passive, and that it is typically hands on. Usually participants are seated at round
tables or in a U-shaped configuration of chairs with attached desks where each person can see the
other and where there is space to work on a notebook computer. If you are fortunate enough to
have a group decision support systems (GDSS) room available at the company or through a local
university, use it to conduct at least part of your RAD design workshop.

During the RAD design workshop, users respond to actual working prototypes and analysts
refine designed modules (using some of the software tools mentioned later) based on user re-
sponses. The workshop format is very exciting and stimulating, and if experienced users and an-
alysts are present, there is no question that this creative endeavor can propel development forward
at an accelerated rate.

IMPLEMENTATION PHASE. In the previous figure, you can see that analysts are working with users
intensely during the workshop to design the business or nontechnical aspects of the system. As
soon as these aspects are agreed on and the systems are built and refined, the new systems or part
of systems are tested and then introduced to the organization. Because RAD can be used to create

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 165

new ecommerce applications for which there is no old system, there is often no need to (and no
real way to) run the old and new systems in parallel before implementation.

By this time, the RAD design workshop will have generated excitement, user ownership, and
acceptance of the new application. Typically, change brought about in this manner is far less
wrenching than when a system is delivered with little or no user participation.

Comparing RAD to the SDLC
In Figure 6.5 you can compare the phases of the SDLC with those detailed for RAD at the begin-
ning of this section. Notice that the ultimate purpose of RAD is to shorten the SDLC and in this way
respond more rapidly to dynamic information requirements of organizations. The SDLC takes a
more methodical, systematic approach that ensures completeness and accuracy and has as its inten-
tion the creation of systems that are well integrated into standard business procedures and culture.

Introduce
the System

Introduce
the System

Work with Users
to Design System

Build the
System

RA
D

De
si

gn
 W

or
ks

ho
p

Re
qu

ire
m

en
ts

 P
la

nn
in

g
an

d
An

al
ys

is
 P

ha
se

s
De

si
gn

, D
ev

el
op

m
en

t,
an

d
Do

cu
m

en
ta

tio
n

Ph
as

es

Identify Objectives
and Information
Requirements Identify

Opportunities
and

Objectives

Determine
Information

Requirements;
Develop E-R

Diagrams

Analyze Systems
Needs; Develop
DFDs and Data
Repositories

Design the
Recommended

System

Develop and
Document the

System

Test the
System

User Feedback

Use Input from Users

The RAD approach

allows for quick

development.

The SDLC approach

allows for careful

systematic analysis,

design, and
documentation of

systems.

FIGURE 6.5
The RAD design workshop and
the SDLC approach compared.

166 PART II • INFORMATION REQUIREMENTS ANALYSIS

The RAD design workshop phase is a departure from the standard SDLC design phases, be-
cause RAD software tools are used to generate screens and to exhibit the overall flow of the run-
ning of the application. Thus, when users approve this design, they are signing off on a visual
model representation, not just a conceptual design represented on paper, as is traditionally the case.

The implementation phase of RAD is in many ways less stressful than others, because the
users have helped to design the business aspects of the system and are well aware of what changes
will take place. There are few surprises, and the change is something that is welcomed. Often
when using the SDLC, there is a lengthy time during development and design when analysts are
separated from users. During this period, requirements can change and users can be caught off
guard if the final product is different than anticipated over many months.

WHEN TO USE RAD. As an analyst, you want to learn as many approaches and tools as possible
to facilitate getting your work done in the most appropriate way. Certain applications and systems
work will call forth certain methodologies. Consider using RAD when:

1. Your team includes programmers and analysts who are experienced with it; and
2. There are pressing business reasons for speeding up a portion of an application

development; or
3. When you are working with a novel ecommerce application and your development team

believes that the business can sufficiently benefit over their competitors from being an
innovator if this application is among the first to appear on the Web; or

4. When users are sophisticated and highly engaged with the organizational goals of the
company.

DISADVANTAGES OF RAD. The difficulties with RAD, as with other types of prototyping, arise
because systems analysts try to hurry the project too much. Suppose two carpenters are hired to
build two storage sheds for two neighbors. The first carpenter follows the SDLC philosophy,
whereas the second follows the RAD philosophy.

The first carpenter is systematic, inventorying every tool, lawn mower, and piece of patio fur-
niture to determine the correct size for the shed, designing a blueprint of the shed, and writing
specifications for every piece of lumber and hardware. The carpenter builds the shed with little
waste and has precise documentation about how the shed was built if anyone wants to build an-
other just like it, repair it, or paint it using the same color.

The second carpenter jumps right into the project by estimating the size of the shed, getting
a truckload of lumber and hardware, building a frame and discussing it with the owner of the prop-
erty as modifications are made when certain materials are not available, and making a trip to re-
turn the lumber not used. The shed gets built faster, but if a blueprint is not drawn, the
documentation never exists.

AGILE MODELING
Agile methods are a collection of innovative, user-centered approaches to systems development.
You will learn the values and principles, activities, resources, practices, processes, and tools as-
sociated with agile methodologies in the upcoming section. Agile methods can be credited with
many successful systems development projects and in numerous cases even credited with rescu-
ing companies from a failing system that was designed using a structured methodology.

Values and Principles of Agile Modeling
The agile approach is not based just on results. It is based on values, principles, and practices. Es-
sential to agile programming are stated values and principles that create the context for collabo-
ration among programmers and customers. In order to be agile analysts, you must adhere to the
following values and principles as developed by Beck (2000) in his work on agile modeling that
he called “extreme programming” or “XP.”

FOUR VALUES OF AGILE MODELING. There are four values that create an environment in which both
developers and businesses can be adequately served. Because there is often tension between what
developers do in the short term and what is commercially desirable in the long term, it is important
that you knowingly espouse values that will form a basis for acting together on a software project.
The four values are communication, simplicity, feedback, and courage, as shown in Figure 6.6.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 167

Let’s begin with communication. Every human endeavor is fraught with possibilities for mis-
communication. Systems projects that require constant updating and technical design are espe-
cially prone to such errors. Add to this tight project deadlines, specialized jargon, and the
stereotype that programmers would prefer to talk to machines rather than people, and you have
the potential for some serious communication problems. Projects can be delayed; the wrong prob-
lem can be solved; programmers are punished for even bringing up problems to managers; peo-
ple leave or join the project in midstream without proper updates; and so the litany goes.

Typical agile practices such as pair programming (two programmers collaborating, described
later in the chapter), estimating tasks, and unit testing rely heavily on good communication. Prob-
lems are fixed rapidly, holes are closed, and weak thinking is quickly strengthened through inter-
action with others on the team.

A second value of the agile approach is that of simplicity. When we are working on a soft-
ware development project, our first inclination is to become overwhelmed with the complexity
and bigness of the task. However, you cannot run until you know how to walk, nor walk until you
know how to stand. Simplicity for software development means that we will begin with the sim-
plest possible thing we can do.

The agile value of simplicity asks us to do the simplest thing today, with the understanding
that it might have to be changed a little tomorrow. This requires a clear focus on the goals of the
project and really is a basic value.

Feedback is the third basic value that is important when taking an extreme programming ap-
proach. When you think of feedback in this context, it is good to consider that feedback is
wrapped up with the concept of time. Good, concrete feedback that is useful to the programmer,
analyst, and customer can occur within seconds, minutes, days, weeks, or months, depending on
what is needed, who is communicating, and what will be done with the feedback. A fellow pro-
grammer may hand you a test case that breaks the code you wrote only hours before, but that feed-
back is almost priceless in terms of being able to change what is not working before it is accepted
and further embedded in the system.

Feedback occurs when customers create functional tests for all of the stories that program-
mers have subsequently implemented. (See more on user stories later in this chapter.) Critical
feedback about the schedule comes from customers who compare the goal of the plan to the
progress that has been made. Feedback helps programmers to make adjustments and lets the busi-
ness start experiencing very early on what the new system will be like once it is fully functional.

Courage is the fourth value enunciated in agile programming. The value of courage has to do
with a level of trust and comfort that must exist in the development team. It means not being afraid
to throw out an afternoon or a day of programming and begin again if all is not right. It means be-
ing able to stay in touch with one’s instincts (and test results) concerning what is working and
what is not.

Courage also means responding to concrete feedback, acting on your teammates’ hunch when
they believe that they have a simpler, better way to accomplish your goal. Courage is a high-risk,
high-reward value that encourages experimentation that can take the team to its goal more rapidly,
in an innovative way. Courage means that you and your teammates trust each other and your cus-
tomers enough to act in ways that will continuously improve what is being done on the project, even
if they require throwing out code, rethinking solutions, or further simplifying approaches. Courage
also implies that you, as a systems analyst, eagerly apply the practices of the agile approach.

Analysts can best reflect all of the four values through an attitude of humility. Historically,
computer software was developed by experts who often thought they knew how to run a business

Simplicity

Feedback

Co

mmunication

Courage

Agile

Values

FIGURE 6.6
Values are crucial to the agile
approach.

168 PART II • INFORMATION REQUIREMENTS ANALYSIS

better than the local customers who were the true domain experts. Computer experts were often
referred to as “gurus.” Some of the gurus displayed large egos and insisted on their infallibility,
even when customers did not believe it. Many gurus lacked the virtue of humility.

However, maintaining a humble attitude during systems development is critical. You must con-
tinually embrace the idea that if the user is expressing a difficulty, then that difficulty must be ad-
dressed. It cannot be ignored. Agile modelers are systems analysts who make suggestions, voice
opinions, but never insist that they are right 100 percent of the time. Agile modelers possess the self-
confidence to allow their customers to question, critique, and sometimes complain about the system
under development. Analysts learn from their customers, who have been in business a long time.

THE BASIC PRINCIPLES OF AGILE MODELING. In a perfect world, customers and your software
development team would see eye to eye and communication would not be necessary. We would
all be in agreement at all times. We know that the ideal world doesn’t exist. But how can we bring
our software development projects closer to the ideal? Part of why this will not happen is that so
far we are trying to operate on a vague system of shared values. They’re a good beginning, but
they are really not operationalized to the point at which we can measure our success in any
meaningful way. So we work to derive the basic principles that can help us check whether what
we are doing in our software project is actually measuring up to the values that we share.

Agile principles are the reflections and specifications of agile values. They serve as guide-
lines for developers to follow when developing systems. They also serve to set agile methodolo-
gies apart from the more traditional plan-driven methodologies such as SDLC as well as
object-oriented methodologies.

Agile principles were first described by Beck et al. and have evolved ever since. These prin-
ciples can be expressed in a series of sayings such as:

1. Satisfy the customer through delivery of working software
2. Embrace change, even if introduced late in development
3. Continue to deliver functioning software incrementally and frequently
4. Encourage customers and analysts to work together daily
5. Trust motivated individuals to get the job done
6. Promote face-to-face conversation
7. Concentrate on getting software to work
8. Encourage continuous, regular, and sustainable development
9. Adopt agility with attention to mindful design

10. Support self-organizing teams
11. Provide rapid feedback
12. Encourage quality
13. Review and adjust behavior occasionally, and
14. Adopt simplicity.

Often you will hear agile developers communicate their point through sayings like those
mentioned previously or even simpler phrases such as “model with a purpose,” “software is your
primary goal,” and “travel light,” a way of saying a little documentation is good enough. Listen
to these carefully. These sayings (some call them proverbs) are further discussed in Chapter 16
under an analysis and document tool called FOLKLORE. Catchy phrases are easy to understand,
easy to memorize, and easy to repeat. They are very effective.

Activities, Resources, and Practices of Agile Modeling
Agile modeling involves a number of activities that need to be completed sometime during the
agile development process. This section discusses these activities, the resources, and the practices
that are unique to the agile approach.

FOUR BASIC ACTIVITIES OF AGILE DEVELOPMENT. There are four basic activities of development
that agile methods use. They are coding, testing, listening, and designing. The agile analyst needs
to identify the amount of effort that will go into each activity and balance that with the resources
needed to complete the project.

Coding is designated as the one activity that it is not possible to do without. One author
states that the most valuable thing that we receive from code is “learning.” The process is basi-

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 169

cally this: have a thought, code it, test it, and see whether the thought was a logical one. Code
can also be used to communicate ideas that would otherwise remain fuzzy or unshaped. When I
see your code, I may get a new thought. Source code is the basis for a living system. It is essen-
tial for development.

Testing is the second basic activity of development. The agile approach views automated
tests as critical. The agile approach advocates writing tests to check the coding, functionality, per-
formance, and conformance. Agile modeling relies on automated tests, and large libraries of tests
exist for most programming languages. These tests need to be updated as necessary during the
progress of the project.

There are both long-term and short-term reasons for testing. Testing in the short term pro-
vides you with extreme confidence in what you are building. If tests run perfectly you can con-
tinue on with renewed confidence. In the long term, testing keeps a system alive and allows you
to make changes longer than would be possible if no tests were written or run.

The third basic activity of development is listening. In Chapter 4, we learned about the im-
portance of listening during interviews. In the agile approach, listening is done in the extreme.
Developers use active listening to hear their programming partner. In agile modeling there is less
reliance on formal, written communication, and so listening becomes a paramount skill.

The developer also uses active listening with the customer. Developers assume that they know
nothing about the business they are helping, and so they must listen carefully to businesspeople to
get the answers to their questions. The developer needs to come to an understanding of what effec-
tive listening is. If you don’t listen, you will not know what you should code or what you should test.

The fourth basic activity in development is designing, which is a way of creating a structure
to organize all the logic in the system. Designing is evolutionary, and so systems that are designed
using the agile approach are conceptualized as evolving, always being designed.

Good design is often simple. Design should allow flexibility as well. Designing well permits
you to make extensions to the system by making changes only in one place. Effective design lo-
cates logic near the data on which it will be operating.Above all, design should be useful to all those
who will need it as the development effort proceeds, including customers as well as programmers.

FOUR RESOURCE CONTROL VARIABLES OF AGILE MODELING. Completing all the activities in the
project on time within all the constraints is admirable, but, as you probably have realized by now,
in order to accomplish this, project management is crucial. Managing a project doesn’t mean
simply getting all the tasks and resources together. It also means that the analyst is faced with a
number of trade-offs. Sometimes cost may be predetermined, at other junctures time may be the
most important factor. These resource control variables (time, cost, quality, and scope) are
discussed next.

TIME. You need to allow enough time to complete your project. Time, however, is split into many
separate pieces. You need time to listen to the customers, time to design, time to code, and time
to test.

One of our friends is an owner of a Chinese restaurant. Recently, he found himself short-
staffed as one of the members of his reliable crew returned to Hong Kong to get married. The
owner placed himself in the kitchen so the food was served on time, but stopped greeting his cus-
tomers out front in the usual way. He sacrificed the listening activity to achieve another, but in
this case he found out it was hurting his business. Customers wanted the attention.

It is the same in systems development. You can create quality software, but fail to listen. You
can design a perfect system, but not allow enough time to test it. Time is difficult to manage. If
you find yourself running short of time, what do you do?

The agile approach challenges the notion that more time will give you the results you want.
Perhaps the customer would prefer that you finish on time rather than extending the deadline to add
another feature. Customers, we often find, are happy if some of the functionality is up and running on
time. Our experience shows that often a customer is 80-percent satisfied with the first 20 percent of
the functionality. This means that when you complete the final 80 percent of the project, the customer
may be only slightly happier than he or she was after you completed the first 20 percent. The message
here is be careful not to extend your deadline. The agile approach insists on finishing on time.

COST. Cost is the second variable we can consider adjusting. Suppose that the activities of
coding, designing, testing, and listening are weighing the project down, and the resources we put

170 PART II • INFORMATION REQUIREMENTS ANALYSIS

into time, scope, and quality are not sufficient, even with a normal amount devoted to cost, to
balance the project. Essentially we might be required to contribute more resources that require
money to balance the project.

The easiest way to increase spending (and hence costs) is to hire more people. This may ap-
pear to be the perfect solution. If we hire more programmers, we’ll finish faster. Right? Not nec-
essarily. Picture hiring two people to repair a roof and increase that number to four. Soon the
people are bumping into one another. Furthermore, they need to ask each other what still needs
to be done. And if there’s a lightning storm, no one will be working. Going from two to four
doesn’t mean it will take half of the time. Consider the required increase in communication and
other intangible costs when you are considering hiring more people. Remember that when new
people join a team, they do not know the project or the team. They will slow the original mem-
bers down, because the original members must devote time to getting new members up to speed.

Overtime doesn’t help much either. It increases the cost, but the productivity doesn’t always
follow. Tired programmers are less effective than alert programmers. Tired programmers take a long
time to complete a task, and they also make mistakes that are even more time consuming to fix.

Is there anything else we can spend our money on? Perhaps.As you read later chapters you will
read about a variety of tools that support analysts and programmers. These tools are often a wise in-
vestment. Analysts, for example, use graphical packages such as Microsoft Visio to communicate
ideas about the project to others, and CASE tools such as VisibleAnalyst also help speed up projects.

Even new hardware could be a worthwhile expenditure. Laptops and smartphones improve
productivity away from the office. Larger visual displays, Bluetooth-enabled keyboards and
mice, and more powerful graphics cards can also increase productivity.

QUALITY. The third resource control variable is quality. If ideal systems are perfect, why is so
much effort placed in maintaining systems? Are we already practicing agile development by
sacrificing quality in software development? In Chapter 16 we will see the importance of quality
and methods (such as TQM and Six Sigma) that help ensure software quality is high.

The agile philosophy, however, does allow the analyst to adjust this resource, and perhaps put
less effort into maintaining quality than otherwise would be expected. Quality can be adjusted both
internally and externally. Internal quality involves testing software for factors such as functionality
(Does a program do what it is supposed to do?) and conformance (Does the software meet certain
conformance standards and is it maintainable?). It usually doesn’t pay to tinker with internal quality.

That leaves us with external quality, or how the customer perceives the system. The customer
is interested in performance. Some of the questions a customer may ask are: Does the program
act reliably (or do software bugs still exist)? Is the output effective? Does the output reach me on
time? Does the software run effortlessly? Is the user interface easy to understand and use?

The extreme philosophy of agile development allows some of the external quality issues to
be sacrificed. In order for the system to be released on time, the customer may have to contend
with some software bugs. If we want to meet our deadline, the user interface may not be perfect.
We can make it better in a follow-up version.

Commercial off-the-shelf software manufacturers do sacrifice quality, and it is debatable
whether this is the correct approach. So don’t be surprised when your PC software applications
(not to mention your operating system and Web browser) are updated often, if developers are us-
ing extreme programming as one of their agile practices.

SCOPE. Finally, there is scope. In the agile approach, scope is determined by listening to
customers and getting them to write down their stories. Then the stories are examined to see how
much can be done in a given time to satisfy the customer. Stories should be brief and easy to grasp.
Stories will be described in more detail later in this chapter, but here is a brief example showing
four short stories from an online air travel system. Each story is shown in bold type:

Display alternative flights.
Prepare a list of the five cheapest flights.

Offer cheaper alternatives.
Suggest to customers that they travel on other days, make weekend stays, take special
promotions, or use alternate airports.

Purchase a ticket.
Allow the customer to purchase a ticket directly using a credit card (check validity).

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 171

Allow the customer to choose his or her seat.
Direct the customer to a visual display of the airplane and ask the customer to select
a seat.

Ideally, the analyst would be able to determine how much time and money was needed to
complete each of these stories and be able to set the level of quality for them as well. It is obvi-
ous that this system must not sacrifice quality, or credit card purchases may be invalid or cus-
tomers may show up at the airport without reservations.

Once again agile practices allow extreme measures, so in order to maintain quality, manage
cost, and complete the project on time, the agile analyst may want to adjust the scope of the proj-
ect. This can be accomplished by agreeing with the customer that one or more of the stories can
be delayed until the next version of the software. For example, maybe the functionality of allow-
ing customers to choose their own seats can be put off for another time.

In summary, the agile analyst can control any of the four resource variables of time, cost,
quality, and scope. Agility calls for extreme measures and places a great deal of importance on
completing a project on time. In doing so, sacrifices must be made and the agile analyst will find
out that the trade-offs available involve difficult decisions.

FOUR CORE AGILE PRACTICES. Four core practices markedly distinguish the agile approach from
other approaches: short releases; the 40-hour workweek; hosting an onsite customer; and using
pair programming.

1. Short releases means that the development team compresses the time between releases of
their product. Rather than releasing a full-blown version in a year, using the short release
practice they will shorten the release time by tackling the most important features first,
releasing that system or product, and then improving it later.

2. Forty-hour workweek means that agile development teams purposely endorse a cultural
core practice in which the team works intensely together during a typical 40-hour
workweek. As a corollary to this practice, the culture reinforces the idea that working
overtime for more than a week in a row is very bad for the health of the project and the
developers. This core practice attempts to motivate team members to work intensely at the
job, and then to take time off so that when they return they are relaxed and less stressed.
This helps team members spot problems more readily, and prevents costly errors and
omissions due to ineffectual performance or burnout.

3. Onsite customer means that a user who is an expert in the business aspect of the systems
development work is onsite during the development process. This person is integral to the
process, writes user stories, communicates to team members, helps prioritize and balance the
long-term business needs, and makes decisions about which feature should be tackled first.

4. Pair programming is an important core practice. It means that you work with another
programmer of your own choosing. You both do coding, you both run tests. Often the
senior person will take the coding lead initially, but as the junior person becomes involved,
whoever has the clear vision of the goal will typically do the coding for the moment. When
you ask another person to work with you, the protocol of pair programming says he or she
is obligated to consent. Working with another programmer helps you clarify your thinking.
Pairs change frequently, especially during the exploration stage of the development
process. Pair programming saves time, cuts down on sloppy thinking, sparks creativity, and
is a fun way to program.

How core agile practices interrelate with and support agile development activities, resources,
and values is shown in Figure 6.7.

The Agile Development Process
Modeling is a keyword in agile methods. Agile modeling seizes on the opportunity to create mod-
els. These can be logical models such as drawings of systems, or mock-ups such as the prototypes
described earlier in this chapter. A typical agile modeling process would go something like this:

1. Listen for user stories from the customer.
2. Draw a logical workflow model to gain an appreciation for the business decisions

represented in the user story.
3. Create new user stories based on the logical model.

172 PART II • INFORMATION REQUIREMENTS ANALYSIS

4. Develop some display prototypes. In doing so, show the customers what sort of interface
they will have.

5. Using feedback from the prototypes and the logical workflow diagrams, develop the
system until you create a physical data model.

Agile is the other keyword in agile modeling. Agile implies maneuverability. Today’s sys-
tems, especially those that are Web-based, pose twin demands: getting software released as soon
as possible and continually improving the software to add new features. The systems analyst
needs to have the ability and methods to create dynamic, context-sensitive, scalable, and evolu-
tionary applications. Agile modeling as such is a change-embracing method.

WRITING USER STORIES. Even though the title of this section is “Writing User Stories,” the
emphasis in the creation of user stories is on spoken interaction between developers and
users, not the written communication. In user stories, the developer is seeking first and
foremost to identify valuable business user requirements. Users will typically engage in
conversations every day with the developers about the meaning of the user stories they have
written. These frequent conversations are purposeful interactions that have as their goal the
prevention of misunderstandings or misinterpretations of user requirements. Therefore, user
stories serve as reminders to the developers that they must hold conversations devoted to
those requirements.

The following is an example of a series of stories written for an ecommerce application for
an online merchant of books, CDs, and other media products. The stories give a fairly complete
picture of what is needed at each of the stages in the purchase process, but the stories are very
short and easy to comprehend. The point here is to get all the needs and concerns of the online
store out in the open. Although there is not enough of a story to begin programming, an agile

40-Hour Work Week

Onsite Custo

mer

Sh

ort
Release

Pair Programming

Cost

Quality

Tim
e

Scope

Testing

Listening

Coding

Designing

Agile Activities

Agile Core Practices

Agile Resources

Simplicity

Feedback

Co
mmunication

Courage

Agile Values

FIGURE 6.7
The core practices are interrelated
with agile modeling’s resources,
activities, and values.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 173

M A C A P P E A L

Just as agile methodologies are an alternative to the SDLC, OmniFocus is an alternative to Microsoft
Project or other Gantt Chart or PERT diagram approaches.

A casual observer might think that agile methods are unstructured because systems are built
without detailed specifics and documentation. A student of agile methods realizes that there is actu-
ally quite a bit of structure in the agile approach. Principles include sticking to the 40-hour workweek
and coordination through pair-programming. An analyst who adopts agile techniques needs a way to
set goals, keep within budget, set priorities for features, and find a way to get things done.

OmniFocus is based on an alternative task management system by David Allen, called Getting
Things Done. The overriding principle is to free your mind from remembering things, so that you can
concentrate on completing them. An analyst using this system would go through five actions: collect,
process, organize, review, and do.

Systems analysts using OmniFocus would collect items from their Web browser, their address
book or their calendar, or most applications on a Mac. The analyst can categorize it or assign it to a
larger project. OmniFocus contains a planning mode so the analyst can see which task is part of a
larger project and a context mode that organizes the tasks so the analyst knows all the tasks that must
be done either by phone, by browsing the Web, or by using email. OmniFocus is also available as an
iPhone app.

developer might begin to see the overall picture clearly enough to begin estimating what it
takes to complete the project. The stories are as follows:

Welcome the customer.
If the customer has been at this site before using this same computer, welcome the
customer back to the online store.

Show specials on homepage.
Show any recent books or other products that have recently been introduced. If the
customer is identified, tailor the recommendations to that specific customer.

FIGURE 6.MAC
OmniFocus from The Omni Group.

174 PART II • INFORMATION REQUIREMENTS ANALYSIS

Search for desired product.
Include an effective search engine that will locate the specific product and similar products.

Show matching titles and availability.
Display the results of the search on a new Web page.

Allow customer to ask for greater detail.
Offer the customer more product details, such as sample pages in a book, more photos
of a product, or to play a partial track from a CD.

Display reviews of the product.
Share the comments that other customers have about the product.

Place a product into a shopping cart.
Make it easy for the customer to click on a button that places the product into a
shopping cart of intended purchases.

Keep purchase history on file.
Keep details about the customer and his or her purchases in a cookie on the customer’s
computer. Also keep credit card information for faster checkout.

Suggest other books that are similar.
Include photos of other books that have similar themes or were written by the same
authors.

Proceed to checkout.
Confirm the identity of the customer.

Review the purchases.
Allow the customer to review the purchases.

Continue shopping.
Offer the customer a chance to make further purchases at the same time.

Apply shortcut methods for faster checkout.
If the identity of the customer is known and the delivery address matches, speed up the
transaction by accepting the credit card on file and the remainder of the customer’s
preferences, such as shipping method.

Add names and shipping addresses.
If the purchase is a gift, allow the customer to enter the name and address of the recipient.

Offer options for shipping.
Allow the customer to choose a shipping method based on cost.

Complete the transaction.
Finish the transaction. Ask for credit card confirmation if the shipping address is
different from the customer’s address on file.

As you can easily see, there is no shortage of stories. The agile analyst needs to choose a few
stories, complete the programming, and release a product. Once this is done, more stories are se-
lected and a new version is released until all the stories are included in the system (or the analyst and
customer agree that a particular story lacks merit, or is not pressing, and so need not be included).

An example of a user story as it might appear to an agile developer is shown in Figure 6.8.
On cards (or electronically), an analyst might first identify the need or opportunity, and then fol-
low it with a brief story description. The analyst might take the opportunity to begin thinking
broadly about the activities that need to be completed as well as the resources it will take to fin-
ish the project. In this example from the online merchant, the analyst indicates that the designing
activity will take above-average effort, and the time and quality resources are required to rise
above average. Notice that the analyst is not trying to be more precise than currently possible on
this estimate, but it is still a useful exercise.

SCRUM. Another agile approach is named Scrum. The word scrum is taken from a starting
position in rugby in which the rugby teams form a huddle and fight for possession of the ball.
Scrum is really about teamwork, similar to what is needed in playing a game of rugby.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 175

Need or Opportunity: Apply shortcut methods for faster checkout.Story:

Well Below
Coding

Activities:

Testing
Listening
Designing
TimeResources:

Cost
Quality
Scope

Below Average Average Above Average Well Above

If the identity of the customer is known and the delivery address matches, speed up the
transaction by accepting the credit card on file and the rest of the customer’s preferences
such as shipping method.

FIGURE 6.8
User stories can be recorded on
cards. The user story should be
brief enough for an analyst to
determine what systems features
are needed.

Just as rugby teams will come to a game with an overall strategy, development teams begin
the project with a high-level plan that can be changed on the fly as the “game” progresses. Sys-
tems development team members realize that the success of the project is most important, and
their individual success is secondary. The project leader has some, but not much, influence on the
detail. Rather, the tactical game is left up to the team members, just as if they were on the field.
The systems team works within a strict time frame (30 days for development), just as a rugby
team would play in a strict time constraint of a game.

We can describe the components of the scrum methodology as:

1. Product backlog, in which a list is derived from product specifications.
2. Sprint backlog, a dynamically changing list of tasks to be completed in the next sprint.
3. Sprint, a 30-day period in which the development team transforms the backlog into

software that can be demonstrated.
4. Daily scrum, a brief meeting in which communication is the number-one rule. Team

members need to explain what they did since the last meeting, whether they encountered
any obstacles, and what they plan to do before the next daily scrum.

5. Demo, working software that can be demonstrated to the customer.

Scrum is indeed a high-intensity methodology. It is just one of the approaches that adopts the
philosophy of agile modeling.

Lessons Learned from Agile Modeling
Often posed as an alternative way to develop systems, the agile approach seeks to address com-
mon complaints arising over the traditional SDLC approach (for being too time-consuming, fo-
cusing on data rather than on humans, and being too costly) by being rapid, iterative, flexible, and
participative in responding to changing human information requirements, business conditions,
and environments.

Several agile development projects have been chronicled in books, articles, and on Web sites.
Many of them were successes, some have been failures, but we can learn a great deal from study-
ing them, as well as the agile values, principles, and core practices. Following are the six major les-
sons we draw from our examination of agile modeling. Figure 6.9 depicts the six lessons.

The first lesson is that short releases allow systems to evolve. Product updates are made of-
ten, and changes are incorporated quickly. In this way the system is permitted to grow and expand
in ways that the customer finds useful. Through the use of short releases, the development team
compresses the time between releases of their product, improving the product later as the dynamic
situation demands.

The second lesson is that pair programming enhances overall quality. Although pair program-
ming is controversial, it clearly fosters other positive activities necessary in systems development

176 PART II • INFORMATION REQUIREMENTS ANALYSIS

Balanced resources
and activities support

project goals

Onsite customers
are mutually

beneficial

Lessons Gained
from Adopting
Agile Methods

Agile values are
crucial to
success

Pair programming
enhances overall

quality

Short releases
allow systems

to evolve

40-hour
workweek improves

effectiveness

FIGURE 6.9
There are six vital lessons that can
be drawn from the agile approach
to systems.

such as good communication, identifying with the customer, focusing on the most valuable as-
pects of the project first, testing all code as it is developed, and integrating the new code after it
successfully passes its tests.

The third lesson is that onsite customers are mutually beneficial to the business and the ag-
ile development team. Customers serve as a ready reference and reality check, and the focus of
the system design will always be maintained via their presence: customers become more like de-
velopers and developers empathize more fully with customers.

The fourth lesson we take from the agile approach is that the 40-hour workweek improves
effectiveness. Even the hardest-hitting developers are susceptible to errors and burnout if they
work too hard for too long a period. When the development team is together, however, every
moment counts. Working at a sustainable pace is much more desirable for the life of the proj-
ect, the life of the system, and the life of the developer! We all know the parable of the hare
and the tortoise.

The fifth lesson we draw from taking the agile approach is that balanced resources and ac-
tivities support project goals. Managing a project doesn’t mean simply getting all resources and
tasks together. It also means that the analyst is faced with a number of trade-offs. Sometimes cost
may be predetermined, at other junctures time may be the most important factor. The resource
control variables of time, cost, quality, and scope need to be properly balanced with the activities
of coding, designing, testing, and listening.

The last lesson we take from agile modeling approaches is that agile values are crucial to suc-
cess. It is essential to the overall success of the project that analysts wholeheartedly embrace the
values of communication, simplicity, feedback, and courage in all the work that they do. This type
of personal and team commitment enables the analyst to succeed where others, who possess sim-
ilar technical competencies but who lack values, will fail. True dedication to these values is fun-
damental to successful development.

COMPARING AGILE MODELING AND STRUCTURED METHODS
As you have seen, agile methods are developed quickly; they reportedly work; and users are cus-
tomers who are directly involved. While it is true that projects developed by agile methods often
require tweaking to work properly, agile developers admit that tweaking is part of the process.
The agile approach implies many short releases with features added along the way.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 177

Improving Efficiency in Knowledge Work: SDLC Versus Agile
Researchers (Davis & Naumann, 1999) developed a list of seven strategies that can improve
the efficiency of knowledge work: reducing interface time and errors; reducing process learn-
ing time and dual processing losses; reducing time and effort to structure tasks and format out-
puts; reducing nonproductive expansion of work; reducing data and knowledge search and
storage time and costs; reducing communication and coordination time and costs; and reducing
losses from human information overload. They believe this is important, since based on their
study of a group of programmers, they claim that the best programmers are five to ten times
more productive than the worst ones. They further point out this ratio is only two to one for
workers in clerical or physical tasks. Their suggestion is that software can help improve many
situations.

We use the standard, traditional systems development approach of structured methods to
compare and contrast how structured approaches versus agile methods would implement the
seven strategies proposed to improve the efficiency of knowledge workers.

While adopting more software may indeed improve performance, it is reasonable to suggest
that changing an approach or methodology may also improve performance. Consequently, we
will examine each aspect of knowledge work productivity through lenses from both structured
and agile methodologies. Figure 6.10 lists the original seven strategies for productivity improve-
ment and then explains what methods are used to improve the efficiency of systems development
for both structured and agile methodologies.

In the upcoming sections we will compare and contrast structured approaches with the agile
approach. An overarching observation about the agile methodology is that it is a human-oriented
approach that permits people to create nuanced solutions that are impossible to create through for-
mal specifications of process.

REDUCING THE INTERFACE TIME AND ERRORS. Systems analysts and programmers need to
analyze, design, and develop systems using knowledge work tools that range from Microsoft
Office to sophisticated and costly CASE tools. They also need to document as they develop
systems. It is important that analysts and programmers are capable of understanding the interface
they use. They need to know how to classify, code, store, and write about the data they gather.
Systems developers also need to quickly access a program, enter the required information, and
retrieve it when it is needed again.

Strategies for Improving
Efficiency in Knowledge Work

Implementation Using
Structured Methodologies

Implementation Using
Agile Methodologies

Reduce interface time and errors Adopting organizational standards
for coding, naming, etc.; using forms

Adopting pair
programming

Reduce process learning time and
dual processing losses

Managing when updates are released
so the user does not have to learn and
use software at the same time

Ad hoc prototyping and
rapid development

Reduce time and effort to structure
tasks and format outputs

Using CASE tools and diagrams; using
code written by other programmers

Encouraging short
releases

Reduce nonproductive expansion
of work

Project management; establishing
deadlines

Limiting scope in each
release

Reduce data and knowledge search
and storage time and costs

Using structured data gathering
techniques, such as interviews,
observation, sampling

Allowing for an onsite
customer

Reduce communication and
coordination time and costs

Separating projects into smaller
tasks; establishing barriers

Reduce losses from human
information overload

Applying filtering techniques to
shield analysts and programmers

Timeboxing

Sticking to a 40-hour
workweek

FIGURE 6.10
How Davis and Naumann’s
strategies for improving efficiency
can be implemented using two
different development approaches.

178 PART II • INFORMATION REQUIREMENTS ANALYSIS

Structured approaches encourage adopting standards for everything. Rules set forth include
items such as, “Everyone must use Microsoft Word rather than Word Perfect.” They may be more
detailed instructions to ensure clean data such as, “Always use M for Male and F for Female,”
thereby ensuring that analysts do not unthinkingly choose codes of their own, such as 0 for Male
and 1 for Female. These rules then become part of the data repository. Forms are also useful, re-
quiring all personnel to document their procedures so that another programmer might be able to
take over if necessary.

In an agile approach, forms and procedures work well too, but another element is added. The
additional practice of pair programming assures that one programmer will check the work of an-
other, thereby reducing the number of errors. Pair programming means that ownership of the de-
sign or software itself is shared as in a partnership. Both partners (typically one a programmer,
often a senior one) will say they chose a programming partner who desired to have a quality prod-
uct that is error-free. Since two people work on the same design and code, interface time is not
an issue; it is an integral part of the process. The authors have noted that programmers are quite
emotional when the topic of pair programming is broached.

REDUCING THE PROCESS LEARNING TIME AND DUAL PROCESSING LOSSES. Analysts and
programmers learn specific techniques and software languages required for the completion of a
current project. Inefficiencies often result when some analysts and programmers already know
the products used while others still need to learn them. Typically, we ask that developers learn
these products at the same time they are using them to build the system. This on-the-job training
slows down the entire systems development project considerably.

A traditional, structured project requires more learning. If CASE tools were used, an analyst
may need to learn the proprietary CASE tools used in the organization. The same applies to the
use of a specific computer language. Documentation is also a concern.

Using an agile philosophy, the ability to launch projects without using CASE tools and de-
tailed documentation allows the analysts and programmers to spend most of their time on system
development rather than on learning specific tools.

REDUCING THE TIME AND EFFORT TO STRUCTURE TASKS AND FORMAT OUTPUTS. Whenever a
project is started, a developer needs to determine the boundaries. In other words, the developers
need to know what the deliverable will be and how they will go about organizing the project so
they can complete all the necessary tasks.

A traditional approach would include using CASE tools, drawing diagrams (such as E-R di-
agrams and data flow diagrams), using project management software (such as Microsoft Project),
writing detailed job descriptions, using and reusing forms and templates, and reusing code writ-
ten by other programmers.

Systems development using an agile approach addresses the need to structure tasks by sched-
uling short releases. The agile philosophy suggests that system developers create a series of dead-
lines for many releases of the system. The first releases would possess fewer features, but, with
each new release, additional features would be added.

REDUCING THE NONPRODUCTIVE EXPANSION OF WORK. Parkinson’s law states that “work
expands so as to fill the time available for its completion.” If there are no specified deadlines, it
is possible that knowledge work will continue to expand.

With traditional structured methodologies, deadlines at first seem far into the future. Analysts
may use project management techniques to try to schedule the activities, but there is a built-in
bias to extend earlier tasks longer than they need to be and then try to shorten tasks later on in the
development. Analysts and programmers are less concerned about distant deadlines than ap-
proaching ones.

Once again, the agile approach stresses short releases. Releases can be delivered at the time
promised, minus some of the features originally promised. Making all deadlines imminent pushes
a realistic expectation for (at least partial) completion to the fore.

REDUCING THE DATA AND KNOWLEDGE SEARCH AND STORAGE TIME AND COSTS. System
developers need to gather information about the organization, goals, priorities, and details about
current information systems before they can proceed to develop a new system. Data-gathering
methods include interviewing, administering questionnaires, observation, and investigation by
examining reports and memos.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 179

Structured methodologies encourage structured data-gathering methods. Structured tech-
niques would normally be used to structure interviews and design the interview process.
Questionnaires would be developed in a structured way, and structured observational tech-
niques such as STROBE would encourage the analyst to specifically observe key elements
and form conclusions based on the observations of the physical environment. A sampling plan
would be determined quantitatively, in order for the systems analyst to select reports and
memos to examine.

Knowledge searches are less structured in an agile modeling environment. The practice of
having an onsite customer greatly enhances access to information. The onsite customer is pres-
ent to answer questions about the organization itself, its goals, the priorities of organizational
members and customers, and whatever knowledge is necessary about existing information sys-
tems. As the project continues, the picture of customer requirements becomes clearer. This ap-
proach seems relatively painless because, when the system developers want to know something,
they can just ask. The downside, however, is that the onsite representative may make up infor-
mation if it is unknown or unavailable or evade telling the truth for some ulterior purpose.

REDUCING COMMUNICATION AND COORDINATION TIME AND COSTS. Communication between
analysts and users, as well as among analysts themselves, is at the heart of developing systems.
Poor communication is certainly the root of multiple development problems. We know that
communication increases when more people join the project. When two people work on a project,
there is one opportunity for a one-to-one conversation; when three people are involved, there are
three possibilities; when four are involved, there are six possibilities, and so on. Inexperienced
team members need time to get up to speed, and they can slow down a project even though they
are meant to help expedite it.

Traditional structured development encourages the separation of big tasks into smaller tasks.
This allows more tightly knit groups and decreases the time spent communicating. Another ap-
proach involves setting up barriers. For example, customers may not be given access to program-
mers. This is a common practice in many industries. However, increased efficiency often means
decreased effectiveness, and it has been noted that dividing up groups and setting up barriers will
often introduce errors.

Agile methods, on the other hand, limit time instead of tasks. Timeboxing is used in agile
methodologies to encourage completion of activities in shorter periods. Timeboxing is simply set-
ting a time limit of one or two weeks to complete a feature or module. The agile method scrum
puts a premium on time, while the developers communicate effectively as a team. Since commu-
nication is one of the four values of the agile philosophy, communication costs tend to increase
rather than decrease.

REDUCING LOSSES FROM HUMAN INFORMATION OVERLOAD. We have long known that people
do not react well in information overload situations. When telephones were an emerging
technology, switchboard operators manually connected calls between two parties. It was
demonstrated that this system would work until an information overload occurred, at which point
the entire system broke down. When too many calls came in, the overwhelmed switchboard
operator would simply stop working and give up completely on connecting callers. An analogous
overload situation can occur anytime to anyone, including systems analysts and programmers.

A traditional approach would be to try to filter information to shield analysts and program-
mers from customer complaints. This approach allows developers to continue working on the
problem without the interference and subjectivity that would normally occur.

Using an agile philosophy, analysts and programmers are expected to stick to a 40-hour
workweek. This might be viewed by some as a questionable practice. How will all the work ever
get done? The agile philosophy states, however, that quality work is usually done during a rou-
tine schedule, and it is only when overtime is added that problems of poor quality design and
programming enter the scene. By sticking to a 40-hour work week schedule, agile methodology
claims you will eventually come out ahead.

Risks Inherent in Organizational Innovation
In consultation with users, analysts must consider the risks that organizations face when adopt-
ing new methodologies. Clearly this is part of a larger question of when is the appropriate time to
upgrade human skills, adopt new organizational processes, and institute internal change.

180 PART II • INFORMATION REQUIREMENTS ANALYSIS

Measuring
Impact

Cost

Risks in
Adopting

Organizational
Innovation

Individual
Rights

Timing

Organizational
Culture

Clients’
Reactions

FIGURE 6.11
Adopting new information
systems involves balancing
several risks.

In the larger sense, these are questions of a strategic dimension for organizational leadership.
Specifically, we consider the case of the systems analysis team adopting agile methods in light of
the risks to the organization and the eventual successful outcome for the systems development
team and their clients. Figure 6.11 shows many of the variables that need to be considered when
assessing the risk of adopting organizational innovation.

ORGANIZATIONAL CULTURE. A key consideration is the overall culture of the organization and
how the culture of the development team fits within it. A conservative organizational culture with
many stable features that does not seek to innovate may be an inappropriate or even inhospitable
context for the adoption of agile methodologies by the systems development group. Analysts and
other developers must use caution in introducing new techniques into this type of setting, since
their success is far from assured, and long-standing development team members or other
organizational members may be threatened by new ways of working that depart from customary,
dependable approaches with proven results.

Conversely, an organization that is dependent on innovation to retain its cutting edge in its
industry might be the organization most welcoming toward agile innovations in systems devel-
opment methods. In this instance, the culture of the organization is already permeated with the
understanding of the critical nature of many of the core principles of agile development method-
ologies. From the strategic level downward, the company’s members have internalized the need
for rapid feedback, dynamic responses to changing environments in real time, dependence on the
customer for guidance and participation in problem solving, and so on.

Located between these extremes are organizations that do not rely on innovation as a key
strategic strength (in other words, they are not dependent on research and development of new
products or services to remain afloat) but that might still wish to adopt innovative practices in
small units or groups. Indeed, such small, innovative centers or kernels might eventually drive
the growth or competitive advantage of this type of organization.

TIMING. Organizations must ask and answer the question of when is the best time to innovate
with the adoption of new systems development methodologies, when all other projects and factors
(internally and externally) are taken into account. Organizations must consider the entire panoply
of projects in which they are investing, look ahead at project deadlines, schedule the upgrading
of physical plants, and absorb key industry and economic forecasts.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 181

COST. Another risk to the adoption of agile methodologies for organizations is the cost involved in
education and training of systems analysts and programmers in the new approach. This can involve
either costly off-site seminars and courses or hiring consultants to work with current staff onsite.
Further, opportunity costs are involved when systems developers are necessarily diverted (albeit
temporarily) from ongoing projects to learn new skills. Education in itself can be costly, but an
additional burden is recognized when analysts cannot earn income during their training period.

CLIENTS’ REACTIONS. When clients (whether they are internal or external) are involved as users
or initiators of information systems development efforts, reactions to the use of new methods
entailed by the agile approach are also a key consideration. Some clients react with joy once the
benefits of timeliness and involvement are described. Others do not want to be used for systems
“experiments” with uncertain outcomes. The client-analyst relationship must be resilient enough
to absorb and adapt to changes in expected behaviors. For example, the onsite presence of a client
during development is a major commitment that should be thoroughly understood and agreed
upon by those adopting agile methods.

MEASURING IMPACT. Another consideration for organizations adopting agile methodologies is
how to certify and measure that the new methods are going to facilitate successful systems
development. The strengths and weaknesses of traditional structured methods used to develop
information systems are well-known.

While there is ample anecdotal evidence that agile methodologies are superior for develop-
ment under some conditions, their history is short-lived and not yet empirically supported. There-
fore, the adoption of agile methodologies carries with it the risk that systems created with them
will not be successful or will not adequately interface with legacy systems. Measuring the impact
of the use of agile methodologies has begun, but organizations need to be vigilant in proposing
impact measurements in tandem with the adoption of new methods.

THE INDIVIDUAL RIGHTS OF PROGRAMMERS/ANALYSTS. Successful systems developers
(analysts and programmers) exercise creativity in their approach to their work, and they deserve
the right to work in the most fruitful configuration possible. It is possible that the working
requirements of new agile methods (for example, pair programming) encroach upon some basic
rights of creative people to work alone or in groups as the design work dictates. There is no “one
best way” to design a system, module, interface, form, or Web page. In the instance of systems
developers, creativity, subjectivity, and the right to achieve design objectives through numerous
individual paths need to be balanced against the organizational adoption of innovative approaches
such as agile methodologies.

As you can see, adopting organizational innovations poses many risks to the organization as
well as to individuals. We examined risks to the organization as a whole as well as to those posed
to the individual systems analyst who is caught up in the organization’s desire to innovate.

SUMMARY
Prototyping is an information-gathering technique useful for supplementing the traditional SDLC; however,
both agile methods and human–computer interaction share roots in prototyping. When systems analysts use
prototyping, they are seeking user reactions, suggestions, innovations, and revision plans to make improve-
ments to the prototype, and thereby modify system plans with a minimum of expense and disruption. The
four major guidelines for developing a prototype are to (1) work in manageable modules, (2) build the pro-
totype rapidly, (3) modify the prototype, and (4) stress the user interface.

Although prototyping is not always necessary or desirable, it should be noted that there are three main, in-
terrelated advantages to using it: (1) the potential for changing the system early in its development, (2) the op-
portunity to stop development on a system that is not working, and (3) the possibility of developing a system
that more closely addresses users’ needs and expectations. Users have a distinct role to play in the prototyping
process and systems analysts must work systematically to elicit and evaluate users’ reactions to the prototype.

One particular use of prototyping is rapid application development (RAD). It is an object-oriented ap-
proach with three phases: requirements planning, the RAD design workshop, and implementation.

Agile modeling is a software development approach that defines an overall plan quickly, develops and
releases software quickly, and then continuously revises software to add additional features. The values of
the agile approach that are shared by the customer as well as the development team are communication, sim-
plicity, feedback, and courage. Agile activities include coding, testing, listening, and designing. Resources
available include time, cost, quality, and scope.

182 PART II • INFORMATION REQUIREMENTS ANALYSIS

H Y P E R C A S E® E X P E R I E N C E 6

“Thank goodness it’s the time of year when everything is new.
I love spring; it’s the most exhilarating time here at MRE. The trees
are so green, with leaves in so many different shades. So many new
projects to do, too; so many new clients to meet. We have a new in-
tern, too. Anna Mae Silver. Sometimes the newest employee is the
most eager to help. Call on her if you need more answers.”

“All the newness reminds me of prototyping. Or what I know
about prototyping, anyway. It’s something new and fresh, a quick
way to find out what’s happening.

“I believe that we have a few prototypes already started.
Sometimes our new onsite customer, Tessa Silverstone, gets in-
volved by helping create user stories on which to build the proto-
types. But the best thing about prototypes is that they can change. I
don’t know anyone who’s really been satisfied with a first pass at a

prototype. But it’s fun to be involved with something that’s happen-
ing fast, and something that will change.”

HYPERCASE Questions
1. Make a list of the user stories Tessa Silverstone shared as

examples.
2. Locate the prototype currently proposed for use in one of

MRE’s departments. Suggest a few modifications that would
make this prototype even more responsive to the unit’s needs.

3. Using a word processor, construct a nonoperational prototype
for a Training Unit Project Reporting System. Include features
brought up by the user stories you found. Hint: See sample
screens in Chapters 11 and 12 to help you in your design.

FIGURE 6.HC1
One of the many prototype screens found in HyperCase.

Agile core practices distinguish agile methods, including a type of agile method called extreme pro-
gramming (XP), from other systems development processes. The four core practices of the agile approach
are (1) short releases, (2) 40-hour workweek, (3) onsite customer, and (4) pair programming. The agile de-
velopment process includes choosing a task that is directly related to a customer-desired feature based on
user stories, choosing a programming partner, selecting and writing appropriate test cases, writing the code,
running the test cases, debugging it until all test cases run, implementing it with the existing design, and in-
tegrating it into what currently exists.

Later in this chapter we compared how SDLC and agile approaches handle improving knowledge work
efficiency differently. We then discussed several inherent dangers to organizations adopting innovative ap-
proaches, including an incompatible organizational culture, poor timing of the project, cost of training systems
analysts, unfavorable client reactions to new behavioral expectations, difficulties in measuring the impact, and
the possible compromise of the individual creative rights of programmers and analysts.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 183

KEYWORDS AND PHRASES
40-hour workweek
agile modeling
agile principles
agile values
assume simplicity
embracing change
extreme programming (XP)
first-of-a-series prototype
implementation
incremental change
modifying the prototype
nonoperational prototype
onsite customer
pair programming

patched-up prototype
prototype
RAD design workshop
rapid application development (RAD)
rapid feedback
requirements planning phase
scrum methodology
selected-features prototype
short release
stressing the user interface
user involvement with prototyping
user stories
working in manageable modules

REVIEW QUESTIONS
1. What four kinds of information is the analyst seeking through prototyping?
2. What is meant by the term patched-up prototype?
3. Define a prototype that is a nonworking scale model.
4. Give an example of a prototype that is a first full-scale model.
5. Define what is meant by a prototype that is a model with some, but not all, essential features.
6. List the advantages and disadvantages of using prototyping to replace the traditional SDLC.
7. Describe how prototyping can be used to augment the traditional SDLC.
8. What are the criteria for deciding whether a system should be prototyped?
9. List four guidelines the analyst should observe in developing a prototype.

10. What are the two main problems identified with prototyping?
11. List the three main advantages in using prototyping.
12. How can a prototype mounted on an interactive Web site facilitate the prototyping process? Answer

in a paragraph.
13. What are three ways that a user can be of help in the prototyping process?
14. Define what is meant by RAD.
15. What are the three phases of RAD?
16. What are the four values that must be shared by the development team and business customers when

taking an agile approach?
17. What are agile principles? Give five examples.
18. What are the four core practices of the agile approach?
19. Name the four resource control variables used in the agile approach.
20. Outline the typical steps in an agile development episode.
21. What is a user story? Is it primarily written or spoken? State your choice, then defend your answer

with an example.
22. List software tools that can aid the developer in doing a variety of tests of code.
23. What is scrum?
24. Name the seven strategies for improving efficiency in knowledge work.
25. Identify six risks in adopting organizational innovation.

PROBLEMS
1. As part of a larger systems project, Clone Bank of Clone, Colorado, wants your help in setting up a

new monthly reporting form for its checking and savings account customers. The president and vice
presidents are very attuned to what customers in the community are saying. They think that their
customers want a checking account summary that looks like the one offered by the other three banks
in town. They are unwilling, however, to commit to that form without a formal summary of customer
feedback that supports their decision. Feedback will not be used to change the prototype form in any
way. They want you to send a prototype of one form to one group and to send the old form to another
group.
a. In a paragraph discuss why it probably is not worthwhile to prototype the new form under these

circumstances.
b. In a second paragraph discuss a situation under which it would be advisable to prototype a new

form.

184 PART II • INFORMATION REQUIREMENTS ANALYSIS

2. C. N. Itall has been a systems analyst for Tun-L-Vision Corporation for many years. When you came
on board as part of the systems analysis team and suggested prototyping as part of the SDLC for a
current project, C. N. said, “Sure, but you can’t pay any attention to what users say. They have no
idea what they want. I’ll prototype, but I’m not ‘observing’ any users.”
a. As tactfully as possible, so as not to upset C. N. Itall, make a list of the reasons that support the

importance of observing user reactions, suggestions, and innovations in the prototyping process.
b. In a paragraph, describe what might happen if part of a system is prototyped and no user

feedback about it is incorporated into the successive system.
3. “Every time I think I’ve captured user information requirements, they’ve already changed. It’s like

trying to hit a moving target. Half the time, I don’t think they even know what they want
themselves,” exclaims Flo Chart, a systems analyst for 2 Good 2 Be True, a company that surveys
product use for the marketing divisions of several manufacturing companies.
a. In a paragraph, explain to Flo Chart how prototyping can help her to better define users’

information requirements.
b. In a paragraph, comment on Flo’s observation: “Half the time, I don’t think they even know what

they want themselves.” Be sure to explain how prototyping can actually help users better
understand and articulate their own information requirements.

c. Suggest how an interactive Web site featuring a prototype might address Flo’s concerns about
capturing user information requirements. Use a paragraph.

4. Harold, a district manager for the multioutlet chain of Sprocket’s Gifts, thinks that building a
prototype can mean only one thing: a nonworking scale model. He also believes that this way is
too cumbersome to prototype information systems and thus is reluctant to do so.
a. Briefly (in two or three paragraphs) compare and contrast the other three kinds of prototyping

that are possible so that Harold has an understanding of what prototyping can mean.
b. Harold has an option of implementing one system, trying it, and then having it installed in five

other Sprocket locations if it is successful. Name a type of prototyping that would fit well with
this approach, and in a paragraph defend your choice.

5. “I’ve got the idea of the century!” proclaims Bea Kwicke, a new systems analyst with your systems
group. “Let’s skip all this SDLC garbage and just prototype everything. Our projects will go a lot
more quickly, we’ll save time and money, and all the users will feel as if we’re paying attention to
them instead of going away for months on end and not talking to them.”
a. List the reasons you (as a member of the same team as Bea) would give Bea to dissuade her from

trying to scrap the SDLC and prototype every project.
b. Bea is pretty disappointed with what you have said. To encourage her, use a paragraph to explain

the situations you think would lend themselves to prototyping.
6. The following remark was overheard at a meeting between managers and a systems analysis team at

the Fence-Me-In fencing company: “You told us the prototype would be finished three weeks ago.
We’re still waiting for it!”
a. In a paragraph, comment on the importance of rapid delivery of a portion of a prototyped

information system.
b. List three elements of the prototyping process that must be controlled to ensure prompt delivery

of the prototype.
c. What are some elements of the prototyping process that are difficult to manage? List them.

7. Prepare a list of activities for a systems development team for an online travel agent that is setting up
a Web site for customers. Now suppose you are running out of time. Describe some of your options.
Describe what you will trade off to get the Web site released in time.

8. Given the situation for Williwonk’s chocolates (Problem 1 in Chapter 3), which of the four agile
modeling resource variables may be adjusted?

9. Examine the collection of user stories from the online merchant shown earlier in the chapter. The
online media store would now like to have you add some features to its Web site. Following the
format shown earlier in this chapter in Figure 6.9, write a user story for the features listed below:
a. Include pop-up ads.
b. Offer to share the details of the customer’s purchases with his or her friends.
c. Extend offer to purchase other items.

10. Go to the Palm gear Web site at www.palmgear.com. Explore the Web site and write up a dozen brief
user stories for improving the Web site.

11. Go to the iTunes Web site and write up a dozen brief user stories for improving the Web site.
12. Using the stories you wrote for Problem 9, walk through the five stages of the agile development

process and describe what happens at each one of the stages.

www.palmgear.com

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 185

GROUP PROJECTS
1. Divide your group into two smaller subgroups. Have group 1 follow the processes specified in this

chapter for creating prototypes. Using a CASE tool or a word processor, group 1 should devise two
nonworking prototype screens using the information collected in the interviews with Maverick
Transport employees accomplished in the group exercise in Chapter 4. Make any assumptions
necessary to create two screens for truck dispatchers. Group 2 (playing the roles of dispatchers)
should react to the prototype screens and provide feedback about desired additions and deletions.

2. The members of group 1 should revise the prototype screens based on the user comments they
received. Those in group 2 should respond with comments about how well their initial concerns were
addressed with the refined prototypes.

3. As a united group, write a paragraph discussing your experiences with prototyping for ascertaining
information requirements.

4. Within your group, assign some of the roles that people take on in agile development. Make sure that
one person is an onsite customer and at least two people are programmers. Assign other roles, as you
see fit. Simulate the systems development situation discussed in Problem 7, or have the person acting
as the onsite customer choose an ecommerce business with which he or she is familiar. Assume that
the customer wants to add some functionality to his or her Web site. Role-play a scenario showing
what each person would do if this was being approached through agile methods. Write a paragraph
that discusses the constraints that each person faces in enacting his or her role.

SELECTED BIBLIOGRAPHY
Alavi, M. “An Assessment of the Prototyping Approach to Information Systems Development.”

Communications of the ACM, Vol. 27, No. 6, June 1984, pp. 556–563.
Avison, D., and D. N. Wilson. “Controls for Effective Prototyping.” Journal of Management Systems, Vol. 3,

No. 1, 1991.
Beck, K. Extreme Programming Explained: Embrace Change. Boston: Addison-Wesley Publishing Co.,

2000.
Beck, K., and M. Fowler. Planning Extreme Programming. Boston: Addison-Wesley Publishing Co., 2001.
Cockburn, A. Agile Software Development. Boston: Addison-Wesley Publishing Co., 2002.
Davis, G. B., and J. D. Naumann. “Knowledge Work Productivity.” In Emerging Information Technologies:

Improving Decisions, Cooperation, and Infrastructure. Edited by K. E. Kendall, pp. 343–357. Thou-
sand Oaks, CA: Sage, 1999. 42.

Davis, G. B., and M. H. Olson. Management Information Systems: Conceptual Foundations, Structure, and
Development, 2d ed. New York: McGraw-Hill, 1985.

Fitzgerald, B., and G. Hartnett. “A Study of the Use of Agile Methods Within Intel,” In Business Agility &
IT Diffusion. Edited by L. Matthiassen, J. Pries-Heje, and J. DeGross, pp. 187–202. Proc Conference,
Atlanta, May 2005. New York: Springer, 2005.

Ghione, J. “A Web Developer’s Guide to Rapid Application Development Tools and Techniques.” Netscape
World, June 1997.

Gremillion, L. L., and P. Pyburn. “Breaking the Systems Development Bottleneck.” Harvard Business Re-
view, March–April 1983, pp. 130–137.

Harrison, T. S. “Techniques and Issues in Rapid Prototyping.” Journal of Systems Management. Vol. 36,
No. 6, June 1985, pp. 8–13.

Kendall, J. E., and K. E. Kendall. “Agile Methodologies and the Lone Systems Analyst: When Individual
Creativity and Organizational Goals Collide in the Global IT Environment.” Journal of Individual Em-
ployment Rights, Vol. 11, No. 4, 2004–2005, pp. 333–347.

Kendall, J. E., K. E. Kendall, and S. Kong. “Improving Quality Through the Use of Agile Methods in Sys-
tems Development: People and Values in the Quest for Quality.” In Measuring Information Systems
Delivery Quality. Edited by E. W. Duggan and H. Reichgelt, pp. 201–222. Hershey, PA: Idea Group
Publishing, 2006.

Liang, D. Rapid Java Application Development Using JBuilder 3. Upper Saddle River, NJ: Prentice Hall,
2000.

McBreen, P. Questioning Extreme Programming. Boston: Addison-Wesley Publishing Co., 2003.
Naumann, J. D., andA. M. Jenkins. “Prototyping: The New Paradigm for Systems Development.” MIS Quar-

terly, September 1982, pp. 29–44.

186 PART II • INFORMATION REQUIREMENTS ANALYSIS

E P I S O D E 6
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Reaction Time
“We need to get a feel for some of the output needed by the users,” Anna comments. “It will help to firm up
some of our ideas on the information they require.”

“Agreed,” replies Chip. “It will also help us determine the necessary input. From that we can design
corresponding data entry screens. Let’s create prototype reports and screens and get some user feedback.
Why don’t we use Microsoft Access to quickly create screens and reports? I’m quite familiar with the soft-
ware. Let’s start by writing some agile stories to summarize what is needed and then develop some proto-
types. We can also use the user requirements, and should create a prototype for each ‘communicates’ line
connecting an actor and a use case.”

Anna smiles and remarks, “I’ve already written the following agile stories for the preventive mainte-
nance problem.” They are:

1. There is no way to know when to perform preventive maintenance on desktop computers.
2. Normally we go from room to room.
3. When a room is completed, we write it on a list.

Anna starts by developing the PREVENTIVE MAINTENANCE REPORT prototype. Based on agile
stories, she sets to work creating the prototype of the report she feels Mike Crowe will need.

“This report should be used to predict when machines should have preventive maintenance,” Anna
thinks. “It seems to me that Mike would need to know which machine needs work performed as well as when
the work should be scheduled. Now let’s see, what information would identify the machine clearly? The in-
ventory number, brand name, and model would identify the machine. I imagine the room and campus should
be included to quickly locate the machine. A calculated maintenance date would tell Mike when the work
should be completed. What sequence should the report be in? Probably the most useful would be by location.”

The PREVENTIVE MAINTENANCE REPORT prototype showing the completed report is shown in
Figure E6.1. Notice that Xxxxxxx’s and generic dates are used to indicate where data should be printed. Re-
alistic campus and room locations as well as inventory numbers are included. They are necessary for Mi-
crosoft Access to accomplish group printing.

The report prototype is soon finished. After printing the final copy, Anna takes the report to both Mike
Crowe and Dot Matricks. Mike Crowe is enthusiastic about the project and wants to know when the report
will be in production. Dot is similarly impressed.

Several changes come up. Mike wants an area to write in the completion date of the preventive main-
tenance so the report can be used to reenter the dates into the computer. She also suggests that the report ti-
tle be changed to WEEKLY PREVENTIVE MAINTENANCE REPORT. The next steps are to modify the
prototype report to reflect the recommended changes and then have both Mike and Dot review the result.

The report is easily modified and printed. Dot is pleased with the final result. “This is really a fine
method for designing the system,” she comments. “It’s so nice to feel that we are a part of the development
process and that our opinions count. I’m starting to feel quite confident that the final system will be just what
we’ve always wanted.”

Mike has similar praise, observing, “This will make our work so much smoother. It eliminates the
guesswork about which machines need to be maintained. And sequencing them by room is a fine idea. We
won’t have to spend so much time returning to rooms to work on machines.”

Chip makes a note about each of these modifications on a Prototype Evaluation Form (like Figure 6.3
in the chapter). This form gets Chip organized and documents the prototyping process.

Chip and Anna next turn their attention to creating screen prototypes. “Because I like the hardware as-
pect of the system, why don’t I start working on the ADD NEW COMPUTER screen design?” asks Chip.

“Sounds good to me,” Anna replies. “I’ll focus on the software aspects.”
Chip analyzes the results of detailed interviews with Dot and Mike. He compiles a list of elements that

each user would need when adding a computer. Other elements, such as location and maintenance informa-
tion, would update the COMPUTER MASTER later, after the machine was installed.

“Having the database tables defined sure helps to make quick prototypes,” Chip comments. “It didn’t
take very long to complete the screen. Would you like to watch me test the prototype?”

“Sure,” replies Anna. “This is my favorite part of prototyping.”

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 187

 Preventive Maintenance Report
Week of 6/1/10

6/1/10

 Page 1 of 1Campus Room Inventory Brand Name Model Last Preventive Done
Location Location Number

 Maintenance DateCentral Administration 11111 84004782 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 4/4/10 ____ Central Administration 11111 90875039 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 3/24/10 ____ Central Administration 11111 93955411 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 4/4/10 ____ Central Administration 11111 99381373 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 3/24/10 ____Central Administration 22222 10220129 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx 3/24/10 ____Central Administration 99999 22838234 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 3/24/10 ____ Central Administration 99999 24720952 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx 3/24/10 ____ Central Administration 99999 33453403 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 4/4/10 ____Central Administration 99999 34044449 Xxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx 4/4/10 ____ Central Administration 99999 40030303 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 4/4/10 ____Central Administration 99999 47403948 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 3/24/10 ____Central Administration 99999 56620548 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 4/4/10 ____Central Computer Science 22222 34589349 Xxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx 3/24/10 ____Central Computer Science 22222 38376910 Xxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx 3/24/10 ____Central Computer Science 22222 94842282 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 3/24/10 ____Central Computer Science 99999 339393 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 4/4/10 ____Central Zoology 22222 11398423 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 3/24/10 ____ Central Zoology 22222 28387465 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 4/4/10 ____Central Zoology 99999 70722533 Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx 3/24/10 ____Central Zoology 99999 99481102 Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx 3/24/10 ____

FIGURE E6.1
Prototype for PREVENTIVE
MAINTENANCE REPORT. This
report needs to be revised.

Chip executes the screen design as Anna, Mike, and Dot watch. The drop-down lists and check boxes
make it easy to enter accurate data.

“I really like this,” Dot says. “May I try adding some data?”
“Be my guest,” replies Chip. “Try to add both invalid and valid data. And notice the help messages that

appear at the bottom of the screen to indicate what should be entered. Why don’t you try out this prototype
for a day or two and get back to me? Then I’ll make the changes that you recommend and have you review
the revised prototype.”

Anna returns to her desk and creates the ADD SOFTWARE RECORD screen design.
When Anna completes the screen design, she asks Cher to test the prototype. Cher keys information in,

checks the drop-down list values, and views help messages.
“I really like the design of this screen and how it looks,” remarks Cher. “It lacks some of the fields

that would normally be included when a software package is entered, though, like the computer type that
the software runs on, the memory required, and the processor speed. I would also like buttons to save the
record and exit.”

“Those are all doable. I’ll make the changes and get back to you,” replies Anna, making some notes to
herself.

A short time later, Cher again tests the ADD SOFTWARE RECORD screen. It includes all the features
that she requires. The completed screen design may be viewed using Microsoft Access. Notice that there is
a line separating the software information from the hardware entries.

A few days later Dot visits Anna with suggested changes for the ADD NEW COMPUTER prototype.
“I reviewed this with Mike and we like what we have seen, but we have some suggestions,” remarks Dot.
“One of the things that is missing is the operating system. We have a number of technical people that have
multiple operating systems. Many of the Mac users have Windows installed on their Macs, and some of the

188 PART II • INFORMATION REQUIREMENTS ANALYSIS

Windows users have Linux-type operating systems installed. We need to include multiple operating systems
on the ADD NEW COMPUTER screen.”

“This will take some time to update the tables and prototypes,” comments Chip after a lengthy pause.
“But this is why we use short cycles to develop, test, and get feedback. I’ll modify the prototype and get
back to you.”

After some thought and reworking of database tables, the prototype is modified and sent to Mike for
approval. After a few days, Mike stops in with some feedback. “This looks great!” exclaims Mike. “How-
ever, I realized that there are some additional requirements that I forgot to tell you about. We have a refresh
program that replaces computers after an interval of time. The time period varies by type of machine and
when it was purchased. When we purchase the machine, we estimate the refresh interval. Can we have the
refresh interval added to the database and the prototype? We could use it to calculate the refresh date, and
periodically scan the Computer Master for all computers that need to be refreshed.”

Chip starts working on the modifications. “This agile development is interesting,” he says, grinning at
Anna. “I can see why it’s used to discover the requirements.”

The final version of the ADD NEW COMPUTER prototype screen created with Access is shown in
Figure E6.2. Placed on the top of the screen are the current date and time as well as a centered screen title.
Field captions are placed on the screen, with the characters left aligned. Check boxes are included for the
warranty field, as well as a drop-down list for the type of optical drive. An operating system subform is in-
cluded to select multiple operating systems in the lower right portion of the screen. “Add Record” and
“Print” buttons are included.

“Chip, I was speaking with Dot and she mentioned that there has been funding for putting some of the
information on the Web, as part of the Web site for technology support at CPU,” comments Anna, looking
up from her computer. “I have been busy creating a prototype for the Web page menus and the first screen,
one to report technology problems. Because solving problems is Mike’s area, I have invited him and Dot to
review the prototype. Care to join the session?”

“Sure,” replies Chip. “I am interested in working on the design of some of the Web pages.”
A short time later Mike, Dot, and Chip are gathered around Anna as she demonstrates the Web page, il-

lustrated in Figure E6.3.
“I really like the menu style,” comments Dot. “The main menu features drop-down submenus on the

top that are easy to use, and I like the way they drop down and the menu items change color when the mouse
moves over them.”

“Yes, and having submenus drop down below the main one for the features of each choice makes it
easy to find what you are looking for,” adds Mike. “I do have some suggestions for the Web page for re-
porting problems, though. It would be more useful if the Problem Category selection area were moved to
the top of the page. Each problem type is assigned to a different technician, one who is more or less an ex-
pert in that area. We need an additional check box to identify if it is a Macintosh or a Windows machine or
software we are working with. The Tag Number help is a great idea. Many people do not realize that each
piece of equipment has a small metal identifying tag on it with a unique inventory number. Hmmm. . . . That
large blue area seems to stand out too much. After all, it is just help. I think that it would be better to replace
it with a small graphic image.”

FIGURE E6.2
Prototype for the ADD NEW
COMPUTER screen. Microsoft
Access was used as the
prototyping tool. Improvements
can be made at this stage.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 189

FIGURE E6.3
Prototype for the PROBLEM
REPORTING SYSTEM Web
page. This Web page needs some
improvement.

“I think that these changes will be easy to do,” remarks Anna.
“Great,” replies Mike. “It would also be useful to include the tech support hotline phone number on the

Web page. If it’s a real emergency, it might speed up our resolution to the problem. We should add an entry
field for their phone number as well. Of course, we could always look it up, but the person reporting the
problem may be in a computer lab or another location away from his office.”

“Good idea!” exclaims Dot. “This is going to be extremely helpful to the faculty and staff. I think that
we should prototype all the Web pages for the site. I realize that Web pages are supposed to change from
time to time, but let’s get these as good as possible from the start! Why don’t you look these over and give
us feedback in a few days?”

Anna glances at Chip and grins. “I guess you’ll be working on Web page design sooner than you think!”
A few days later Mike stops back with additional feedback on the Web design. “This Web page looks

good,” grins Mike, “But it got me thinking. We have an image of all the software on each lab computer.
When there is a problem, such as a virus or bad hard drive, we fix it and re-image the machine. However
each lab has different requirements for the software that should be on the machine. Additionally, we ask the
faculty if the image needs updating. This usually happens at the end of the spring semester and we work on
it over the summer. Can you whip up a couple of Web page prototypes for us to review? One should have a
list of all the software, including browsers, virus detection, and other standard packages, that are included
for each machine in a given room. Another Web page would be used for faculty to update the image list.”

“Whew, that’s a tall order,” replies Anna with a thoughtful look. “We’ll work on it.”
Anna and Chip continued to work on prototypes by designing, obtaining user feedback, and modifying

the design to accommodate user changes. Now that the work is complete, they have a solid sense of the re-
quirements of the system.

“This is becoming a large project,” comments Anna as she looks at the large amount of prototypes
that have been assembled. “I don’t think that we can develop all this software in the allotted amount of
time.”

“I agree with you—you seem to have a good sense about this,” replies Chip thoughtfully. “We only
have six months of development time to complete the project, including the Web pages. There’s a lot of
server code and JavaScript to write.”

Anna puts down a stack of prototype evaluation forms and looks directly at Chip. “What are our
options?”

Chip takes a moment to reflect and replies, “Well, compromising quality is not an option, and the due
date is inflexible. That leaves cost and scope as trade-offs.”

“Cost is somewhat fixed,” replies Anna. “Dot and Paige have said in no uncertain terms that there are
so many software development projects that we have to stay within our budget.”

“Well, that means that we will have to reduce the scope of the project,” says Chip after a moment. “We
will work on the high priority items first.”

“What about sacrificing a 40 hour workweek?” chides Anna.
“Not an option,” grins Chip. “After all, it’s a core value!”

190 PART II • INFORMATION REQUIREMENTS ANALYSIS

EXERCISES
Critique the report and screen prototypes for the exercises below (E-1 through E-10). Record the changes
on a copy of the Prototype Evaluation Form. Use Microsoft Access to view the prototypes, then modify the
report and screen prototypes with the suggested changes. Print the final prototypes.

Use the following guidelines to help in your analysis:

1. Alignment of fields on reports. Are the fields aligned correctly? Are report column headers
aligned correctly over the columns? If the report has captions to the left of data fields, are they aligned
correctly (usually on the left)? Are the data aligned correctly within each entry field?

2. Report content. Does the report contain all the necessary data? Are appropriate and useful totals
and subtotals present? Are there extra totals or data that should not be on the report? Are codes or the
meaning of the codes printed on the report (codes should be avoided because they may not clearly pres-
ent the user with information)?

3. Check the visual appearance of the report. Does it look pleasing? Are repeating fields group
printed (that is, the data should print only once, at the beginning of the group)? Are there enough blank
lines between groups to easily identify them?

4. Screen data and caption alignment. Are the captions correctly aligned on the screens? Are the
data fields correctly aligned? Are the data within a field correctly aligned?

5. Screen visual appearance. Does the screen have a pleasing appearance? Is there enough vertical
spacing between fields? Is there enough horizontal spacing between columns? Are the fields logically
grouped together? Are features, such as buttons and check boxes, grouped together?

6. Does the screen contain all the necessary functional elements? Look for missing buttons
that would help the user work smoothly with the screen; also look for missing data, extra unnecessary
data, or fields that should be replaced with a check box or drop-down list.

E-1. The HARDWARE INVENTORY LISTING shows all personal computers, sorted by campus and
room.

E-2. The SOFTWARE INVESTMENT REPORT is used to calculate the total amount invested in software.

E-3. The INSTALLED COMPUTER REPORT shows the information for installed machines.

E-4. The prototype for the COMPUTER PROBLEM REPORT lists all machines sorted by the total cost
of repairs and includes the number of repairs (some machines do not have a high cost, because they
are still under warranty). This prototype is used to calculate the total cost of repairs for the entire uni-
versity, as well as to identify the problem machines.

E-5. The NEW SOFTWARE INSTALLED REPORT shows the number of machines with each software
package that are installed in each room of each campus.

E-6. The SOFTWARE CROSS-REFERENCE REPORT lists all locations for each version of each soft-
ware package.

E-7. The DELETE COMPUTER RECORD screen is used to select computers to remove from the system.
The entry area is the Hardware Inventory Number field. The other fields are for display only, to iden-
tify the machine. The users would like the ability to print each record before they delete it. They also
want to scroll to the next and previous records. Hint: Examine the fields shown in the HARDWARE
INVENTORY LISTING report.

E-8. An UPDATE MAINTENANCE INFORMATION screen enables Mike Crowe to change mainte-
nance information about personal computers. Sometimes these are routine changes, such as the
LAST PREVENTIVE MAINTENANCE DATE or the NUMBER OF REPAIRS, but other changes
may occur only sporadically, such as the expiration of a warranty. The HARDWARE INVENTORY
NUMBER is entered, and the matching COMPUTER RECORD is found. The BRAND and
MODEL are displayed for feedback. The operator may then change the WARRANTY, MAINTE-
NANCE INTERVAL, NUMBER OF REPAIRS, LAST PREVENTIVE MAINTENANCE DATE,
and TOTAL COST OF REPAIRS fields. Mike would like to print the screen information, as well
as undo any changes, easily.

E-9. The SOFTWARE LOCATION INQUIRY displays information about rooms and machines contain-
ing selected software. The TITLE, VERSION NUMBER, and OPERATING SYSTEM are entered.
The output portion of the screen should show the CAMPUS LOCATION, ROOM LOCATION,
HARDWARE INVENTORY NUMBER, BRAND NAME, and MODEL. Buttons allow the user to
move to the next record, the previous record, and to close and exit the screen.

CHAPTER 6 • AGILE MODELING AND PROTOTYPING 191

FIGURE E6.4
Prototype for the UPDATE LAB
IMAGE Web page. This Web page
needs some improvement.

E-10. The UPDATE LAB IMAGE Web page prototype is shown in Figure E6.4. Review this Web page and
suggest changes.

The exercises preceded by a Web-icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Visible Analyst Project and a Microsoft Access
database that can be used to complete the exercises.

www.pearsonhighered.com/kendall

This page intentionally left blank

193

C H A P T E R 7

Using Data Flow Diagrams

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Comprehend the importance of using logical and physical data flow diagrams (DFDs) to
graphically depict data movement for humans and systems in an organization.

2. Create, use, and explode logical DFDs to capture and analyze the current system through
parent and child levels.

3. Develop and explode logical DFDs that illustrate the proposed system.

4. Produce physical DFDs based on logical DFDs you have developed.

5. Understand and apply the concept of partitioning of physical DFDs.

The systems analyst needs to make use of the conceptual freedom afforded
by data flow diagrams, which graphically characterize data processes and
flows in a business system. In their original state, data flow diagrams de-
pict the broadest possible overview of system inputs, processes, and out-
puts, which correspond to those of the general systems model discussed in

Chapter 2. A series of layered data flow diagrams may be used to represent and analyze de-
tailed procedures in the larger system.

THE DATA FLOW APPROACH TO HUMAN
REQUIREMENTS DETERMINATION
When systems analysts attempt to understand the information requirements of users, they must
be able to conceptualize how data move through the organization, the processes or transforma-
tion that the data undergo, and what the outputs are. Although interviews and the investigation of
hard data provide a verbal narrative of the system, a visual depiction can crystallize this informa-
tion for users and analysts in a useful way.

Through a structured analysis technique called data flow diagrams (DFDs), the systems an-
alyst can put together a graphical representation of data processes throughout the organization.
By using combinations of only four symbols, the systems analyst can create a pictorial depiction
of processes that will eventually provide solid system documentation.

Advantages of the Data Flow Approach
The data flow approach has four chief advantages over narrative explanations of the way data
move through the system:

1. Freedom from committing to the technical implementation of the system too early.
2. Further understanding of the interrelatedness of systems and subsystems.
3. Communicating current system knowledge to users through data flow diagrams.
4. Analysis of a proposed system to determine if the necessary data and processes have been

defined.

PA R T I I I
The Analysis Process

194 PART III • THE ANALYSIS PROCESS

Entity

Symbol Meaning Example

Process

New Student
Information

Data Flow

Data Store
D3 Student Master

Student

2.1

Create
Student
Record

FIGURE 7.1
The four basic symbols used in
data flow diagrams, their
meanings, and examples.

Perhaps the biggest advantage lies in the conceptual freedom found in the use of the four
symbols (covered in the upcoming subsection on DFD conventions). (You will recognize three of
the symbols from Chapter 2.) None of the symbols specifies the physical aspects of implementa-
tion. DFDs emphasize the processing of data or the transforming of data as they move through a
variety of processes. In logical DFDs, there is no distinction between manual or automated
processes. Neither are the processes graphically depicted in chronological order. Rather,
processes are eventually grouped together if further analysis dictates that it makes sense to do so.
Manual processes are put together, and automated processes can also be paired with each other.
This concept, called partitioning, is taken up in a later section.

Conventions Used in Data Flow Diagrams
Four basic symbols are used to chart data movement on data flow diagrams: a double square, an
arrow, a rectangle with rounded corners, and an open-ended rectangle (closed on the left side and
open ended on the right), as shown in Figure 7.1. An entire system and numerous subsystems can
be depicted graphically with these four symbols in combination.

The double square is used to depict an external entity (another department, a business, a
person, or a machine) that can send data to or receive data from the system. The external en-
tity, or just entity, is also called a source or destination of data, and it is considered to be ex-
ternal to the system being described. Each entity is labeled with an appropriate name.
Although it interacts with the system, it is considered as outside the boundaries of the system.
Entities should be named with a noun. The same entity may be used more than once on a given
data flow diagram to avoid crossing data flow lines.

The arrow shows movement of data from one point to another, with the head of the arrow
pointing toward the data’s destination. Data flows occurring simultaneously can be depicted do-
ing just that through the use of parallel arrows. Because an arrow represents data about a person,
place, or thing, it too should be described with a noun.

A rectangle with rounded corners is used to show the occurrence of a transforming process.
Processes always denote a change in or transformation of data; hence, the data flow leaving a
process is always labeled differently than the one entering it. Processes represent work being

CHAPTER 7 • USING DATA FLOW DIAGRAMS 195

performed in the system and should be named using one of the following formats. A clear name
makes it easier to understand what the process is accomplishing.

1. When naming a high-level process, assign the process the name of the whole system. An
example is INVENTORY CONTROL SYSTEM.

2. When naming a major subsystem, use a name such as INVENTORY REPORTING
SUBSYSTEM or INTERNET CUSTOMER FULFILLMENT SYSTEM.

3. When naming detailed processes, use a verb-adjective-noun combination. The verb
describes the type of activity, such as COMPUTE, VERIFY, PREPARE, PRINT, or ADD.
The noun indicates what the major outcome of the process is, such as REPORT or
RECORD. The adjective illustrates which specific output, such as BACKORDERED or
INVENTORY, is produced. Examples of complete process names are COMPUTE SALES
TAX, VERIFY CUSTOMER ACCOUNT STATUS, PREPARE SHIPPING INVOICE,
PRINT BACK-ORDERED REPORT, SEND CUSTOMER EMAIL CONFIRMATION,
VERIFY CREDIT CARD BALANCE, and ADD INVENTORY RECORD.

A process must also be given a unique identifying number indicating its level in the diagram. This
organization is discussed later in this chapter. Several data flows may go into and out of each
process. Examine processes with only a single flow in and out for missing data flows.

The last basic symbol used in data flow diagrams is an open-ended rectangle, which repre-
sents a data store. The rectangle is drawn with two parallel lines that are closed by a short line on
the left side and are open ended on the right. These symbols are drawn only wide enough to al-
low identifying lettering between the parallel lines. In logical data flow diagrams, the type of
physical storage is not specified. At this point the data store symbol is simply showing a deposi-
tory for data that allows examination, addition, and retrieval of data.

The data store may represent a manual store, such as a filing cabinet, or a computerized file or
database. Because data stores represent a person, place, or thing, they are named with a noun. Tem-
porary data stores, such as scratch paper or a temporary computer file, are not included on the data
flow diagram. Give each data store a unique reference number, such as D1, D2, D3, and so on.

DEVELOPING DATA FLOW DIAGRAMS
Data flow diagrams can and should be drawn systematically. Figure 7.2 summarizes the steps in-
volved in successfully completing data flow diagrams. First, the systems analyst needs to concep-
tualize data flows from a top-down perspective.

To begin a data flow diagram, collapse the organization’s system narrative (or story) into a
list with the four categories of external entity, data flow, process, and data store. This list in turn
helps determine the boundaries of the system you will be describing. Once a basic list of data el-
ements has been compiled, begin drawing a context diagram.

Here are a few basic rules to follow:

1. The data flow diagram must have at least one process, and must not have any freestanding
objects or objects connected to themselves.

2. A process must receive at least one data flow coming into the process and create at least
one data flow leaving from the process.

3. A data store should be connected to at least one process.
4. External entities should not be connected to each other. Although they communicate

independently, that communication is not part of the system we design using DFDs.

Creating the Context Diagram
With a top-down approach to diagramming data movement, the diagrams move from general to
specific. Although the first diagram helps the systems analyst grasp basic data movement, its gen-
eral nature limits its usefulness. The initial context diagram should be an overview, one includ-
ing basic inputs, the general system, and outputs. This diagram will be the most general one, really
a bird’s-eye view of data movement in the system and the broadest possible conceptualization of
the system.

The context diagram is the highest level in a data flow diagram and contains only one process,
representing the entire system. The process is given the number zero. All external entities are shown

196 PART III • THE ANALYSIS PROCESS

1. Make a list of business activities and use it to determine various
• External entities
• Data flows
• Processes
• Data stores

2. Create a context diagram that shows external entities and data
flows to and from the system. Do not show any detailed processes
or data stores.

3. Draw Diagram 0, the next level. Show processes, but keep them
general. Show data stores at this level.

4. Create a child diagram for each of the processes in Diagram 0.5. Check for errors and make sure the labels you assign to each
process and data flow are meaningful.

6. Develop a physical data flow diagram from the logical data flow
diagram. Distinguish between manual and automated processes,
describe actual files and reports by name, and add controls to
indicate when processes are complete or errors occur.7. Partition the physical data flow diagram by separating or grouping

parts of the diagram in order to facilitate programming and
implementation.

Developing Data Flow DiagramsUsing a Top-Down Approach

FIGURE 7.2
Steps in developing data flow
diagrams.

on the context diagram, as well as major data flow to and from them. The diagram does not contain
any data stores and is fairly simple to create, once the external entities and the data flow to and from
them are known to analysts.

Drawing Diagram 0 (The Next Level)
More detail than the context diagram permits is achievable by “exploding the diagrams.” Inputs
and outputs specified in the first diagram remain constant in all subsequent diagrams. The rest of
the original diagram, however, is exploded into close-ups involving three to nine processes and
showing data stores and new lower-level data flows. The effect is that of taking a magnifying
glass to view the original data flow diagram. Each exploded diagram should use only a single
sheet of paper. By exploding DFDs into subprocesses, the systems analyst begins to fill in the de-
tails about data movement. The handling of exceptions is ignored for the first two or three levels
of data flow diagramming.

Diagram 0 is the explosion of the context diagram and may include up to nine processes.
Including more processes at this level will result in a cluttered diagram that is difficult to un-
derstand. Each process is numbered with an integer, generally starting from the upper left-hand
corner of the diagram and working toward the lower right-hand corner. The major data stores
of the system (representing master files) and all external entities are included on Diagram 0.
Figure 7.3 schematically illustrates both the context diagram and Diagram 0.

Because a data flow diagram is two-dimensional (rather than linear), you may start at any
point and work forward or backward through the diagram. If you are unsure of what you would
include at any point, take a different external entity, process, or data store, and then start drawing
the flow from it. You may:

CHAPTER 7 • USING DATA FLOW DIAGRAMS 197

Data Flow C

Input B

Input A

Output C

Input A Data Flow B Output C

Record A Record E

Record A Record E

Input B Data Flow D

General
Process

BBB

General
Process

AAA

General
Process

CCC

General
Process

DDD

Entity
3

Entity
3

Entity
1

Entity
2

Entity
1

Entity
2

0

1 2

3 4

System
Name

Data Store 1D1 Data Store 2D2

FIGURE 7.3
Context diagrams (above) can be
“exploded” into Diagram 0
(below). Note the greater detail in
Diagram 0.

1. Start with the data flow from an entity on the input side. Ask questions such as: “What
happens to the data entering the system?” “Is it stored?” “Is it input for several
processes?”

2. Work backward from an output data flow. Examine the output fields on a document or
screen. (This approach is easier if prototypes have been created.) For each field on the
output, ask: “Where does it come from?” or “Is it calculated or stored on a file?” For
example, when the output is a PAYCHECK, the EMPLOYEE NAME and ADDRESS
would be located on an EMPLOYEE file, the HOURS WORKED would be on a TIME
RECORD, and the GROSS PAY and DEDUCTIONS would be calculated. Each file and
record would be connected to the process that produces the paycheck.

3. Examine the data flow to or from a data store. Ask: “What processes put data into the
store?” or “What processes use the data?” Note that a data store used in the system you are
working on may be produced by a different system. Thus, from your vantage point, there
may not be any data flow into the data store.

4. Analyze a well-defined process. Look at what input data the process needs and what output
it produces. Then connect the input and output to the appropriate data stores and entities.

5. Take note of any fuzzy areas where you are unsure of what should be included or what
input or output is required. Awareness of problem areas will help you formulate a list of
questions for follow-up interviews with key users.

198 PART III • THE ANALYSIS PROCESS

Creating Child Diagrams (More Detailed Levels)
Each process on Diagram 0 may in turn be exploded to create a more detailed child diagram. The
process on Diagram 0 that is exploded is called the parent process, and the diagram that results
is called the child diagram. The primary rule for creating child diagrams, vertical balancing, dic-
tates that a child diagram cannot produce output or receive input that the parent process does not
also produce or receive. All data flow into or out of the parent process must be shown flowing
into or out of the child diagram.

The child diagram is given the same number as its parent process in Diagram 0. For exam-
ple, process 3 would explode to Diagram 3. The processes on the child diagram are numbered us-
ing the parent process number, a decimal point, and a unique number for each child process. On
Diagram 3, the processes would be numbered 3.1, 3.2, 3.3, and so on. This convention allows the
analyst to trace a series of processes through many levels of explosion. If Diagram 0 depicts
processes 1, 2, and 3, the child diagrams 1, 2, and 3 are all on the same level.

Entities are usually not shown on the child diagrams below Diagram 0. Data flow that
matches the parent flow is called an interface data flow and is shown as an arrow from or into a
blank area of the child diagram. If the parent process has data flow connecting to a data store,
the child diagram may include the data store as well. In addition, this lower-level diagram may
contain data stores not shown on the parent process. For example, a file containing a table of in-
formation, such as a tax table, or a file linking two processes on the child diagram may be in-
cluded. Minor data flow, such as an error line, may be included on a child diagram but not on the
parent.

Processes may or may not be exploded, depending on their level of complexity. When a
process is not exploded, it is said to be functionally primitive and is called a primitive process.
Logic is written to describe these processes and is discussed in detail in Chapter 9. Figure 7.4 il-
lustrates detailed levels in a child data flow diagram.

Checking the Diagrams for Errors
Several common errors made when drawing data flow diagrams are as follows:

1. Forgetting to include a data flow or pointing an arrow in the wrong direction. An example
is a drawn process showing all its data flow as either input or output. Each process
transforms data and must receive input and produce output. This type of error usually
occurs when the analyst has forgotten to include a data flow or has placed an arrow
pointing in the wrong direction. Process 1 in Figure 7.5 contains only input because the
GROSS PAY arrow is pointing in the wrong direction. This error also affects process 2,
CALCULATE WITHHOLDING AMOUNT, which is in addition missing a data flow
representing input for the withholding rates and the number of dependents.

2. Connecting data stores and external entities directly to each other. Data stores and entities
may not be connected to each other; data stores and external entities must connect only
with a process. A file does not interface with another file without the help of a program or a
person moving the data, so EMPLOYEE MASTER cannot directly produce the CHECK
RECONCILIATION file. External entities do not directly work with files. For example,
you would not want a customer rummaging around in the customer master file. Thus, the
EMPLOYEE does not create the EMPLOYEE TIME FILE. Two external entities directly
connected indicate that they wish to communicate with each other. This connection is not
included on the data flow diagram unless the system is facilitating the communication.
Producing a report is an instance of this sort of communication. A process must still be
interposed between the entities to produce the report, however.

3. Incorrectly labeling processes or data flow. Inspect the data flow diagram to ensure that
each object or data flow is properly labeled. A process should indicate the system name or
use the verb-adjective-noun format. Each data flow should be described with a noun.

4. Including more than nine processes on a data flow diagram. Having too many processes
creates a cluttered diagram that is confusing to read and hinders rather than enhances
communication. If more than nine processes are involved in a system, group some of the
processes that work together into a subsystem and place them in a child diagram.

CHAPTER 7 • USING DATA FLOW DIAGRAMS 199

Data Flow D

Record A

Input BEntity
2

3

Data Flow D

Detailed
Process

YYY

Detailed
Process

XXX

Detailed
Process

ZZZ

4

Input B

3.1
Transaction
Record 1

D5 Transaction
File 1

Transaction
Record 1

Error

3.2

Detailed
Data Flow Z

3.3

Record A

Data flow from

parent process to

child diagram must

match.

Matching data flow.

Error lines may be

added on a detailed

child diagram.

Transaction files

may be added to

lower-level diagrams.

Output flow must

match the parent

process.

General
Process

CCC

General
Process

DDD

D1 Data Store 1

D1 Data Store 1

FIGURE 7.4
Differences between the parent
diagram (above) and the child
diagram (below).

5. Omitting data flow. Examine your diagram for linear flow, that is, data flow in which each
process has only one input and one output. Except in the case of very detailed child data
flow diagrams, linear data flow is somewhat rare. Its presence usually indicates that the
diagram has missing data flow. For instance, the process CALCULATE WITHHOLDING
AMOUNT needs the number of dependents that an employee has and the
WITHHOLDING RATES as input. In addition, NET PAY cannot be calculated solely from
the WITHHOLDING, and the EMPLOYEE PAYCHECK cannot be created from the NET
PAY alone; it also needs to include an EMPLOYEE NAME, as well as the current and
year-to-date payroll and WITHHOLDING AMOUNT figures.

6. Creating unbalanced decomposition (or explosion) in child diagrams. Each child diagram
should have the same input and output data flow as the parent process. An exception to this
rule is minor output, such as error lines, which are included only on the child diagram. The

200 PART III • THE ANALYSIS PROCESS

Net
Pay

Employee

D2 Employee
Time File

Employee
Time Record

D1 Employee
Master

Hours
Worked

Gross Pay Withholding

Employee
Paycheck

Employee
Record

Employee
Record

D1 Employee
Master

Check
Reconciliation
Record

D3
Check
Reconciliation Employee

An external entity

should not directly

connect to a data

store.

A data store should

not directly connect

to another data
store.

Calculate
Gross
Pay

Calculate
Withholding

Amount

Calculate
Net Pay

Print
Employee
Paycheck

1 2 3

4

Process 1 has
no output.

Process 2 has no

input. The Gross

Pay data flow is

going in the wrong

direction.

FIGURE 7.5
Typical errors that can occur in a
data flow diagram (payroll
example).

data flow diagram in Figure 7.6 is correctly drawn. Note that although the data flow is not
linear, you can clearly follow a path directly from the source entity to the destination entity.

LOGICAL AND PHYSICAL DATA FLOW DIAGRAMS
Data flow diagrams are categorized as either logical or physical. A logical data flow diagram fo-
cuses on the business and how the business operates. It is not concerned with how the system will
be constructed. Instead, it describes the business events that take place and the data required and
produced by each event. Conversely, a physical data flow diagram shows how the system will be
implemented, including the hardware, software, files, and people involved in the system. The
chart shown in Figure 7.7 contrasts the features of logical and physical models. Notice that the
logical model reflects the business, whereas the physical model depicts the system.

Ideally, systems are developed by analyzing the current system (the current logical DFD) and
then adding features that the new system should include (the proposed logical DFD). Finally, the
best methods for implementing the new system should be developed (the physical DFD). This
progression is shown in Figure 7.8.

Developing a logical data flow diagram for the current system affords a clear understanding
of how the current system operates, and thus a good starting point for developing the logical
model of the current system. This time-consuming step is often omitted so as to go straight to the
proposed logical DFD.

One argument in favor of taking the time to construct the logical data flow diagram of the
current system is that it can be used to create the logical data flow diagram of the new system.

CHAPTER 7 • USING DATA FLOW DIAGRAMS 201

Employee

D2 Employee
Time File

Employee
Time Record

D1 Employee
Master

Hours
Worked

Gross Pay

Employee
Record

D1 Employee
Master

Check
Reconciliation
Record

Employee

Employee
Time Record

Number of
Dependents

D4 Withholding
Tables

Withholding
Rates

D3 Check
Reconciliation

Net
Pay

Withholding
Amount

Withholding
Amount

Gross Pay

Gross Pay

Employee
Record

Employee
Paycheck

Paycheck Information

Create
Employee

Time
Record

1

Create
Check

Reconciliation
File

6

Calculate
Gross
Pay

2

Calculate
Withholding

Amount

3

Calculate
Net
Pay

4

Print
Employee

Check

5

FIGURE 7.6
The correct data flow diagram for
the payroll example.Processes that will be unnecessary in the new system may be dropped, and new features, activi-

ties, output, input, and stored data may be added. This approach provides a means of ensuring that
the essential features of the old system are retained in the new system. In addition, using the log-
ical model for the current system as a basis for the proposed system provides for a gradual tran-
sition to the design of the new system. After the logical model for the new system has been
developed, it may be used to create a physical data flow diagram for the new system.

Figure 7.9 shows a logical data flow diagram and a physical data flow diagram for a grocery
store cashier. The CUSTOMER brings the ITEMS to the register; PRICES for all ITEMS are
LOOKED UP and then totaled; next, PAYMENT is given to the cashier; finally, the CUSTOMER
is given a RECEIPT. The logical data flow diagram illustrates the processes involved without go-
ing into detail about the physical implementation of activities. The physical data flow diagram
shows that a bar code—the universal product code (UPC) BAR CODE found on most grocery
store items—is used. In addition, the physical data flow diagram mentions manual processes such

202 PART III • THE ANALYSIS PROCESS

Design Feature Logical Physical

What the model
depicts

Collections of data
regardless of how
the data are stored.

Show data stores
representing
permanent data
collections.

How the system will be implemented (or
how the current system operates).

How the business
operates.

System controls

Type of data stores

Show business
controls.

Show controls for validating input data, for
obtaining a record (record found status),
for ensuring successful completion of a
process, and for system security (example:
journal records).

Master files, transition files. Any processes
that operate at two different times must
be connected by a data store.

Physical files and databases, manual
files.

What the data stores
represent

What the processes
represent

Business activities. Programs, program modules, and
manual procedures.

FIGURE 7.7
Features common to both logical
and physical data flow diagrams.

New Logical
Data Flow Diagram

New Physical
Data Flow Diagram

Current Logical
Data Flow Diagram

Derive the logical data flow
diagram for the current
system by examining the
physical data flow diagram
and isolating unique
business activities.

Create the logical data flow
diagram for the new system
by adding the input, output,
and processes required in
the new system to the logical
data flow diagram for the
current system.

Derive the physical data
flow diagram by examining
processes on the new
logical diagram. Determine
where the user interfaces
should exist, the nature of
the processes, and
necessary data stores.

FIGURE 7.8
The progression of models from
logical to physical.

as scanning, explains that a temporary file is used to keep a subtotal of items, and indicates that
the PAYMENT could be made by CASH, CHECK, or DEBIT CARD. Finally, it refers to the re-
ceipt by its name, CASH REGISTER RECEIPT.

Developing Logical Data Flow Diagrams
To develop such a diagram, first construct a logical data flow diagram for the current system.
There are a number of advantages to using a logical model, including:

1. Better communication with users.
2. More stable systems.
3. Better understanding of the business by analysts.
4. Flexibility and maintenance.
5. Elimination of redundancies and easier creation of the physical model.

CHAPTER 7 • USING DATA FLOW DIAGRAMS 203

Items and Prices

Customer

Identify
Item

1

D1 Prices

Items to
Purchase

Prices

Look Up
Prices

2

Item ID Amount to Be PaidCompute
Total

Cost of
Order

3

Receipt

Settle
Transaction
and Issue
Receipt

4

Customer

Payment

Logical Data Flow Diagram

Item Codes and Prices

Customer

Pass
Items Over
Scanner
(Manual)

1

D1 UPC Price File Temporary
Trans. File

Items Brought
to Checkout

Item Description
and Prices

Look Up
Code and

Price
in File

2

UPC Bar Code
Calculated

Amount to Be PaidCompute
Total
Cost

3

Cash Register
Receipt

Collect Money
and Give
Receipt

(Manual)

4

Customer

Cash, Check,
or Debit Card

Physical Data Flow Diagram

UPC Code

D2

Items, Prices,
and Subtotals

Items and
Prices

FIGURE 7.9
The physical data flow diagram
(below) shows certain details not
found on the logical data flow
diagram (above).

A logical model is easier to use when communicating with users of the system because it is cen-
tered on business activities. Users will thus be familiar with the essential activities and many of
the human information requirements of each activity.

Systems formed using a logical data flow diagram are often more stable because they are
based on business events and not on a particular technology or method of implementation. Log-
ical data flow diagrams represent features of a system that would exist no matter what the phys-
ical means of doing business are. For example, activities such as applying for a video store
membership card, checking out a DVD, and returning the DVD, would all occur whether the store
had an automated, manual, or hybrid system.

Developing Physical Data Flow Diagrams
After you develop the logical model of the new system, you may use it to create a physical data
flow diagram. The physical data flow diagram shows how the system will be constructed, and
usually contains most, if not all, of the elements found in Figure 7.10. Just as logical data flow
diagrams have certain advantages, physical data flow diagrams have others, including:

1. Clarifying which processes are performed by humans (manual) and which are automated.
2. Describing processes in more detail than logical DFDs.
3. Sequencing processes that have to be done in a particular order.
4. Identifying temporary data stores.
5. Specifying actual names of files, database tables, and printouts.
6. Adding controls to ensure the processes are done properly.

204 PART III • THE ANALYSIS PROCESS

Contents of Physical Data Flow Diagrams

• Manual processes
• Processes for adding, deleting, changing, and updating
 records
• Data entry and verifying processes
• Validation processes for ensuring accurate data input
• Sequencing processes to rearrange the order of records
• Processes to produce every unique system output
• Intermediate data stores
• Actual file names used to store data
• Controls to signify completion of tasks or error conditions

FIGURE 7.10
Physical data flow diagrams
contain many items not found in
logical data flow diagrams.

Activity Customer Item Order Order Detail

Customer Logon R

Item Inquiry R

Item Selection R C C

Order Checkout U U U R

Add Account C

Add Item C

Close Customer Account D

Remove Obsolete Item D

Change Customer Demographics RU

Change Customer Order RU RU RU CRUD

Order Inquiry R R R R

FIGURE 7.11
A CRUD matrix for an Internet
storefront. This tool can be used to
represent where each of four
processes (Create, Read, Update,
and Delete) occurs within a
system.

Physical data flow diagrams are often more complex than logical data flow diagrams simply be-
cause of the many data stores present in a system. The acronym CRUD is often used for Create,
Read, Update, and Delete, the activities that must be present in a system for each master file. A
CRUD matrix is a tool to represent where each of these processes occurs in a system. Figure 7.11
is a CRUD matrix for an Internet storefront. Notice that some of the processes include more than
one activity. Data entry processes such as keying and verifying are also part of physical data flow
diagrams.

Physical data flow diagrams also have intermediate data stores, often a transaction file or a
temporary database table. Intermediate data stores often consist of transaction files used to store
data between processes. Because most processes that require access to a given set of data are un-
likely to execute at the same instant in time, transaction files must hold the data from one process
to the next. An easily understood example of this concept is found in the everyday experiences of
grocery shopping, meal preparation, and eating. The activities are:

1. Selecting items from shelves.
2. Checking out and paying the bill.
3. Transporting the groceries home.
4. Preparing a meal.
5. Eating the meal.

CHAPTER 7 • USING DATA FLOW DIAGRAMS 205

Each of these five activities would be represented by a separate process on a physical data flow
diagram, and each one occurs at a different time. For example, you would not typically transport
the groceries home and eat them at the same time. Therefore, a “transaction data store” is required
to link each task. When you are selecting items, the transaction data store is the shopping cart. Af-
ter the next process (checking out), the cart is unnecessary. The transaction data store linking
checking out and transporting the groceries home is the shopping bag (cheaper than letting you
take the cart home!). Bags are an inefficient way of storing the groceries once they are home, so
cupboards and a refrigerator are used as a transaction data store between the activity of transport-
ing the goods home and preparing the meal. Finally, a plate, bowl, and cup constitute the link be-
tween preparing and eating the meal.

Timing information may also be included. For example, a physical DFD may indicate that
an edit program must be run before an update program. Updates must be performed before pro-
ducing a summary report, or an order must be entered on a Web site before the amount charged
to a credit card may be verified with the financial institution. Note that because of such consid-
erations, a physical data flow diagram may appear more linear than a logical model.

Create the physical data flow diagram for a system by analyzing its output and input. When
creating a physical data flow diagram, input data flow from an external entity is sometimes called
a trigger because it starts the activities of a process, and output data flow to an external entity is
sometimes called a response because it is sent as the result of some activity. Determine which data
fields or elements need to be keyed. These fields are called base elements and must be stored in
a file. Elements that are not keyed but are rather the result of a calculation or logical operation are
called derived elements.

Sometimes it is not clear how many processes to place in one diagram and when to create a
child diagram. One suggestion is to examine each process and count the number of data flows en-
tering and leaving it. If the total is greater than four, the process is a good candidate for a child
diagram. Physical data flow diagrams are illustrated later in this chapter.

EVENT MODELING AND DATA FLOW DIAGRAMS. A practical approach to creating physical data
flow diagrams is to create a simple data flow diagram fragment for each unique system event.
Events cause the system to do something and act as a trigger to the system. Triggers start activities
and processes, which in turn use data or produce output. An example of an event is a customer
reserving a flight on the Web. As each Web form is submitted, processes are activated, such as
validating and storing the data and formatting and displaying the next Web page.

Events are usually summarized in an event response table. An example of an event response
table for an Internet storefront business is illustrated in Figure 7.12. A data flow diagram frag-
ment is represented by a row in the table. Each DFD fragment is a single process on a data flow
diagram. All the fragments are then combined to form Diagram 0. The trigger and response
columns become the input and output data flows, and the activity becomes the process. The ana-
lyst must determine the data stores required for the process by examining the input and output
data flows. Figure 7.13 illustrates a portion of the data flow diagram for the first three rows of the
event response table.

The advantage of building data flow diagrams based on events is that the users are familiar
with the events that take place in their business area and know how the events drive other activities.

USE CASES AND DATA FLOW DIAGRAMS. In Chapter 2, we introduced the concept of a use case.
We use this notion of a use case in creating data flow diagrams. A use case summarizes an event
and has a similar format to process specifications (described in Chapter 9). Each use case defines
one activity and its trigger, input, and output. Figure 7.14 illustrates a use case for Process 3, Add
Customer Item.

This approach allows the analyst to work with users to understand the nature of the
processes and activities and then create a single data flow diagram fragment. When creating
use cases, first make an initial attempt to define the use cases without going into detail. This
step provides an overview of the system and leads to the creation of Diagram 0. Decide what
the names should be and provide a brief description of the activity. List the activities, inputs,
and outputs for each one.

Make sure you document the steps used in each use case. These should be in the form of busi-
ness rules that list or explain the human and system activities completed for each use case. If at all

206 PART III • THE ANALYSIS PROCESS

Event Activity Response DestinationSource Trigger

Customer
logs on

Customer
browses items
at Web
storefront

Customer
places item into
shopping
basket at Web
storefront

Customer
checks out

Obtain
customer
payment

Send customer
email

Temporal, hourly CustomerSend customer an
email confirming
shipment.

Customer Credit card
information

Verify credit card
amount with credit
card company.
Send.

Credit card data

Customer
feedback

Credit card
company

Customer

Customer Clicks “Check Out”
button on Web page

Display Customer
Order Web page.

Verification Web
page

Store data on Order
Detail Record.
Calculate shipping
cost using shipping
tables.
Update customer total.
Update item quantity
 on hand.

Item purchase (item
number and
quantity)

Items
Purchased Web
page

Customer number
and password

Item information

Welcome Web
page

CustomerFind customer record
and verify password.
Send Welcome Web
page.

Find item price and
quantity available.
Send Item Response
Web page.

Item Response
Web page

Customer

Customer Customer

Customer Customer

FIGURE 7.12
An event response table for an
Internet storefront.

possible, list them in the sequence that they would normally be executed. Next, determine the data
used by each step. This step is easier if a data dictionary has been completed. Finally, ask the users
to review and suggest modifications of the use cases. It is important that the use cases are written
clearly. (See Chapter 10 for a further discussion of UML, use cases, and use case diagrams.)

Partitioning Data Flow Diagrams
Partitioning is the process of examining a data flow diagram and determining how it should be
divided into collections of manual procedures and collections of computer programs. Analyze
each process to determine whether it should be a manual or automated procedure. Group auto-
mated procedures into a series of computer programs. A dashed line is often drawn around a
process or group of processes that should be placed into a single computer program.

There are six reasons for partitioning data flow diagrams:

1. Different user groups. Are the processes performed by several different user groups, often
at different physical locations in the company? If so, they should be partitioned into
different computer programs. An example is the need to process customer returns and
customer payments in a department store. Both processes involve obtaining financial
information that is used to adjust customer accounts (subtracting from the amount the
customer owes), but they are performed by different people at different locations. Each
group needs a different screen for recording the particulars of the transaction, either a
credit screen or a payment screen.

2. Timing. Examine the timing of the processes. If two processes execute at different times,
they cannot be grouped into one program. Timing issues may also involve how much data
is presented at one time on a Web page. If an ecommerce site has rather lengthy Web pages
for ordering items or making an airline reservation, the Web pages may be partitioned into
separate programs that format and present the data.

CHAPTER 7 • USING DATA FLOW DIAGRAMS 207

1

Get
Customer

Signin
Customer

Customer Number
and Password

Customer MasterD1
Welcome Web Page

Customer Record

2

Browse
Item

Records

Customer

Item Information

Item MasterD2Item Response
Web Page

Item Record

3

Add
Customer

Item

Customer

Item Purchased

Shipping TablesD8

Item MasterD2

Order DetailD7

Customer MasterD1

Items Purchased
Web Page

Item Record

Shipping Rates

Order Detail

Customer Record

FIGURE 7.13
Data flow diagrams for the first
three rows of the Internet
storefront event response table.

3. Similar tasks. If two processes perform similar tasks, they may be grouped into one
computer program.

4. Efficiency. Several processes may be combined into one program for efficient processing.
For example, if a series of reports needs to use the same large input files, producing them
together may save considerable computer run time.

5. Consistency of data. Processes may be combined into one program for consistency of data.
For example, a credit card company may take a “snapshot” and produce a variety of reports
at the same time just so figures are consistent.

6. Security. Processes may be partitioned into different programs for security reasons. A
dashed line may be placed around Web pages that are on a secure server to separate them
from those Web pages on a server that is not secured. A Web page that is used for obtaining
the user’s identification and password is usually partitioned from order entry or other
business pages.

A DATA FLOW DIAGRAM EXAMPLE
The following example is intended to illustrate the development of a data flow diagram by se-
lectively looking at each of the components explored earlier in this chapter. This example, called
“World’s Trend Catalog Division,” will also be used to illustrate concepts covered in Chapters 8
and 9.

Developing the List of Business Activities
A list of business activities for World’s Trend can be found in Figure 7.15. You could develop this
list using information obtained through interacting with people in interviews, through investiga-
tion, and through observation. The list can be used to identify external entities such as CUS-
TOMER, ACCOUNTING, and WAREHOUSE as well as data flows such as ACCOUNTS

208 PART III • THE ANALYSIS PROCESS

1. Find Item Record using the Item Number. If the item is not found, place a

message on the Items Purchased Web page.2. Store item data on Order Detail Record.

3. Use the Customer Number to find the Customer Record. 4. Calculate Shipping Cost using shipping tables. Using the Item Weight from

the Item Record and the Zip Code from the Customer Record, look up the

Shipping Cost in the Shipping Tables.
5. Modify the Customer Total using the Quantity Purchased and the Item

Price. Add the Shipping Cost. Update the Customer Record.6. Modify the Item Quantity on Hand and update the Item Record.

Steps Performed

Information for Steps

Input Name

Trigger type: External Temporal

Trigger: Customer places an order item in the shopping basket.

Description: Adds an item for a customer Internet order.

Use case name: Add Customer Item

Process ID: 3

Output Name

Source

Destination
Item Purchased(Item Number andQuantity)

Items PurchasedConfirmation
Web Page

Customer

Customer

Item Number, ItemRecord

Customer Number,Customer Record

Order Detail Record

Zip Code, Item Weight,Shipping Table

Quantity Ordered, ItemRecord

Item Record, QuantityPurchased, ShippingCost, Customer Record

FIGURE 7.14
A use case form for the Internet
storefront describes the Add
Customer Item activity and its
triggers, input, and output.

RECEIVABLE REPORT and CUSTOMER BILLING STATEMENT. Later (when developing
level 0 and child diagrams), the list can be used to define processes, data flows, and data stores.

Creating a Context-level Data Flow Diagram
Once this list of activities is developed, create a context-level data flow diagram as shown in
Figure 7.16. This diagram shows the ORDER PROCESSING SYSTEM in the middle (no
processes are described in detail in the context-level diagram) and five external entities (the two

CHAPTER 7 • USING DATA FLOW DIAGRAMS 209

World’s Trend is a mail order supplier of high-quality, fashionable clothing. Customers place

orders by telephone, by mailing an order form included with each catalog, or via the

Web site.

Summary of Business Activities
1. When customer orders come in, the item master and the customer master files are both

updated. If an item is out of stock, the inventory control department is notified.
If the order is from a new customer, a new record is created in the customer master file.

Picking slips are produced for the customer order and sent to the warehouse.
A shipping statement is prepared.

The process of shipping a customer order involves getting the goods from the warehouse

and matching up the customer shipping statement, getting the correct customer address,

and shipping it all to the customer.
The customer statement is generated and a billing statement is sent to a customer once

a month.

An accounts receivable report is sent to the accounting department.

2.

3.

4.

5.

6.

7.

1000 International LaneCornwall, CT 06050

World’s Trend

FIGURE 7.15
A summary of business activities
for World’s Trend Catalog
Division.

Order
Processing

System

0

Back-Ordered Item

Customer Order

New Customer Information

Item Number of Description

y

Shipped Order

Customer Billing Statement

Item Information

Accounts Receivable Report

Order Picking List

Order Goods

Customer

Inventory
Control

Department

Customer

Accounting
Department

Warehouse

FIGURE 7.16
A context-level data flow diagram
for the order processing system at
World’s Trend.

210 PART III • THE ANALYSIS PROCESS

separate entities both called CUSTOMER are really one and the same). The data flows that come
from and go to the external entities are shown as well (for example, CUSTOMER ORDER and
ORDER PICKING LIST).

Drawing Diagram 0
Next, go back to the activity list and make a new list of as many processes and data stores as you
can find. You can add more later, but start making the list now. If you think you have enough infor-
mation, draw a level 0 diagram such as the one found in Figure 7.17. Call this Diagram 0 and keep

Add
Customer

Order

1

D2 Item
Master

Item
Record

Customer Order

y

Back-Ordered Item

Add
Customer

Record

2

New
Customer
Information

Customer
Record

Customer
Record

Produce
Accounts

Receivable

7

Accounts
Receivable
Report

Create
Customer
Statement

6

Prepare
Shipping
Statement

4

Pending
Order

Customer
Shipping
Statement

Produce
Picking
Slips

3

Ship
Customer

Order

5

Customer Name
and Address

Customer
Record

Customer
Record

Pending
Order

Pending
Order

Pending
Order

Pending
Order Order Picking List

Fulfillment Items

Shipped Order

Customer Billing Statement

Warehouse

Customer

Customer

Inventory
Control

Department

D1 Customer
Master

Accounting
Department

8

Item
Information

Item
Number or
Description

D1
Customer
Master

Query Item
Information

Customer

FIGURE 7.17
Diagram 0, of the order processing
system for World’s Trend Catalog
Division.

CHAPTER 7 • USING DATA FLOW DIAGRAMS 211

the processes general so as not to overcomplicate the diagram. Later, you can add detail. When you
are finished drawing the seven processes, draw data flows between them and to the external entities
(the same external entities shown in the context-level diagram). If you think there need to be data
stores such as ITEM MASTER or CUSTOMER MASTER, draw those in and connect them to
processes using data flows. Now take the time to number the processes and data stores. Pay partic-
ular attention to making the labels meaningful. Check for errors and correct them before moving on.

Creating a Child Diagram
At this point try to draw a child diagram (sometimes also called a level 1 diagram) such as the
one in Figure 7.18. Child diagram processes are more detailed, illustrating the logic required to
produce the output. Number your child diagrams Diagram 1, Diagram 2, and so on, in accordance
with the number you assigned to each process in the level 0 diagram.

When you draw a child diagram, make a list of subprocesses first. Aprocess such as ADD CUS-
TOMER ORDER can have subprocesses (in this case, there are seven). Connect these subprocesses

Customer Record

Validate
Customer
Account

1.1

Customer Not
Found Error

Customer
Order

D1
Customer
Master

Customer
Record

Valid Customer Information

Valid Customer Information

Update
Customer
Record

1.6

Create
Pending
Order

1.7
Pending
Order

Customer
Order

Order
Totals

Order
Totals

Calculate
Order
Totals

1.5
Item Price
and Weight

D4
Shipping and
Handling Table

D2 Item
Master

Shipping Costs

Determine
Quantity
Available

1.3

Back-Ordered
Item

Validate
Order
Item

1.2

Item Not
Found Error

Customer
Order Valid Item

Item Quantity on Hand

Available Item

Available
Item

Available
Item

Update
Item

Quantity

1.4

Item
Record

D2 Item
Master

FIGURE 7.18
Diagram 1, of the order processing
system for World’s Trend Catalog
Division.

212 PART III • THE ANALYSIS PROCESS

to one another and also to data stores when appropriate. Subprocesses do not have to be connected
to external entities, because we can always refer to the parent (or level 0) data flow diagram to iden-
tify these entities. Label the subprocesses 1.1, 1.2, 1.3, and so on. Take the time to check for errors
and make sure the labels make sense.

Creating a Physical Data Flow Diagram from the Logical DFD
If you want to go beyond the logical model and draw a physical model as well, look at Figure 7.19,
which is an example of a physical data flow child diagram of process 3, PRODUCE PICKING
SLIPS. Physical DFDs give you the opportunity to identify processes for scanning bar codes, dis-

Read
Item

Record

3.1

Item Bin and
Section Location

Order Item
Information

D2 Item Master
File

Order Record Create
Order
Item

Record

3.2
Order Item
Record

Order Item
Record

D6 Order Item
File

Get
Customer

Record

3.4

Customer
Record

Customer Number

D1 Customer
Master File

Customer Name,
Address, and
Telephone

Format
Customer

Lines

3.5

Customer Line

Sorted
Order
Item
Record

Format
Item
Lines

3.6

Order Item LinePrint
Order

Picking
Slip

3.7

Order
Picking
Slip

Sorted
Order Item
Record

D7 Sorted Order
Item File

Sort Order
Item by
Location
within

Warehouse

3.3

FIGURE 7.19
A physical data flow child
diagram for World’s Trend
Catalog Division.

CHAPTER 7 • USING DATA FLOW DIAGRAMS 213

playing screens, locating records, and creating and updating files. The sequence of activities is im-
portant in physical DFDs, because the emphasis is on how the system will work and in what order
events happen.

When you label a physical model, take care to describe the process in great detail. For exam-
ple, subprocess 3.3 in a logical model could simply be SORT ORDER ITEM, but in the physical
model, a better label is SORT ORDER ITEM BY LOCATION WITHIN CUSTOMER. When you
write a label for a data store, refer to the actual file or database, such as CUSTOMER MASTER
FILE or SORTED ORDER ITEM FILE. When you describe data flows, describe the actual form,
report, or screen. For example, when you print a slip for order picking, call the data flow ORDER
PICKING SLIP.

Partitioning the Physical DFD
Finally, take the physical data flow diagram and suggest partitioning through combining or sep-
arating the processes. As stated earlier, there are many reasons for partitioning: identifying dis-
tinct processes for different user groups, separating processes that need to be performed at
different times, grouping similar tasks, grouping processes for efficiency, combining processes
for consistency, or separating them for security. Figure 7.20 shows that partitioning is useful in
the case of World’s Trend Catalog Division. You would first group processes 1 and 2 because it
would make sense to add new customers at the same time their first order was placed. You would
then put processes 3 and 4 in two separate partitions because these must be done at different times
from each other and thus cannot be grouped into a single program.

The process of developing a data flow diagram is now completed from the top down, first
drawing a companion physical data flow diagram to accompany the logical data flow diagram,
then partitioning the data flow diagram by grouping or separating the processes. The World’s
Trend example is used again in Chapters 8 and 9.

PARTITIONING WEB SITES
Partitioning is a very useful principle when designing a Web site. Web site designers who use
forms to collect data may find it more appropriate to divide a Web site into a series of Web pages,
which will improve the way humans use the site, the speed of processing, and the ease of main-
taining the site. Each time data must be obtained from a data store or an external partner, a Web
site designer might consider creating a unique Web form and DFD process to validate and process
the data.

The Web developer may also use Ajax, sending a request to the server and obtaining a small
amount of data or an XML document returned to the same page. Ajax may be used to avoid cre-
ating too many small pages containing only a few extra or changed Web form elements. How-
ever, the analyst should create several pages when needed. One consideration is when a large
amount of data needs to be obtained from the server, such as a list of all the flights that match
starting and destination airports for specific travel days. When accessing different database tables
on the same database, the data may be obtained containing fields from different database tables
and passed to one process. However, if different databases are involved, the analyst may decide
to use separate Web pages. When user input is required, the analyst may either use separate Web
pages or use Ajax to facilitate a change in a drop-down list or to change a small amount of data.

A good example of partitioning can be seen in the development of a Web-based travel book-
ing site. To simplify, we will only look at the airline booking portion of the Web site, shown in
the data flow diagram in Figure 7.21. Notice that the Web designer has chosen to create several
processes and unique partitions in making a flight reservation. Process 1 receives and validates
the dates and airports entered by the customer (or travel agent acting for a customer). The selec-
tion data is used to obtain flight details and create a transaction data store of flight details that
match the flight request.

It is advisable to partition the process of finding the flight information as a separate process,
because a data store must be searched and the flight details are used to display a series of succes-
sive Web pages with matching flights. Then, once a customer chooses a flight, the information
must be sent to a selected airline. It is important to have the FLIGHT DETAILS transaction file
available to display each Web page of new flights, because redoing the search may take a lengthy
amount of time that is unacceptable to a human user trying to complete a transaction.

214 PART III • THE ANALYSIS PROCESS

The selection of available flights (process 2) uses an internal database, but this database does
not have information about availability of seats, because the airlines are receiving reservations
from many travel service organizations. This means that there must be a separate process and
small program partitioned for determining if seats are available and for reserving specific seats.

Because there is a lot of user input, forms are designed to handle all the user requests. Hav-
ing separate forms means that the forms are less complex, and therefore users will find them more
attractive and easier to fill out. This design meets both the usability and usefulness criteria impor-
tant when designing Web sites for human–computer interaction. It also means that processing will
take place more quickly, because once the flight is chosen, the next step involving the choice of
seats should not require the customer to input or even see the flight details again at this time. Most
airline Web sites now use pop-up windows in which customers point to their seat selection.

Add
Customer

Order

1

Customer

D1 Customer
Master File

Customer
Record

Customer
Order

D3 Order File

D2
Item Master
File

Item
Record

Inventory
Control

Department

Add
Customer
Record

2 New
Customer
Record

Prepare
Shipping
Statement

4

Order
Record

D2 Item Master
File

Produce
Picking
Slips

3

Item
Record

Customer Name
and Address

D1 Customer
Master File

Warehouse

Ship
Customer

Order

5 Order
Goods

Customer
Shipping
Statement

Customer Name and Address

Order
Picking
List

Order
RecordPending

New
Customer
Information

Customer
Record

Item
Record

Back-Ordered Item Record

Shipment Details

Process numbers 3 and 4

are both batch processes,

but must be partitioned

into separate programs

because they are performed

Process 3 is a batch

process because it has

 a computer output, the

Order Picking List, and

 computer input (the

three files).

Indicate partitioning by

surrounding processes

included in a single

 program with a dashed

line. The customer would

be added when placing

an order.

 at different times.
Customer

FIGURE 7.20
Partitioning the data flow diagram
(showing part of Diagram 0).

CHAPTER 7 • USING DATA FLOW DIAGRAMS 215

Customer

E-TicketEmail
Confirmation Dates and

Airport Codes

Dates and
Airports

Flight Price
and Availability

Flight
Selection

Available Flight Details

Selected Flight

Credit Rejection

Customer
Information

Seat Selection

Available
Flight
Details

Available
Flights
Screen

Selected Flight and Seat Information

D1 Flight

D3 Customer Master

Select
Available

Seats

4

D5 Flight Reservation

Credit Card
Information

Credit Status

Credit
Confirmation

Credit Card
Information

Flight
Purchase

Flight Information

Flight
Information

Flight Reservation

Customer Record

Select
Flights

3

Book
Flight

5

Select Flight
Days and
Airports

1

Display
Available
Flights

2

Credit
Card

System

8

Produce
Customer
E-Ticket

Charge
Customer

Credit Card

6

Update
Airline
Flights

7

Airline

AirlineD2 Flight Details

Customer

FIGURE 7.21
Partitioning is important for Web-
based systems, as this physical
data flow diagram of an online
ticket purchasing system
demonstrates.

Another reason for partitioning is to keep the transaction secure. Once the seat has been selected,
the customer must confirm the reservation and supply credit card information. This is done using a
secure connection, and the credit card company is involved in validating the amount of purchase. The
secure connection means a separate process must be used. Once the credit card has been confirmed,
two additional processes must be included, one to format and send an email confirmation and an
e-ticket to the customer, and another to send notification of the flight purchase to the airline.

216 PART III • THE ANALYSIS PROCESS

C O N S U L T I N G O P P O R T U N I T Y 7 . 1

There’s No Business Like Flow Business

The phone at Merman’s Costume Rentals rings, and Annie Oak-
lea, head of costume inventory, picks it up and answers a query by
saying, “Let me take a look at my inventory cards. Sorry, it looks as
if there are only two male bear suits in inventory, with extra growly
expressions at that. We’ve had a great run on bear. When do you
need them? Perhaps one will be returned. No, can’t do it, sorry.
Would you like these two sent, regardless? The name of your estab-
lishment? Manhattan Theatre Company? London branch? Right.
Delightful company! I see by our account card that you’ve rented
from us before. And how long will you be needing the costumes?”

Figure 7.C1 is a data flow diagram that sets the stage for pro-
cessing of costume rentals from Merman’s. It shows rentals such as
the one Annie is doing for Manhattan Theatre Company.

After conversing for another few moments about shop policy
on alterations, Annie concludes her conversation by saying, “You
are very lucky to get the bears on such short notice. I’ve got an-
other company reserving them for the first week in July. I’ll put
you down for the bear suits, and they’ll be taken to you directly by
our courier. As always, prompt return will save enormous trouble
for us all.”

y

Credit
Approval

Availability
Information

Order Valid Order

Customer
Address

Order
Details

Shipping Details

Shipping
Information

Shipping
InvoiceProcess

Shipping
Invoices

3

Gather
Shipment
of Rental
Costumes

2

Edit
Order

1

Customers

Customers

D1
Costumes in
Inventory

D2
Customer
Information

D3 Customer
Order

FIGURE 7.C1
A data flow diagram for Merman’s Costume Rentals.

CHAPTER 7 • USING DATA FLOW DIAGRAMS 217

The entire procedure must be partitioned into a series of interacting processes, each with a
corresponding Web page or interaction with an external system. Each time a new data store is
used to obtain additional data, a process must be included to format or obtain the data. Each time
an external company or system is involved, a process needs to be partitioned into a separate pro-
gram. When processes or forms need to be revised, it is not a major task. The small size of the
programs makes them easy to change. In this way, the Web site is secure, efficient, and more eas-
ily maintained.

COMMUNICATING USING DATA FLOW DIAGRAMS
Data flow diagrams are useful throughout the analysis and design process. Use original, unex-
ploded data flow diagrams early when ascertaining information requirements. At this stage they
can help provide an overview of data movement through the system, lending a visual perspective
unavailable in narrative data.

A systems analyst might be quite competent at sketching through the logic of the data stream
for data flow diagrams, but to make the diagrams truly communicative to users and other mem-
bers of the project team, meaningful labels for all data components are also required. Labels
should not be generic, because then they do not tell enough about the situation at hand. All gen-
eral systems models bear the configuration of input, process, and output, so labels for a data flow
diagram need to be more specific than that.

Finally, remember that data flow diagrams are used to document the system. Assume that
data flow diagrams will be around longer than the people who drew them, which is, of course, al-
ways true if an external consultant is drawing them. Data flow diagrams can be used for docu-
menting high or low levels of analysis and helping to substantiate the logic underlying the data
flows of the organizations.

SUMMARY
To better understand the logical movement of data throughout a business, the systems analyst draws data
flow diagrams (DFDs). Data flow diagrams are structured analysis and design tools that allow the analyst to
comprehend the system and subsystems visually as a set of interrelated data flows.

Graphical representations of data movement storage and transformation are drawn with the use of four
symbols: a rounded rectangle to depict data processing or transformations, a double square to show an out-
side data entity (source or receiver of data), an arrow to depict data flow, and an open-ended rectangle to
show a data store.

The systems analyst extracts data processes, sources, stores, and flows from early organizational nar-
ratives or stories told by users or revealed by data and uses a top-down approach to first draw a context-level
data flow diagram of the system within the larger picture. Then a level 0 logical data flow diagram is drawn.
Processes are shown and data stores are added. Next, the analyst creates a child diagram for each of the
processes in Diagram 0. Inputs and outputs remain constant, but the data stores and sources change. Explod-
ing the original data flow diagram allows the systems analyst to focus on ever more detailed depictions of
data movement in the system. The analyst then develops a physical data flow diagram from the logical data
flow diagram, partitioning it to facilitate programming. Each process is analyzed to determine whether it
should be a manual or automated procedure.

Six considerations for partitioning data flow diagrams include whether processes are performed by dif-
ferent user groups, processes execute at the same times, processes perform similar tasks, batch processes can
be combined for efficient processing, processes may be combined into one program for consistency of data,
or processes may be partitioned into different programs for security reasons.

Merman’s costume rental enterprise is located in London’s
world-famous West End theatre district. When a theatre or television
production company lacks the resources (either time or expertise) to
construct a costume in its own shop, the cry goes up to “Ring up Mer-
man’s!” and it proceeds to rent what it needs with a minimum of fuss.

The shop (more aptly visualized as a warehouse) goes on for
three floors full of costume racks, holding thousands of costumes
hung together by historical period, then grouped as to whether they

are for men or women, and then by costume size.1 Most theatre
companies are able to locate precisely what they need through An-
nie’s capable assistance.

Now tailor-make the rental return portion of the data flow di-
agram given earlier. Remember that timely returns are critical for
keeping the spotlight on costumes rented from Merman’s.
1Western Costume Company in Hollywood, California, is said to have more
than 1 million costumes worth about $40 million.

218 PART III • THE ANALYSIS PROCESS

HYPERCASE® EXPERIENCE 7

“You take a very interesting approach to the problems we have
here at MRE. I’ve seen you sketching diagrams of our operation al-
most since the day you walked in the door. I’m actually getting used
to seeing you doodling away now. What did you call those? Oh, yes.
Context-level diagrams. And flow networks? Oh, no. Data flow di-
agrams. That’s it, isn’t it?”

HYPERCASE Questions
1. Find the data flow diagrams already drawn in MRE. Make a

list of those you found and add a column to show where in
the organization you found them.

2. Draw a context-level diagram modeling the Training Unit
Project Development process, one that is based on interviews
with relevant Training Unit staff. Then draw a level 0
diagram detailing the process.

FIGURE 7.HC1
In HyperCase you can click on elements in a data flow diagram.

KEYWORDS AND PHRASES

Ajax
base element
child diagram
context-level data flow diagram
data flow diagram
data flow diagram fragment
data-oriented system
data store
derived elements
event modeling
event response table
event trigger

exploding
external entity (source or destination)
functionally primitive
interface data flow
level 0 diagram
logical model
online process
parent process
partitioning
physical data store
physical model
primitive process

CHAPTER 7 • USING DATA FLOW DIAGRAMS 219

top-down approach
transaction data store
transforming process

unified modeling language (UML)
use case
vertical balancing

REVIEW QUESTIONS
1. What is one of the main methods available for the analyst to use when analyzing data-oriented

systems?
2. What are the four advantages of using a data flow approach over narrative explanations of data

movement?
3. What are the four data items that can be symbolized on a data flow diagram?
4. What is a context-level data flow diagram? Contrast it to a level 0 DFD.
5. Define the top-down approach as it relates to drawing data flow diagrams.
6. Describe what “exploding” data flow diagrams means.
7. What are the trade-offs involved in deciding how far data streams should be exploded?
8. Why is labeling data flow diagrams so important? What can effective labels on data flow diagrams

accomplish for those unfamiliar with the system?
9. What is the difference between a logical and physical data flow diagram?

10. List three reasons for creating a logical data flow diagram.
11. List five characteristics found on a physical data flow diagram that are not on a logical data flow

diagram.
12. When are transaction files required in the system design?
13. How can an event table be used to create a data flow diagram?
14. List the major sections of a use case.
15. How can a use case be used to create a data flow diagram?
16. What is partitioning, and how is it used?
17. How can an analyst determine when a user interface is required?
18. List three ways of determining partitioning in a data flow diagram.
19. List three ways to use completed data flow diagrams.

PROBLEMS
1. Up to this point you seem to have had excellent rapport with Kevin Cahoon, the owner of a musical

instrument manufacturing company. When you showed him a set of data flow diagrams you drew, he
wasn’t able to see how the system you were proposing was described in the diagrams.
a. In a paragraph, write down in general terms how to explain a data flow diagram to a user. Be

sure to include a list of symbols and what they mean.
b. It takes some effort to educate users about data flow diagrams. Is it worthwhile to share them

with users? Why or why not? Defend your response in a paragraph.
c. Compare data flow diagrams to use cases and use case scenarios. What do data flow diagrams

show that use case diagrams have a difficult time trying to explain?
2. Your latest project is to combine two systems used by Producers Financial. Angie Schworer’s loan

application system is fairly new, but has no documentation. Scott Wittman’s loan management
system is older, needs much revision, and the records are coded and kept independently of the other
system. The loan application system accepts applications, processes them, and recommends loans for
approval. The loan management system takes loans that have been approved and follows them
through their final disposition (paid, sold, or defaulted). Draw a context diagram and a level 1 data
flow diagram that shows what an idealized combined system would look like.

3. One common experience that students in every college and university share is enrolling in a college
course.
a. Draw a level 1 data flow diagram of data movement for enrollment in a college course. Use a

single sheet and label each data item clearly.
b. Explode one of the processes in your original data flow diagram into subprocesses, adding data

flows and data stores.
c. List the parts of the enrollment process that are “hidden” to the outside observer and about which

you have had to make assumptions to complete a second-level diagram.
4. Figure 7.EX1 is a level 1 data flow diagram of data movement in a Niagara Falls tour agency called

Marilyn’s Tours. Read it over, checking for any inaccuracies.
a. List and number the errors that you have found in the diagram.
b. Redraw and label the data flow diagram of Marilyn’s so that it is correct. Be sure that your new

diagram employs symbols properly so as to cut down on repetitions and duplications where possible.

220 PART III • THE ANALYSIS PROCESS

PRIVATE
TRAVEL
AGENT

AIRLINE
TRAVEL
AGENT

CASH
PAYING
TOURIST

Check
credit

Determine
tour

desired

Make
reservations

TOURIST

COST OF TOURS

TRAVEL BROCHURES

TRAVEL ITINERARY

CREDIT HISTORY

D1

1 2

3
D2

D3

D4

TOURIST
WITH

CHARGE
CARD

FIGURE 7.EX1
A hand-sketched data flow
diagram for Marilyn’s Tours.

5. Perfect Pizza wants to install a system to record orders for pizza and chicken wings. When regular
customers call Perfect Pizza on the phone, they are asked their phone number. When the number is
typed into a computer, the name, address, and last order date is automatically brought up on the
screen. Once the order is taken, the total, including tax and delivery, is calculated. Then the order is
given to the cook. A receipt is printed. Occasionally, special offers (coupons) are printed so the
customer can get a discount. Drivers who make deliveries give customers a copy of the receipt and a
coupon (if any). Weekly totals are kept for comparison with last year’s performance. Write a
summary of business activities for taking an order at Perfect Pizza.

6. Draw a context-level data flow diagram for Perfect Pizza (Problem 5).
7. Explode the context-level diagram in Problem 6 showing all the major processes. Call this Diagram

0. It should be a logical data flow diagram.
8. Draw a logical child diagram for Diagram 0 in Problem 7 for the process that adds a new customer if

he or she is not currently in the database (has never ordered from Perfect Pizza before).
9. Draw a physical data flow diagram for Problem 7.

10. Draw a physical data flow diagram for Problem 8.
11. Partition the physical data flow diagram in Problem 7, grouping and separating processes as you

deem appropriate. Explain why you partitioned the data flow diagram in this manner. (Remember
that you do not have to partition the entire diagram, only the parts that make sense to partition.)

12. a. Draw a logical child diagram for process 6 in Figure 7.17.
b. Draw a physical child diagram for process 6 in Figure 7.17.

13. Draw a physical data flow diagram for process 1.1 in Figure 7.18.
14. Create a context diagram for a real estate agent trying to create a system that matches buyers with

potential houses.
15. Draw a logical data flow diagram showing general processes for Problem 14. Call it Diagram 0.
16. Create a context-level diagram for billing in a dental office. External entities include the patients and

insurance companies.
17. Draw a logical data flow diagram showing general processes for Problem 16. Call it Diagram 0.
18. Create an event response table for the activities listed for World’s Trend order processing system.
19. Create a use case for the list of seven processes for the World’s Trend order processing system.
20. Create a CRUD matrix for the files of World’s Trend.
21. Use the principles of partitioning to determine which of the processes in Problem 18 should be

included in separate programs.

CHAPTER 7 • USING DATA FLOW DIAGRAMS 221

22. Create a physical data flow child diagram for the following situation: The local PC Users Group
holds meetings once a month with informative speakers, door prizes, and sessions for special interest
groups. A laptop computer is taken to the meetings, and is used to add the names of new members to
the group. The diagram represents an online process and is the child of process 1, ADD NEW
MEMBERS. The following tasks are included:
a. Key the new member information.
b. Validate the information. Errors are displayed on the screen.
c. When all the information is valid, a confirmation screen is displayed. The operator visually

confirms that the data are correct and either accepts the transaction or cancels it.
d. Accepted transactions add new members to the MEMBERSHIP MASTER file, which is stored

on the laptop hard drive.
e. Accepted transactions are written to a MEMBERSHIP JOURNAL file, which is stored on a

second hard drive.

GROUP PROJECTS
1. Meet with your group to develop a context-level data flow diagram for Maverick Transport (first

introduced in Chapter 4). Use any data you have subsequently generated with your group about
Maverick Transport. (Hint: Concentrate on one of the company’s functional areas rather than try to
model the entire organization.)

2. Using the context-level diagram developed in Problem 1, develop with your group a level 0 logical
data flow diagram for Maverick Transport. Make any assumptions necessary to draw it. List them.

3. With your group, choose one key process and explode it into a logical child diagram. Make any
assumptions necessary to draw it. List follow-up questions and suggest other methods to get more
information about processes that are still unclear to you.

4. Use the work your group has done to date to create a physical data flow diagram of a portion of the
new system you are proposing for Maverick Transport.

SELECTED BIBLIOGRAPHY
Ambler, S. W., and L. L. Constantine (Eds.). The Unified Process Inception Phase: Best Practices for

Implementing the UP. Lawrence, KS: CMP Books, 2000.
Gane, C., and T. Sarson. Structured Systems Analysis and Design Tools and Techniques. Englewood Cliffs,

NJ: Prentice Hall, 1979.
Hoffer, J. A., M. Prescott, and H. Topi. Modern Database Management, 9th ed. Upper Saddle River: Pren-

tice Hall, 2009.
Kotonya, G., and I. Sommerville. Requirements Engineering: Processes and Techniques. New York: John

Wiley & Sons, 1999.
Lucas, H. Information Systems Concepts for Management, 3d ed. New York: McGraw-Hill, 1986.
Martin, J. Strategic Data-Planning Methodologies. Englewood Cliffs, NJ: Prentice Hall, 1982.
Thayer, R. H., M. Dorfman, and D. Garr. Software Engineering: Vol. 1: The Development Process, 2d ed.

New York: Wiley-IEEE Computer Society Press, 2002.

222 PART III • THE ANALYSIS PROCESS

E P I S O D E 7
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Just Flowing Along
After the results of interviews, questionnaires, and prototyping are gathered and analyzed, Anna and Chip
move to the next step, modeling the system. Their strategy is to create a layered set of data flow diagrams
and then describe the components.

Anna says, “Let’s take the current logical data flow diagrams and add all the requirements and desired
features of the new system. We can also eliminate any of the unnecessary features that wouldn’t be imple-
mented in the new system.”

Anna then takes the context-level diagram (shown in the CPU Case in Chapter 2) and adds many of the
reports, inquiries, and other information that will be included in the new system. The finished context-level di-
agram is shown in Figure E7.1. Notice the many new data flows. In the proposed system, the computer MAIN-

Computer
Inventory
System

0

Deleted Computer ID

Completed Installation Listing

Computer Change Information
Maintenance

Management

Management

Installation Report

Management Reports

Inquiry Responses

Software Cross-Reference Report

MaintenanceMaintenance Reports

New Computer Form
Shipping/
Receiving

Department

Clerical
Support

Computer Received Listing

Detailed Reports

Management Inquiries

Software Inquiry
Faculty

Faculty
Inquiry Response

Software
User

Installation Notification Report

Software Received Form

Installation Listing

FIGURE E7.1
Context-level data flow diagram,
Proposed CPU Computer
Inventory 15 System.

CHAPTER 7 • USING DATA FLOW DIAGRAMS 223

TENANCE staff will receive reports that currently are not available. One report, for example, helps to auto-
mate the installation of new computers, the INSTALLATION LISTING, and another report intended for man-
agement shows which software is located on which machines, the SOFTWARE CROSS-REFERENCE
REPORT.

Anna continues, “Let’s expand this to Diagram 0 for the new system. This will be a logical data flow
diagram because we want to focus on the business needs. Perhaps it would be best if we work in a team for
this diagram.”

After working for several hours that afternoon and a good portion of the next morning, they complete
the diagram. It is reviewed and modified with some minor changes. The finished Diagram 0 is shown in Figure
E7.2 and Figure E7.3. Because it is a logical diagram, it shows no physical data entry method or validation

Computer
Record

Add New
Computer

2

D6 Pending Computer
Orders

Pending
Order

Shipping/
Receiving

Department

New Computer Form

Maintenance
Installation Listing

Clerical
Support

Computer Received Listing

Management

Installation
Report

Install
Computer

5

Produce
Software/
Hardware
Cross-Ref.

Report

9

D4 Computer Master

New
Computer

New
Software

Add Software
Record

1

D5 Software Master

Software
Record

Software
Installation
List

Software Received Form Shipping/
Receiving

Department

Install
Software

8

Installation Notification Report
Software

User
D6 Pending

Computer Orders

Change
Computer

6

Maintenance

Completed
Installation Listing

Computer Change
Information

Install Update

Changed
Computer

Install Update

Management

Software Cross-
Reference Report

FIGURE E7.2
Diagram 0: Proposed CPU
Computer Inventory System
(part 1).

224 PART III • THE ANALYSIS PROCESS

operations, nor does it show any temporary data stores or transaction files. Timing is not a consideration (an
example is the ADD NEW COMPUTER process, in which it appears that orders are updated and reports pro-
duced simultaneously).

“This finally looks right,” muses Chip. “All the major processes, data flows, and data stores are ac-
counted for. And the overall diagram doesn’t look too complicated.”

“Putting all of the inquiries into one subsystem and all the reports into another helped. Remember how
complex the original diagram was?” asks Anna.

“I sure do,” Chip replies. “I started to think we were tackling too much at once with this system. At
least it’s more manageable now. Now that this is finished, what’s the next step?”

“We need to describe Diagram 0 in more detail,” remarks Anna. “We’ll do this by drawing a level 1 di-
agram for each of the processes in Diagram 0. Just as a parent may have many children, there may be many
level 1 diagrams for a specific level 0 diagram. For this reason many analysts refer to them as parent and
child diagrams.”

“I’ve been working on Diagram 1, an explosion of process 1, called ADD SOFTWARE RECORD.
Perhaps you would like to review the finished result,” remarks Anna. This Diagram 1 can be seen in
Figure E7.4.

Chip and Anna both use Visible Analyst to verify that the data flow diagram syntax is correct. Vis-
ible Analyst will also check that the levels balance among data flow diagram processes and the child
diagrams.

Delete
Computer

4
Deleted
Computer ID Deleted Computer ID

Management Reports

Hardware Record
Report

Subsystem

3

Software Record

Software Record

Maintenance Reports

Detailed Report

7

Inquiry
Subsystem

Inquiry Responses

Management Inquiries

Hardware Record

Software
Inquiry

Inquiry
Response

Maintenance

Clerical
Support

Management

Faculty

D4 Computer Master

D5 Software Master

D4 Computer Master

FIGURE E7.3
Diagram 0: Proposed CPU
Computer Inventory System
(part 2).

CHAPTER 7 • USING DATA FLOW DIAGRAMS 225

Software
Record

Key
Software
 Record

1.1Software Received
Form

D5 Software Master

Validate
Software
Record

1.2

Confirm New
Software

1.3

Keyed Software

Valid
Software

Create
Software Log

File

1.4

Confirmed Software

Software
Log
Record

Software Installation
List

D7 Software Log

Create
Software
Install.
Listing

1.6

Software
Log
Record

Add New
Software
Record

1.5

D5 Software Master

New
Software

Confirmed Software

FIGURE E7.4
Diagram 1: ADD
SOFTWARE RECORD
from the proposed CPU
Computer System.

EXERCISES
E-1. Use Microsoft Visio or Visible Analyst to view the context-level diagram for the proposed computer system. If

you are using Visible Analyst, experiment with the Zoom controls on the lower toolbar to change from a global
to a detailed view of the diagram. Double click on the central process to examine the repository entry for it. Click
Exit to return to the diagram. Right click on the central process to display the object menu for the central process.
Use the Explode option to display Diagram 0, representing the details of the central process. Maximize the win-
dow and double click on some of the data stores and data flows to examine their repository entries. Click Exit to
return to the diagram. Zoom to 100 percent and scroll around the screen to view different regions of the diagram;
then print the diagram using a landscape orientation. Click FILE, NEST, and PARENT to return to the context-
level diagram. Maximize the window.

E-2. Modify Diagram 0 of the proposed computer system. Add process 10, UPDATE SOFTWARE RECORD. You
will have to move the MANAGEMENT external entity lower in the diagram; place it to the left of process 7,
INQUIRY SUBSYSTEM. Create a repository entry for the process and then click Exit to return to the dia-
gram. Print the diagram using a landscape orientation.

226 PART III • THE ANALYSIS PROCESS

Input: 1. SOFTWARE CHANGE DATA, from CLERICAL SUPPORT

2. SOFTWARE DELETE ID, from MANAGEMENT
Output: 1. SOFTWARE RECORD, an update from the SOFTWARE MASTER data store

E-3. Modify Diagram 10, UPDATE SOFTWARE RECORD. Connect to the SOFTWARE MASTER using
a double-headed arrow. (If you are using Visible Analyst, right click on the data flow, select Change
Item, then select Change Type, and Terminator Type, Double Filled.) Print the final diagram.

E-4. Modify Diagram 8, INSTALL SOFTWARE. Add the following processes. Zoom in and scroll around
the screen, checking your diagram for a professional appearance. Print the final result.

Process: 8.2 INSTALL COMPUTER SOFTWARE

Input: 1. COMPUTER LOCATION, from process 8.1

2. SOFTWARE TITLE AND VERSION, from process 8.1
Output: 1. INSTALLED SOFTWARE FORM

Process: 8.3 CREATE INSTALLED SOFTWARE TRANSACTION

Input: 1. INSTALLED SOFTWARE FORM
Output: 1. INSTALLED SOFTWARE TRANSACTION, to INSTALLED SOFTWARE data

store

Process: 8.4 UPDATE SOFTWARE MASTER

Input: 1. INSTALLED SOFTWARE TRANSACTION
Output: 1. SOFTWARE MASTER, update
Process: 8.5 PRODUCE INSTALLATION NOTIFICATION
Input: 1. INSTALLED SOFTWARE TRANSACTION

2. SOFTWARE MASTER, from the SOFTWARE MASTER data store

3. HARDWARE MASTER, from the COMPUTER MASTER data store
Output: 1. INSTALLATION NOTIFICATION LISTING, an interface flow

E-5. Modify Diagram 6, CHANGE COMPUTER RECORD. This is an online program to change com-
puter information. Add the following three processes. Create repository entries for each of the
processes, as well as the data flow. When completed, zoom to 100 percent and change any data flow
arrows that are not straight, and move data flow labels for a professional-looking graph. Print the di-
agram using landscape orientation.
a. Process 6.6, VALIDATE CHANGES. This process edits each change field for validity. The input

is the KEYED CHANGES. The output fields are CHANGE ERRORS (interface flow) and
VALID CHANGES (to process 6.7).

b. Process 6.7, CONFIRM CHANGES. This process is a visual confirmation of the changes. The
operator has a chance to reject the changes or accept them. Input is the VALID CHANGES. The
output fields are REJECTED CHANGES (interface flow) and CONFIRMED CHANGES (to
process 6.8).

c. Process 6.8, REWRITE COMPUTER MASTER. This process rewrites the COMPUTER
MASTER record with the changes on the record. Input is the CONFIRMED CHANGES. Out-
put flow is the COMPUTER MASTER record, to the COMPUTER MASTER data store.

E-6. Create the child data flow diagram for process 4, DELETE COMPUTER. The following table sum-
marizes input, process, and output. Describe each process and data flow in the repository. When com-
pleted, zoom to 100 percent, move any data flow lines that are not aligned correctly, move the data
flow labels for a professional-looking graph, and print the diagram.

Process: 4.1 KEY DELETE ID

Description: The computer ID is keyed interactively

Input: 1. DELETED COMPUTER ID
Output: 1. KEYED DELETE
Process: 4.2 OBTAIN COMPUTER RECORD

Description: COMPUTER MASTER record is read to ensure that it exists

Input: 1. KEYED DELETE (interface)

2. COMPUTER RECORD, from the COMPUTER MASTER data store
Output: 1. NOT FOUND ERROR (interface)

2. VALID COMPUTER RECORD

CHAPTER 7 • USING DATA FLOW DIAGRAMS 227

Process: 4.3 CONFIRM COMPUTER DELETION

Description: The computer information is displayed on the screen for operator confirmation or
rejection

Input: 1. VALID COMPUTER RECORD
Output: 1. REJECTED DELETION (interface)

2. CONFIRMED DELETION

Process: 4.4 DELETE COMPUTER RECORD

Description: The computer record is logically (not physically) deleted from the COMPUTER
MASTER data store by rewriting the record with an I for inactive in the Record
Code field

Input: 1. CONFIRMED DELETION
Output: 1. DELETED COMPUTER, a double-headed arrow to the COMPUTER

MASTER data store

The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft Project, or
a Microsoft Access file that can be used to complete the exercises.

www.pearsonhighered.com/kendall

C H A P T E R 8

Analyzing Systems
Using Data Dictionaries

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Understand how analysts use data dictionaries for analyzing data-oriented systems.

2. Create data dictionary entries for data processes, stores, flows, structures, and logical and
physical elements of the systems being studied, based on DFDs.

3. Understand the concept of a repository for analysts’ project information and the role of
CASE tools in creating them.

4. Recognize the functions of data dictionaries in helping users update and maintain
information systems.

After successive levels of data flow diagrams are complete, systems ana-
lysts use them to help catalog the data processes, flows, stores, structures,
and elements in a data dictionary. Of particular importance are the names
used to characterize data items.When given an opportunity to name com-
ponents of data-oriented systems, the systems analyst needs to work at

making the name meaningful but exclusive of other existing data component names.This chap-
ter covers the data dictionary, which is another method to aid in the analysis of data-oriented
systems.

THE DATA DICTIONARY
The data dictionary is a specialized application of the kinds of dictionaries used as references in
everyday life. The data dictionary is a reference work of data about data (that is, metadata), one
that is compiled by systems analysts to guide them through analysis and design. As a document,
the data dictionary collects and coordinates specific data terms, and it confirms what each term
means to different people in the organization. The data flow diagrams covered in Chapter 7 are
an excellent starting point for collecting data dictionary entries.

One important reason for maintaining a data dictionary is to keep clean data. This means that
data must be consistent. If you store data about a man’s sex as “M” in one record, “Male” in a
second record, and as the number “1” in a third record, the data are not clean. Keeping a data dic-
tionary will help in this regard.

Automated data dictionaries (part of the CASE tools mentioned earlier) are valuable for their
capacity to cross-reference data items, thereby allowing necessary program changes to all pro-
grams sharing a common element. This feature supplants changing programs on a haphazard ba-
sis, or it prevents waiting until the program won’t run because a change has not been implemented
across all programs sharing the updated item. Clearly, automated data dictionaries become im-
portant for large systems that produce several thousand data elements requiring cataloging and
cross-referencing.

228

Need for Understanding the Data Dictionary
Many database management systems now come equipped with an automated data dictionary.
These dictionaries can be either elaborate or simple. Some computerized data dictionaries auto-
matically catalog data items when programming is done; others simply provide a template to
prompt the person filling in the dictionary to do so in a uniform manner for every entry.

Despite the existence of automated data dictionaries, understanding what data compose a
data dictionary, the conventions used in data dictionaries, and how a data dictionary is developed
are issues that remain pertinent for the systems analyst during the systems effort. Understanding
the process of compiling a data dictionary can aid the systems analyst in conceptualizing the sys-
tem and how it works. The upcoming sections allow the systems analyst to see the rationale be-
hind what exists in automated data dictionaries.

In addition to providing documentation and eliminating redundancy, the data dictionary may
be used to:

1. Validate the data flow diagram for completeness and accuracy.
2. Provide a starting point for developing screens and reports.
3. Determine the contents of data stored in files.
4. Develop the logic for data flow diagram processes.
5. Create XML (extensible markup language).

THE DATA REPOSITORY
Although the data dictionary contains information about data and procedures, a larger collection
of project information is called a repository. The repository concept is one of the many impacts
of CASE tools and may contain the following:

1. Information about the data maintained by the system, including data flows, data stores,
record structures, elements, entities, and messages.

2. Procedural logic and use cases.
3. Screen and report design.
4. Data relationships, such as how one data structure is linked to another.
5. Project requirements and final system deliverables.
6. Project management information, such as delivery schedules, achievements, issues that

need resolving, and project users.

The data dictionary is created by examining and describing the contents of the data flows, data
stores, and processes, as illustrated by Figure 8.1. Each data store and data flow should be defined
and then expanded to include the details of the elements it contains. The logic of each process
should be described using the data flowing into or out of the process. Omissions and other design
errors should be noted and resolved.

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 229

Data Flow Diagram

Data Store

Data Flow

Data Dictionary

Data
Flow

Description
Form
XXX

Data
Structure

XXX

Data
Store

Description
Form
XXX

Data
Elements

XXX

Data
Structure

XXX

Data
Elements

XXX

FIGURE 8.1
How data dictionaries relate to
data flow diagrams.

230 PART III • THE ANALYSIS PROCESS

The four data dictionary categories—data flows, data structures, data elements, and data
stores—should be developed to promote understanding of the data of the system. Procedural logic
is presented in Chapter 9, entities are discussed in Chapter 13, and messages and use cases are
presented in Chapters 2 and 10.

To illustrate how data dictionary entries are created, we use an example for World’s Trend
Catalog Division. This company sells clothing and other items by mail order using a toll-free
phone order system (or faxing the mail order form), and via the Internet using customized Web
forms. Regardless of the origin of the order, the underlying data captured by the system are the
same for all three methods.

The World’s Trend order form shown in Figure 8.2 gives some clues about what to enter into
a data dictionary. First, you need to capture and store the name, address, and telephone number
of the person placing the order. Then you need to address the details of the order: the item de-
scription, size, color, price, quantity, and so on. The customer’s method of payment must also be
determined. Once you have done this, these data may be stored for future use. This example is
used throughout this chapter to illustrate each part of the data dictionary.

Defining the Data Flows
Data flows are usually the first components to be defined. System inputs and outputs are deter-
mined from interviewing, observing users, and analyzing documents and other existing systems.
The information captured for each data flow may be summarized using a form containing the fol-
lowing information:

1. ID, an optional identification number. Sometimes the ID is coded using a scheme to
identify the system and the application in the system.

2. A unique descriptive name for this data flow. This name is the text that should appear on
the diagram and be referenced in all descriptions using the data flow.

3. A general description of the data flow.
4. The source of the data flow. The source could be an external entity, a process, or a data

flow coming from a data store.
5. The destination of the data flow (same items listed under the source).
6. An indication of whether the data flow is a record entering or leaving a file or a record

containing a report, form, or screen. If the data flow contains data that are used between
processes, it is designated as internal.

7. The name of the data structure describing the elements found in this data flow. For a
simple data flow, it could be one or several elements.

8. The volume per unit of time. The data could be records per day or any other unit of time.
9. An area for further comments and notations about the data flow.

FIGURE 8.2
An online order form from World's
Trend Catalog Divison.

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 231

Once again we can use our World’s Trend Catalog Division example from Chapter 7 to illustrate
a completed form. Figure 8.3 is an example of the data flow description representing the screen
used to add a new CUSTOMER ORDER and to update the customer and item files. Notice that
the external entity CUSTOMER is the source and that PROCESS 1 is the destination, providing
linkage back to the data flow diagram. The checked box for “Screen” indicates that the flow rep-
resents an input screen. It could be any screen, such as a Web page, graphical user interface (GUI),
mobile phone, or perhaps a mainframe screen. The detailed description of the data flow could ap-
pear on this form, or it could be represented as a data structure.

Data flows for all inputs and outputs should be described first, because they usually repre-
sent the human interface, followed by the intermediate data flows and the data flows to and from
data stores. The detail of each data flow is described using elements, sometimes called fields; a
data structure; or a group of elements.

A simple data flow may be described using a single element, such as a customer number used
by an inquiry program to find the matching customer record.

Describing Data Structures
Data structures are usually described using algebraic notation. This method allows the analyst to
produce a view of the elements that make up the data structure along with information about those
elements. For instance, the analyst will denote whether there are many of the same element in the
data structure (a repeating group), or whether two elements may exist mutually exclusive of each
other. The algebraic notation uses the following symbols:

1. An equal sign (�) means “is composed of.”
2. A plus sign (�) means “and.”
3. Braces { } indicate repetitive elements, also called repeating groups or tables. There may

be one repeating element or several in the group. The repeating group may have
conditions, such as a fixed number of repetitions, or upper and lower limits for the number
of repetitions.

Customer
Process 1

Customer Order
Contains customer order information and is used to update the

customer master and item files and to produce an order record.

ID
Name
Description

Data Flow Description

Comments

Source
Destination

Type of Data Flow
File Screen Report Form Internal

Data Structure Traveling with the Flow
Volume/Time

Order Information

10/hourOrder record information for one customer order. The order

may be received by Web entry, email, FAX, or by the customer telephoning

the order-processing department directly.

FIGURE 8.3
An example of a data flow
description from World’s Trend
Catalog Division.

232 PART III • THE ANALYSIS PROCESS

4. Brackets [] represent an either/or situation. Either one element may be present or another,
but not both. The elements listed between the brackets are mutually exclusive.

5. Parentheses () represent an optional element. Optional elements may be left blank on entry
screens and may contain spaces or zeros for numeric fields in file structures.

Figure 8.4 is an example of the data structure for adding a customer order at World’s Trend Cat-
alog Division. Each NEW CUSTOMER screen consists of the entries found on the right side of
the equal signs. Some of the entries are elements, but others, such as CUSTOMER NAME, AD-
DRESS, and TELEPHONE, are groups of elements or structural records. For example, CUS-
TOMER NAME is made up of FIRST NAME, MIDDLE INITIAL, and LAST NAME. Each
structural record must be further defined until the entire set is broken down into its component el-
ements. Notice that following the definition for the CUSTOMER ORDER screen are definitions
for each structural record. Even a field as simple as the TELEPHONE NUMBER is defined as a
structure so that the area code may be processed individually.

Customer Order = Customer Number +Customer Name +
Address +
Telephone +
Catalog Number +
Order Date +
{Available Order Items} +Merchandise Total +(Tax) +

Shipping and Handling +Order Total +
Method of Payment +(Credit Card Type) +(Credit Card Number) +(Expiration Date)

Customer Name = First Name +
(Middle Initial) +
Last Name

Address = Street +
(Apartment) +
City +
State +
Zip +
(Zip Expansion) +
(Country)

Telephone = Area Code +
Local Number

Available Order Items = Quantity Ordered +Item Number +
Item Description +Size +
Color +
Price +
Item Total

Method of Payment = [Check Charge Money Order]Credit Card Type = [World’s Trend American Express MasterCard Visa]

FIGURE 8.4
Data structure example for adding
a customer order at World’s Trend
Catalog Division.

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 233

Structural records and elements that are used in many different systems are given a nonsystem-
specific name, such as street, city, and zip, that does not reflect the functional area in which they are
used. This method allows the analyst to define these records once and use them in many different
applications. For example, a city may be a customer city, supplier city, or employee city. Notice the
use of parentheses to indicate that (MIDDLE INITIAL), (APARTMENT), and (ZIP EXPANSION)
are optional ORDER information (but not more than one). Indicate the OR condition by enclosing
the options in square brackets and separating them with the symboll .

Logical and Physical Data Structures
When data structures are first defined, only the data elements that the user would see, such as a name,
address, and balance due, are included. This stage is the logical design, showing what data the busi-
ness needs for its day-to-day operations. As we learned from HCI, it is important that the logical de-
sign accurately reflect the mental model of how the user views the system. Using the logical design
as a basis, the analyst then designs the physical data structures, which include additional elements
necessary for implementing the system. Examples of physical design elements are the following:

1. Key fields used to locate records in a database table. An example is an item number, which
is not required for a business to function but is necessary for identifying and locating
computer records.

2. Codes to identify the status of master records, such as whether an employee is active
(currently employed) or inactive. Such codes can be maintained on files that produce tax
information.

3. Transaction codes are used to identify types of records when a file contains different record
types. An example is a credit file containing records for returned items as well as records
of payments.

4. Repeating group entries containing a count of how many items are in the group.
5. Limits on the number of items in a repeated group.
6. A password used by a customer accessing a secure Web site.

Figure 8.5 is an example of the data structure for a CUSTOMER BILLING STATEMENT,
one showing that the ORDER LINE is both a repeating item and a structural record. The ORDER
LINE limits are from 1 to 5, indicating that the customer may order from one to five items on this
screen. Additional items would appear on subsequent orders.

The repeating group notation may have several other formats. If the group repeats a fixed
number of times, that number is placed next to the opening brace, as in 12 {Monthly Sales},
where there are always 12 months in the year. If no number is indicated, the group repeats indef-
initely. An example is a table containing an indefinite number of records, such as Customer Mas-
ter Table � {Customer Records}.

The number of entries in repeating groups may also depend on a condition, such as an entry
on the Customer Master Record for each item ordered. This condition could be stored in the data
dictionary as {Items Purchased} 5, where 5 is the number of items.

-
-

Customer Billing Statement = Current Date +
Customer Number +
Customer Name +
Address +
 {Order Line} +
(Previous Payment Amount) +Total Amount Owed +(Comment)

Order Line =
Order Number +
Order Date +
Order Total

5
1

FIGURE 8.5
Physical elements added to a data
structure.

234 PART III • THE ANALYSIS PROCESS

Data Elements
Each data element should be defined once in the data dictionary and may also be entered previ-
ously on an element description form, such as the one illustrated in Figure 8.6. Characteristics
commonly included on the element description form are the following:

1. Element ID. This optional entry allows the analyst to build automated data dictionary
entries.

2. The name of the element. The name should be descriptive, unique, and based on what the
element is commonly called in most programs or by the major user of the element.

3. Aliases, which are synonyms or other names for the element. Aliases are names used by
different users in different systems. For example, a CUSTOMER NUMBER may also be
called a RECEIVABLE ACCOUNT NUMBER or a CLIENT NUMBER.

4. A short description of the element.
5. Whether the element is base or derived. A base element is one that is initially keyed into

the system, such as a customer name, address, or city. Base elements must be stored in
files. Derived elements are created by processes as the result of a calculation or a series of
decision-making statements.

6. The length of an element. Some elements have standard lengths. In the United States, for
example, lengths for state name abbreviations, zip codes, and telephone numbers are all

Customer NumberClient NumberReceivable Account NumberUniquely identifies a customer who has made any business

transaction within the last five years.

ID
Name
Alias
Alias
Description

Element Description Form

Length
Dec. Pt.

Alphabetic

Input Format

Alphanumeric

Output Format

Date

Default Value

Numeric

Continuous or Discrete
Base or Derived

Comments

Element Characteristics6
9 (6)
9 (6)

Validation CriteriaContinuous
Upper
Limit

Lower
Limit

<999999

>0

Discrete
Value Meaning

The customer number must pass a modulus-11 check digit test.

It is derived because it is computer generated and a check digit is added.

FIGURE 8.6
An element description form
example from World’s Trend
Catalog Division.

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 235

standard. For other elements, the lengths may vary, and the analyst and user community
must jointly decide the final length based on the following considerations:
a. Numeric amount lengths should be determined by figuring the largest number the

amount will probably contain and then allowing reasonable room for expansion.
Lengths designated for totals should be large enough to accommodate the sum of the
numbers accumulated in them.

b. Name and address fields may be given lengths based on the following table. For
example, a last name field of 11 characters will accommodate 98 percent of the last
names in the United States.

c. For other fields, it is often useful to examine or sample historical data found in the
organization to determine a suitable field length.

Field Length Percentage of Data
That Will Fit (U.S.)

Last Name 11 98

First Name 18 95

Company Name 20 95

Street 18 90

City 17 99

If the element is too small, the data that need to be entered will be truncated. The analyst
must decide how that will affect the system outputs. For example, if a customer’s last name
is truncated, mail would usually still be delivered; if an email address is truncated,
however, it will be returned as not found.

7. The type of data—numeric, date, alphabetic, varchar, or character, which is sometimes
called alphanumeric or text data. Varchar data may contain any number of characters, up to
a limit set by the database software. When using varchar, specifying the length is optional.
Several of these formats are shown in Figure 8.7. Character fields may contain a mixture of
letters, numbers, and special characters. If the element is a date, its format—for example,
MMDDYYYY—must be determined. If the element is numeric, its storage type should be
determined.

Personal computer formats, such as currency, number, or scientific, depend on how the
data will be used. Number formats are further defined as integer, long integer, single
precision, double precision, and so on. There are many other types of formats used with PC

Data Type

Bit A value of 1 or 0, a true/false value

Char, varchar, text Any alphanumeric character

Datetime, smalldatetime Alphanumeric data, several formats

Decimal, numeric Numeric data that are accurate to the least significant
digit; can contain a whole and decimal portion

Float, real Floating-point values that contain an approximate
decimal value

Int, smallint, tinyint Only integer (whole digit) data

Binary, varbinary, image Binary strings (sound, pictures, video)

Cursor, timestamp, uniqueidentifier A value that is always unique within a database

Autonumber A number that is always incremented by one when a
record is added to a database table

Currency, money, smallmoney Monetary numbers accurate to four decimal places

Meaning
FIGURE 8.7
Some examples of data formats
used in PC systems.

236 PART III • THE ANALYSIS PROCESS

Formatting Character Meaning

May enter or display/print any character
Enter or display only numbers
Display leading zeros as spaces
Insert commas into a numeric display
Insert a period into a numeric display
Insert slashes into a numeric display
Insert a hyphen into a numeric display
Indicate a decimal position (when the decimal point is not included)

X
9
Z
,
·
/
-
V

FIGURE 8.8
Format character codes.

systems. Unicode is a standardized coding system for defining graphic symbols, such as
Chinese or Japanese characters. Unicode is described in greater detail in a later chapter.
There are three standard formats for mainframe computers: zoned decimal, packed
decimal, and binary. The zoned decimal format is used for printing and displaying data.
The packed decimal format is commonly used to save space on file layouts and for
elements that require a high level of arithmetic to be performed on them. The binary format
is suitable for the same purposes as the packed decimal format but is less commonly used.

8. Input and output formats should be included, using special coding symbols to indicate how
the data should be presented. These symbols and their uses are illustrated in Figure 8.8.
Each symbol represents one character or digit. If the same character repeats several times,
the character followed by a number in parentheses indicating how many times the
character repeats is substituted for the group. For example, XXXXXXXX would be
represented as X(8).

9. Validation criteria for ensuring that accurate data are captured by the system. Elements are
either discrete, meaning they have certain fixed values, or continuous, with a smooth range
of values. Here are common editing criteria:
a. A range of values is suitable for elements that contain continuous data. For example, in

the United States a student grade point average may be from 0.00 through 4.00. If there
is only an upper or lower bound to the data, a limit is used instead of a range.

b. A list of values is indicated if the data are discrete. Examples are codes representing the
colors of items for sale in World’s Trend’s catalog.

c. A table of codes is suitable if the list of values is extensive (for example, state
abbreviations, telephone country codes, or U.S. telephone area codes.)

d. For key or index elements, a check digit is often included.
10. Any default value the element may have. The default value is displayed on entry screens

and is used to reduce the amount of keying that the operator may have to do. Usually,
several fields in each system have default values. When using GUI lists or drop-down
lists, the default value is the one currently selected and highlighted. When using radio
buttons, the option for the default value is selected, and when using check boxes, the
default value (either “yes” or “no”) determines whether or not the check box will have an
initial check in it.

11. An additional comment or remarks area. This might be used to indicate the format of the
date, special validation that is required, the check digit method used (explained in
Chapter 15), and so on.

Data element descriptions such as CUSTOMER NUMBER may be called CLIENT NUMBER
elsewhere in the system (perhaps old code written with this alias needs to be updated).

Another kind of data element is an alphabetic element. At World’s Trend Catalog Division,
codes are used to describe colors: for example, BL for blue, WH for white, and GR for green.
When this element is implemented, a table will be needed for users to look up the meanings of
these codes. (Coding is discussed further in Chapter 15.)

Data Stores
All base elements must be stored in the system. Derived elements, such as the employee year-to-
date gross pay, may also be stored in the system. Data stores are created for each different data

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 237

entity being stored. That is, when data flow base elements are grouped together to form a struc-
tural record, a data store is created for each unique structural record.

Because a given data flow may only show part of the collective data that a structural record
contains, you may have to examine many different data flow structures to arrive at a complete
data store description.

Figure 8.9 is a typical form used to describe a data store. The information included on the
form is as follows:

1. The data store ID. The ID is often a mandatory entry to prevent the analyst from storing
redundant information. An example would be D1 for the CUSTOMER MASTER.

2. The data store name, which is descriptive and unique.
3. An alias for the table, such as CLIENT MASTER for the CUSTOMER MASTER.
4. A short description of the data store.
5. The file type, either computer or manual.
6. The format designates whether the file is a database table or if it has the format of a simple

flat file. (File formats are detailed in Chapter 13.)
7. The maximum and average number of records on the file as well as the growth per year.

This information helps the analyst to predict the amount of disk space required for the
application and is necessary for hardware acquisition planning.

File Type Computer Manual
File Format Database

Indexed Sequential Direct

Record Size (Characters):
Block Size:

Number of Records: Maximum
Average:

Percent Growth per Year:
%

D 1
Customer MasterClient Master

Contains a record for each customer.

ID
Name
Alias
Description

Data Store Description Form

Comments

Data Store Characteristics

200
4000

45,000
42,000

6
Data Set NameCopy MemberData StructurePrimary Key

Secondary Keys

Customer.MSTCustmast
Customer RecordCustomer NumberCustomer NameZip

Year-to-Date Amount Purchased

The Customer Master records are copied to a history file and

purged if the customer has not purchased an item within the past

five years. A customer may be retained even if he or she has not made a

purchase by requesting a catalog.

FIGURE 8.9
An example of a data store form
description for World’s Trend
Catalog Division.

238 PART III • THE ANALYSIS PROCESS

8. The file or data set name specifies the file name, if known. In the initial design stages, this
item may be left blank. An electronic form produced using Visible Analyst is shown in
Figure 8.10. This example shows that the CUSTOMER MASTER is stored on a computer
in the form of a database with a maximum number of 45,000 records. (Records and the
keys used to sort the database are explained in Chapter 13.)

9. The data structure should use a name found in the data dictionary, providing a link to the
elements for this data store. Alternatively, the data elements could be described on the data
store description form or on the CASE tool screen for the data store. Primary and
secondary keys must be elements (or a combination of elements) found in the data
structure. In the example, the CUSTOMER NUMBER is the primary key and should be
unique. The CUSTOMER NAME, ZIP, and YEAR-TO-DATE AMOUNT PURCHASED
are secondary keys used to control record sequencing on reports and to locate records
directly. (Keys are discussed in Chapter 13.) Comments are used for information that does
not fit into any of the above categories. They may include update or backup timing,
security, or other considerations.

CREATING THE DATA DICTIONARY
Data dictionary entries may be created after the data flow diagram has been completed, or they
may be constructed as the data flow diagram is being developed. The use of algebraic notation
and structural records allows the analyst to develop the data dictionary and the data flow diagrams
using a top-down approach. For instance, the analyst may create a Diagram 0 data flow after the
first few interviews and, at the same time, make the preliminary data dictionary entries. Typically,
these entries consist of the data flow names found on the data flow diagram and their correspond-
ing data structures.

After conducting several additional interviews with users to learn the details of the system
and the ways they interact with it, the analyst will expand the data flow diagram and create the
child diagrams. The data dictionary is then modified to include the new structural records and el-
ements gleaned from further interviews, observation, and document analysis.

Each level of a data flow diagram should use data appropriate for the level. Diagram 0 should
include only forms, screens, reports, and records. As child diagrams are created, the data flow into
and out of the processes becomes more and more detailed, including structural records and elements.

Figure 8.11 illustrates a portion of two data flow diagram levels and corresponding data dic-
tionary entries for producing an employee paycheck. Process 5, found on Diagram 0, is an

FIGURE 8.10
Visible Analyst screen showing a
data store description.

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 239

overview of the production of an EMPLOYEE PAYCHECK. The corresponding data dictionary
entry for EMPLOYEE RECORD shows the EMPLOYEE NUMBER and four structural records,
the view of the data obtained early in the analysis. Similarly, TIMEFILE RECORD and the EM-
PLOYEE PAYCHECK are also defined as a series of structures.

It is important that the data flow names on the child data flow diagram are contained as ele-
ments or structural records in the data flow on the parent process. Returning to the example,
WAGE INFORMATION (input into process 5.3, COMPUTE CURRENT PAY AMOUNTS) is a
structural record contained in the EMPLOYEE RECORD (input to process 5). Similarly, GROSS
PAY (output from process 5.3.4, a lower-level process not shown in the figure) is contained in the
structural record CURRENT PAY AMOUNTS (output from the parent process 5.3, COMPUTE
CURRENT PAY AMOUNTS).

Analyzing Input and Output
An important step in creating the data dictionary is to identify and categorize system input and
output data flow. Input and output analysis forms contain the following commonly included fields:

1. A descriptive name for the input or output. If the data flow is on a logical diagram, the name
should identify what the data are (for example, CUSTOMER INFORMATION). If the analyst
is working on the physical design or if the user has explicitly stated the nature of the input or
output, however, the name should include that information regarding the format. Examples are
CUSTOMER BILLING STATEMENT and CUSTOMER DETAILS INQUIRY.

2. The user contact responsible for further details clarification, design feedback, and final approval.
3. Whether the data is input or output.
4. The format of the data flow. In the logical design stage, the format may be undetermined.
5. Elements indicating the sequence of the data on a report or screen (perhaps in columns).
6. A list of elements, including their names, lengths, and whether they are base or derived,

and their editing criteria.

Once the form has been completed, each element should be analyzed to determine whether the
element repeats, whether it is optional, or whether it is mutually exclusive of another element. El-

Data StructureData Flow

Employee Employee Number +
Record Personal Information +

Wage Information +
Current Pay Information +
Year-to-Date Information

Timefile Employee Number +
Record Employee Name +

Hours Worked

Employee Employee Number +
Employee Name +
Address +
Current Pay Amounts +
Year-to-Date Figures

Paycheck

Wage Rate of Pay +
Information Number of Dependents

Current Gross Pay +
Pay Federal Withholding +
Amounts State Withholding +

Social Security Withholding +
Net Pay

Produce
Employee
Paycheck

5

Employee

Timefile
Record

Employee
Paycheck

Computer
Current

Pay
Amounts

5.3
Wage
Information

Hours
Worked

Current Pay
Amounts

=

=

=

=

=

Employee
TimefileD2

D1 Employee
Master

Employee
Record

FIGURE 8.11
Two data flow diagrams and
corresponding data dictionary
entries for producing an employee
paycheck.

240 PART III • THE ANALYSIS PROCESS

ements that fall into a group or that regularly combine with several other elements in many struc-
tures should be placed together in a structural record.

These considerations can be seen in the completed Input and Output Analysis Form for
World’s Trend Catalog Division (see Figure 8.12). In this example of a CUSTOMER BILLING

C O N S U L T I N G O P P O R T U N I T Y 8 . 1

Want to Make It Big in the Theatre? Improve Your Diction(ary)!

As you enter the door of Merman’s, Annie Oaklea greets you
warmly, saying, “I’m delighted with the work you have done on the
data flow diagrams. I would like you to keep playing the role of
systems analyst for Merman’s and see if you can eventually get a
new information system for our costume inventory sewn up. Un-
fortunately, some of the terms you’re using don’t come off very
well in the language of Shakespeare. Bit of a translation problem,
I suspect.”

Clinging to Annie’s initial praise, you are undaunted by her
exit line. You determine that a data dictionary based on the rental
and return data flow diagrams would make a big hit.

Begin by writing entries for a manual system in as much detail
as possible. Prepare two data process entries, two data flow entries,
two data store entries, one data structure entry, and four data ele-
ment entries using the formats in this chapter. Portraying interre-
lated data items with preciseness will result in rave reviews. (Refer
to Consulting Opportunity 7.1.)

Input/Output NameUser Contact
File Type

Output Input
File Format Report

Screen
Undetermined

Sequencing Element(s)

Input and Output Analysis FormCustomer Billing StatementSusan Han

Zip Code (Page Sequence)Order NumberElement Name
Length B/D Edit Criteria

Current Date
6 B (System Supplied)

Customer Number
6 D (Includes Check Digit)

Customer First Name
20 B Not Spaces

Customer Last Name
15 B Not Spaces

Customer Middle Initial
1 B A through Z or Space

Street

20 B Not Spaces

Apartment
20 B Not Spaces

City

20 B Not Spaces

State

2 B Valid State Abbr.

Zip

9 B Numeric, Last 4 Opt.

Order Number
6 D > 0

Order Date
8 B MM/DD/YYYY

Order Total
9 D Format: 9 (7) V99

Previous Payment Amount
5 D Format: 9 (7) V99

Total Amount Owed
9 D Format; 9 (7) V99

Comment
60 BComments Print one page for each customer. If there are more items

than will fit on a page, continue on a second page.

FIGURE 8.12
An example of an input/output
analysis form for World’s Trend
Catalog Division.

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 241

STATEMENT, the CUSTOMER FIRST NAME, CUSTOMER LAST NAME, and CUSTOMER
MIDDLE INITIAL should be grouped together in a structural record.

Developing Data Stores
Another activity in creating the data dictionary is developing data stores. Up to now, we have deter-
mined what data needs to flow from one process to another. This information is described in data
structures. The information, however, may be stored in numerous places, and in each place the data
store may be different. Whereas data flows represent data in motion, data stores represent data at rest.

For example, when an order arrives at World’s Trend (see Figure 8.13), it contains mostly
temporary information, that is, the information needed to fill that particular order, but some in-
formation might be stored permanently. Examples of the latter include information about cus-
tomers (so catalogs can be sent to them) and information about items (because these items will
appear on many other customers’ orders).

Data stores contain information of a permanent or semipermanent (temporary) nature. An
ITEM NUMBER, DESCRIPTION, and ITEM COST are examples of information that is rela-
tively permanent. So is the TAX RATE. When the ITEM COST is multiplied by the TAX RATE,
however, the TAX CHARGED is calculated (or derived). Derived values do not have to be stored
in a data store.

When data stores are created for only one report or screen, we refer to them as “user views,”
because they represent the way that the user wants to see the information.

Customer Master = Customer Number +Customer Name +Address +
Telephone +
Corporate Credit Card Number +Expiration Date

Item Master =
Item Number +Price +

Quantity on HandOrder Record = Customer Number +Catalog Number +Order Date +
{Available Order Items} +Merchandise Total +(Tax) +

Shipping and Handling +Order Total +
Method of Payment +(Credit Card Type) +(Credit Card Number) +(Expiration Date)Available Order Items = Item Number +Quantity Ordered +Quantity Shipped +Current Price

Method of Payment = [Check Charge Money Order]Credit Card Type = [World’s Trend American Express MasterCard Visa]

FIGURE 8.13
Data stores derived from a
pending order at World’s Trend
Catalog Division.

242 PART III • THE ANALYSIS PROCESS

USING THE DATA DICTIONARY
The ideal data dictionary is automated, interactive, online, and evolutionary. As the systems ana-
lyst learns about the organization’s systems, data items are added to the data dictionary. On the
other hand, the data dictionary is not an end in itself and must never become so. To avoid becom-
ing sidetracked with the building of a complete data dictionary, the systems analyst should view
it as an activity that parallels systems analysis and design.

To have maximum power, the data dictionary should be tied into a number of systems pro-
grams so that when an item is updated or deleted from the data dictionary, it is automatically up-
dated or deleted from the database. The data dictionary becomes simply a historical curiosity if it
is not kept current.

The data dictionary may be used to create screens, reports, and forms. For example, exam-
ine the data structure for the World’s Trend ORDER PICKING SLIP in Figure 8.14. Because the
necessary elements and their lengths have been defined, the process of creating physical docu-
ments consists of arranging the elements in a pleasing and functional way using design guidelines
and common sense. Repeating groups become columns, and structural records are grouped to-
gether on the screen, report, or form. The report layout for the World’s Trend ORDER PICKING
SLIP is shown in Figure 8.15. Notice that FIRST NAME and LAST NAME are grouped together

Order Picking Slip = Order Number +
Order Date +
Customer Number +
Customer Name +
Customer Address +
Customer Telephone +
{Order Item Selection} +
Number of Items

Order Item Selection = Item Number +
Item Description +
Size Description +
Color Description +
Warehouse Section +
Shelf Number +
Quantity Ordered +
Quantity Picked

Customer Name = First Name +
(Middle Initial) +
Last Name

Address = Street +
(Apartment) +
City +
State +
Zip +
(Zip Expansion) +
(Country)

Telephone = Area Code +
Local Number

FIGURE 8.14
Data structure for an order picking
slip at World’s Trend Catalog
Division.

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 243

in NAME, and that QUANTITY (PICKED and ORDERED), SECTION, SHELF NUMBER,
ITEM NUMBER, ITEM DESCRIPTION, SIZE, and COLOR form a series of columns, because
they are the repeating elements.

The data structure and elements for a data store are commonly used to generate correspon-
ding computer language source code, which is then incorporated into computer programs. The
data dictionary may be used in conjunction with a data flow diagram to analyze the system de-
sign, detecting flaws and areas that need clarification. Some considerations are:

1. All base elements on an output data flow must be present on an input data flow to the process
producing the output. Base elements are keyed and should never be created by a process.

2. A derived element must be created by a process and should be output from at least one
process into which it is not input.

3. The elements that are present in a data flow coming into or going out of a data store must
be contained in the data store.

If begun early, a data dictionary can save many hours of time in the analysis and design phases.
The data dictionary is the one common source in the organization for answering questions and
settling disputes about any aspect of data definition. An up-to-date data dictionary can serve as
an excellent reference for maintenance efforts on unfamiliar systems. Automated data dictionar-
ies can serve as references for both people and programs.

Using Data Dictionaries to Create XML
Extensible markup language (XML) is a language that can be used to exchange data between
businesses or between systems within a business. It is similar to HTML, the markup language
used to create Web pages, but is more powerful. HTML is concerned primarily with formatting a
document; XML addresses the problem of sharing data when users have different computer sys-
tems and software or different database management systems (for example, one company using

Order Number: 999999

Order Date Z9/99/9999

Customer Number: 999999

Name: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXStreet: XXXXXXXXXXXXXXXXXXXXXXXXXXXXApartment: XXXXXXXXCity, State, Zip XXXXXXXXXXXXXXXXXXXXXXXXXXXX, XX 99999-ZZZZ
Country: XXXXXXXXXXXXXXXXXXXXXXXXXXXXTelephone: (999) 999-9999

Order Picking Slip

---- Quantity ---- Shelf
Number

Item
Number

Picked Ordered Section
Item Description

Size Color
ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX

ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX

ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX

ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX

ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX

ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX

ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXX

ZZZZ9 XXXXX 99999 999999 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXNumber of Items: Z9

World’s Trend

FIGURE 8.15
Order picking slip created from
the data dictionary.

244 PART III • THE ANALYSIS PROCESS

Oracle and another using IBM’s DB2). If everyone used the same software or database manage-
ment system, there would be little need for XML.

Once an XML document has been created, the data may be transformed into a number of dif-
ferent output formats and displayed in many different ways, including printed output, Web pages,
output for a handheld device, and portable document format (PDF) files. Thus, the document’s
data content is separated from the output format. The XML content is defined once as data and
then transformed as many times as necessary.

The advantage of using an XML document is that the analyst may select only the data that
an internal department or external partner needs to have in order to function. This helps to en-
sure the confidentiality of data. For example, a shipping company may receive only the cus-
tomer name, the address, the item number, and the quantity to ship, but not credit card
information or other financial data. This efficient approach also cuts down on information
overload.

XML therefore is a way to define, sort, filter, and translate data into a universal data language
that can be used by anyone. XML may be created from databases, a form, or software programs,
or it may be keyed directly into a document, text editor, or XML entry program.

The data dictionary is an ideal starting point for developing XML content. The key to using
XML is creating a standard definition of the data. This is accomplished by using a set of tags or
data names that are included before and after each data element or structure. The tags become the
metadata, or data about the data. Data may be further subdivided into smaller elements and struc-
tures until all elements are defined. XML elements may also include attributes, an additional piece
of data included within the tag that describes something about the XML element.

Figure 8.16 illustrates a data dictionary containing customer, order, and payment informa-
tion. The overall collection of customers is included in what is called the root element, customers.
An XML document may contain only one root element, so it is often the plural of the data con-
tained in the XML document. Each customer may place many orders. The structure is defined in
the two left columns, and the XML code appears on the right. CUSTOMER, as you can see, con-
sists of a NAME, ADDRESS, CURRENT BALANCE, multiple ORDER INFORMATION en-
tries, and a PAYMENT. Some of these structures are further subdivided.

The XML document tends to mirror the data dictionary structure. The first entry (other than
an XML line identifying the document) is �customer�, which defines the entire collection of
customer information. The less than (�) and greater than (�) symbols are used to identify tag
names (similar to HTML). The last line of the XML document is a closing tag, �/customer�, sig-
nifying the end of the customer information.

Customer is defined first and contains an attribute, the customer number. There is often a dis-
cussion about whether data should be stored as an element or an attribute. In this case, they are
stored as an attribute.

The name tag, �name�, is defined next because it is the first entry in the data dictionary.
NAME is a structure consisting of LAST NAME, FIRST NAME, and an optional MIDDLE INI-
TIAL. In the XML document, this structure starts with �name� and is followed by �lastname�,
�firstname�, and �middle_initial�. Because spaces are not allowed in XML tag names, an un-
derscore is typically used to separate words. The closing �/name� tag signifies the end of the
group of elements. Using a structure such as name saves time and coding if the transformation
displays the full name. Each of the child elements will be on one line separated by a space. Name
also contains an attribute, either I for individual or C for corporation.

Indentation is used to show which structures contain elements. Note that �address� is sim-
ilar to �customer�, but when we get to �order_information� there is a big difference.

There are multiple entries for �order_information�, each containing an �order_number�,
�order_date�, �shipping_date�, and �total�. Because the payment is made either by check or
credit card, only one of these may be present. In our example, payment is by check. The dates have
an attribute called format that indicates whether the date appears as month, day, year; year, month,
day; or day, month, year. If a credit card is used to make a payment, a TYPE attribute contains ei-
ther an M, V, A, D, or an O indicating the type of credit card (MasterCard, Visa, and so on).

XML Document Type Definitions
Often the element structure of XML content is defined using a document type definition (DTD). A
DTD is used to determine whether the XML document content is valid, that is, whether it conforms

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 245

to the order and type of data that must be present in the document. The DTD is easy to create and
well supported by standard software. Once the DTD has been completed, it may be used to vali-
date the XML document using standard XML tools. The DTD is easier to create if a data diction-
ary has been completed, since the analyst has worked with users and made decisions on the
structure of the data.

Figure 8.17 illustrates the document type definition for the Customer XML document. Key-
words, such as !DOCTYPE, indicating the start of the DTD, must be in capital letters. !ELE-
MENT describes an element, and !ATTLIST describes an attribute, listing the element name
followed by the attribute name. An element that has the keyword #PCDATA, for parsed charac-
ter data, is a primitive element, not further defined. An element that has a series of other elements
within parentheses means that they are child elements and must be in the order listed. The state-
ment �!ELEMENT name (lastname, firstname, middle_initial?)� means that the name must
have the last name followed by the first name followed by the middle initial. The question mark
after “middle_initial” means that the element is optional and may be left out of the document for

Data Dictionary
XML

<?xml version=“1.0”><customers>
<customer number=“C15008”> <name type=“I”>
 <lastname>Stadler</lastname> <firstname>Karen</firstname> <middle_initial>L</middle_initial> </name>

 <address>
 <street>123 Oak Street</street> <apartment>Suite 16</apartment> <city>Madison</city> <state>WI</state> <zip>43704</zip> <country>United States</country> </address>

 <current_balance>123.45</current_balance> <order customer_number=“C15008”> <order_number>00123</order_number> <order_date format=“yyyymmdd”>2008-06-23</order_date>
 <ship_date format=“yyyymmdd”>2008-06-25</ship_date>
 <total>1345.89</total> </order>
 <order customer_number=“C15008”> <order_number>00127</order_number> <order_date format=“yyyymmdd”>2008-09-18< /order_date>

 <ship_date format=“yyyymmdd”>2008-09-26</ship_date>
 <total>240.00</total> </order>
 <payment>
 <check>
 <check_number>7234</check_number> </check>
 <payment_date format=“yyyymmdd”>2008-09-30</payment_date>
 <payment_amt>1585.89</payment_amt> </payment>
</customer>
</customers>

Customer = Name +
Address +
Current Balance +
{Order Information} +Payment

Last Name +
First Name +
(Middle Initial)

Name =

Street +
(Apartment) +
City +
State +
Zip +
Country

Address =

Order Number +
Order Date +
Ship Date +
Total

Order Information =

Payment =

Check Number
Check =

Credit Card Number +Expiration Date

Credit Card =

[Check Credit Card] +Payment Date +
Payment Amt

FIGURE 8.16
Using a data dictionary entry to
develop XML content. The XML
document mirrors the data
dictionary structure.

246 PART III • THE ANALYSIS PROCESS

a particular customer. A plus sign means that there are one or more repeatable elements. Cus-
tomers must contain at least one customer tag but could contain many customer tags. An asterisk
means that there is zero or more of the elements. Each customer may have zero to many orders.
A vertical bar separates two or more child elements that are mutually exclusive. Payment con-
tains either check or credit card as options.

The attribute list definition for a customer number contains a keyword ID (in uppercase letters).
This means that the attribute number must appear only once in the XML document as an attribute
for an element with an ID. That it is somewhat similar to a primary key. The difference is that, if the
document had several different elements, each with an ID attribute, the given ID (C15008 in this ex-
ample) could appear only once. An ID must start with a letter or an underscore and cannot be solely
a number. The reason behind putting the customer number as an ID is to ensure that it is not repeated
in a longer document. The keyword #REQUIRED means that the attribute must be present. A key-
word of #IMPLIED means that the attribute is optional. A document may also have an IDREF at-
tribute, which links one element with another that is an ID. The ORDER tag has a customer_number
attribute defined as an IDREF, and the value C15008 must be present in an ID somewhere in the
document. An attribute list containing values in parentheses means that the attribute must con-
tain one of the values. A DTD definition �!ATTLIST credit_card type (M|V|A|D|O)
#REQUIRED� means that the credit card type must be either an M, V, A, D, or O.

XML Schemas
A schema is another, more precise way to define the content of an XML document. Schemas may
include the exact number of times an element may occur as well as the type of data within elements,

< !DOCTYPE customers [< !ELEMENT customers< !ELEMENT customer< !ATTLIST customer number< !ELEMENT name< !ATTLIST name type< !ELEMENT lastname< !ELEMENT firstname< !ELEMENT middle_initial< !ELEMENT address< !ELEMENT street< !ELEMENT apartment< !ELEMENT city
< !ELEMENT state< !ELEMENT zip
< !ELEMENT country< !ELEMENT current_balance< !ELEMENT order< !ATTLIST order customer_number< !ELEMENT order_number< !ELEMENT order_date< !ATTLIST order_date format< !ELEMENT payment< !ELEMENT check< !ELEMENT credit_card< !ATTLIST credit_card type< !ELEMENT credit_card_number< !ELEMENT expiration_date< !ELEMENT payment_date< !ATTLIST payment_date format< !ELEMENT payment_amt] >

(customer) + >
(name, address, current_balance, order*) >ID #REQUIRED>
(lastname, firstname, middle_initial?) >(I⎮C) #REQUIRED>(#PCDATA) >

(#PCDATA) >
(#PCDATA) >
(street, apartment?, city, state, zip, country) >(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(order_number, order_date, ship_date, total) >IDREF #REQUIRED>(#PCDATA) >

(#PCDATA) >
(mmddyyyy⎮yyyymmdd⎮ddmmyyyy) #REQUIRED>(check⎮credit_card) >(check_number) >

(credit_card_number, expiration_date) >(M⎮V⎮A⎮D⎮O) #REQUIRED>(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(mmddyyyy⎮yyyymmdd⎮ddmmyyyy) #REQUIRED>(#PCDATA) >

FIGURE 8.17
A document type definition for the
customer XML document.

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 247

HYPERCASE® EXPERIENCE 8

“You’re really doing very well. Snowden says you’ve given him
all sorts of new ideas for running the new department. That’s saying
quite a lot, when you consider that he has a lot of his own ideas. By
now I hope you’ve had a chance to speak with everyone you would
like to: certainly Snowden himself, Tom Ketcham, Daniel Hill, and
Mr. Hyatt.

“Mr. Hyatt is an elusive soul, isn’t he? I guess I didn’t meet him
until well into my third year. I hope you get to find out about him much
sooner. Oh, but when you do get to see him, he cuts quite a figure,
doesn’t he? And those crazy airplanes. I’ve almost been conked on the
head by one in the parking lot. But how can you get angry, when it’s
The Boss who’s flying it? He’s also got a secret—or should I say pri-
vate—oriental garden off his office suite. No, you’ll never see it on the
building plans. You have to get to know him very well before he’ll
show you that, but I would wager it’s the only one like it in Tennessee
and maybe in the whole United States. He fell in love with the won-
derful gardens he saw in Southeast Asia as a young man. It goes deeper
than that, however. Mr. Hyatt knows the value of contemplation and

meditation. If he has an opinion, you can be sure it has been well
thought through.”

HYPERCASE Questions
1. Briefly list the data elements that you have found on three

different reports produced at MRE.
2. Based on your interviews with Snowden Evans and others,

list the data elements that you believe you should add to the
Management Unit’s project reporting systems to better
capture important data on project status, project deadlines,
and budget estimates.

3. Create a data dictionary entry for a new data store, a new
data flow, and a new data process that you are suggesting
based on your response to Question 2.

4. Suggest a list of new data elements that might be helpful to
Jimmy Hyatt but are clearly not being made available to him
currently.

FIGURE 8.HC1
In HyperCase, you can look at the
data dictionary kept at MRE.

such as character or numeric values, including the length of the element, limits on the data, and the
number of places to the left and right of a decimal number.

A data dictionary is an excellent starting point for developing an XML document and a doc-
ument type of definition or schema. The advantage of using XML to define data is that, in the
XML format, data are stored in a pure text format and not dependent on any proprietary software.
The document may be easily validated and transformed into many different output formats.

Industry groups or organizations may be involved in defining an industry-specific XML
structure so that all involved parties understand what the data mean. This is very important when

248 PART III • THE ANALYSIS PROCESS

KEYWORDS AND PHRASES

base element
binary format
data dictionary
data element
data structure
derived element
document type definition (DTD)
extensible markup language (XML)
ID
IDREF

packed decimal
physical data structure
repeating group
repeating item
repository
schema
structural record
system deliverables
varchar
zoned decimal

REVIEW QUESTIONS
1. Define the term data dictionary. Define metadata.
2. What are four reasons for compiling a complete data dictionary?
3. What information is contained in the data repository?
4. What is a structural record?
5. List the eight specific categories that each entry in the data dictionary should contain. Briefly give

the definition of each category.
6. What are the basic differences among data dictionary entries prepared for data stores, data structures,

and data elements?
7. Why are structural records used?
8. What is the difference between logical and physical data structures?
9. Describe the difference between base and derived elements.

10. How do the data dictionary entries relate to levels in a set of data flow diagrams?
11. List the four steps to take in compiling a data dictionary.
12. Why shouldn’t compiling the data dictionary be viewed as an end in itself?
13. What are the main benefits of using a data dictionary?
14. What does extensible markup language (XML) describe?
15. What is a document type definition?
16. How does a document type definition help to ensure that an XML document contains all necessary

elements?
17. When should attributes be used in an XML document?
18. What does an ID attribute ensure?
19. What does an IDREF attribute validate?

an element name may have several meanings. An example is “state,” which may mean a postal
state abbreviation or the state of an order or account. Examples of industry-specific XML docu-
ment type definitions and schemas may be found at www.xml.org.

SUMMARY
Using a top-down approach, the systems analyst uses data flow diagrams to begin compiling a data diction-
ary, which is a reference work containing data about data, or metadata, on all data processes, stores, flows,
structures, and logical and physical elements in the system being studied. One way to begin is by including
all data items from data flow diagrams.

A larger collection of project information is called a repository. CASE tools permit the analyst to cre-
ate a repository that may include information about data flows, stores, record structures, and elements;
about procedural logic screen and report design; and about data relationships. A repository can also con-
tain information about project requirements and final system deliverables; and about project management
information.

Each entry in the data dictionary contains the item name, an English description, aliases, related data
elements, the range, the length, encoding, and necessary editing information. The data dictionary is useful
in all phases of analysis, design, and ultimately documentation, because it is the authoritative source on how
a data element is used and defined by users in the system. Many large systems feature computerized data
dictionaries that cross-reference all programs in the database using a particular data element. The data dic-
tionary can also be used to create XML that enables businesses with different systems, software, or database
management systems to exchange data.

www.xml.org

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 249

PROBLEMS
1. Based on Figure 7.EX1 in Chapter 7, Joe, one of your systems analysis team members, made the

following entry for the data dictionary used by Marilyn’s Tours:

DATA ELEMENT � TOURIST* * * * PAYMENT

ALIAS � TOURIST PAY

CHARACTERS � 12–24

RANGE � $5.00–$1,000

VARIABLES � $5.00, $10.00, $15.00 up to $1,000, and anything in between in dollars and cents.

TO CALCULATE � TOTAL COST OF ALL TOURS, ANY APPLICABLE N.Y. STATE TAX,
minus any RESERVATION DEPOSITS made.

a. Is this truly a data element? Why or why not?
b. Rewrite the data dictionary entry for TOURIST PAYMENT, reclassifying it if necessary. Use the

proper form for the classification you choose.
2. Sue Kong, the systems analyst, has made significant progress in understanding the data movement at

Shanghai Megabank. To share what she has done with other members of her team as well as the head
of regional operations, she is composing a data dictionary.
a. Write an entry in Sue’s data dictionary for three of the data flows in regional banking. Be as

complete as possible.
b. Write an entry in Sue’s data dictionary for three of the data stores in regional banking. Be as

complete as possible.
3. Jorge Alvarez, the manager of the bookstore that your systems analysis team has been working with

to build a computerized inventory system, thinks that one of your team members is making a
nuisance of himself by asking him extremely detailed questions about data items used in the system.
For example, he asks, “Jorge, how much space, in characters, does the listing of an ISBN take?”
a. What are the problems created by going directly to the manager with questions concerning data

dictionary entries? Use a paragraph to list the problems you can see with your team member’s
approach.

b. In a paragraph, explain to your team member how he can better gather information for the data
dictionary.

4. Michael Bush owns a store specializing in travel gear and clothes. Manufacturers have their own
coding, but there are many manufacturers. Set up data elements for six different travel hats from
three different suppliers.

5. Michael (from Problem 4) also assembles packages of camping kits. Each kit is a group of separate
products that are sold as a package. Each package (called a PRODUCT) is built using many parts,
which vary from product to product. Interviews with the head parts clerk have resulted in a list of
elements for the PRODUCT PART Web page, showing which parts are used in the manufacture of
each product. A prototype of the PRODUCT-PART Web page is illustrated in Figure 8.EX1. Create a
data structure dictionary entry for the PRODUCT-PART.

FIGURE 8.EX1
A prototype of the PRODUCT-
PART Web page.

9. List the master files that would be necessary to implement the CRUISE AVAILABILITY INQUIRY.
10. The following ports of call are available for the Pacific Holiday Company:

250 PART III • THE ANALYSIS PROCESS

6. Analyze the elements found on the PRODUCT-PART Web page and create the data structure for the
PRODUCT MASTER and the PART MASTER data stores.

7. Which of the elements on the PRODUCT-PART Web page are derived elements?
8. The Pacific Holiday Company arranges cruise vacations of varying lengths at several locations.

When customers call to check on the availability of a cruise, a CRUISE AVAILABILITY INQUIRY,
illustrated in Figure 8.EX2, is used to supply them with information. Create the data dictionary
structure for the CRUISE AVAILABILITY INQUIRY.

MM/DD/YYYY CRUISE AVAILABILITY HH:MM

ENTER STARTING DATE Z9-ZZZ-9999

CRUISE INFORMATION:

CRUISE SHIP XXXXXXXXXXXXXXXXXXX

LOCATION XXXXXXXXXXXXXXXXXXX

STARTING DATE Z9-ZZZ-9999 ENDING DATE Z9-ZZZ-9999

NUMBER OF DAYS ZZ9

COST ZZ,ZZZ.99

DISCOUNTS ACCEPTED XXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXX

OPENINGS REMAINING ZZZZ9

FIGURE 8.EX2
A display screen showing
cruise availability.

Apia Nuku Hiva Auckland

Pago Pago Papeete Wellington

Bora Bora Raiatea Christ Church

Moorea Napier Dunedin

Create the PORT OF CALL element. Examine the data to determine the length and format of
the element.

11. Raúl Esparza, the ecommerce manager for Moonlight Mugs, a company that sells customized coffee
mugs, would like to send information to another company that maintains the warehouse and provides
shipping services. Order information is obtained from a secure Web site, including customer number,
name and address, telephone number, email address, product number and quantity, as well as credit
card information. There may be several different products shipped on one order. The shipping
company handles items for other small businesses as well. Define an XML document that will
include only the information that the shipping company needs to ship goods to the customer.

12. Once the order in Problem 11 has been shipped, the shipping company sends information back to
Moonlight Mugs, including the customer name and address, shipper tracking number, data shipped,
quantity ordered, quantity shipped, and quantity backordered. Define an XML document that will
include the information sent to Moonlight Mugs.

13. Create a document type definition for Problem 11.
14. Western Animal Rescue is a nonprofit organization that supports the fostering and adoption of

animals, such as cats, dogs, and birds. People can register to adopt animals. Others register and add
animals for adoption. Create the data dictionary structure representing a person registering to adopt
an animal. Include name, address (street, city, state or province, zip or mailing code), telephone
number, email address, date of birth, current pets (type, breed, age of pet), and references. Each
person may have multiple pets and must have at least three references. References must include

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 251

name, address, telephone number, email address, and how they know the person registering to adopt
an animal. Be sure to include notation for repeating elements and optional elements.

15. Define the length, the type of data, and the validation criteria for each of the elements in Problem 14.
16. List the data stores that would be required to implement the person registering in Problem 14.
17. Create an XML document with sample data for one person registering to adopt an animal.

GROUP PROJECTS
1. Meet with your group and use a CASE tool or a manual procedure to develop data dictionary entries

for a process, data flow, data store, and data structure based on the data flow diagrams you completed
for Maverick Transport in the Chapter 7 group exercises. As a group, agree on any assumptions
necessary to make complete entries for each data element.

2. Your group should develop a list of methods to help you make complete data dictionary entries for
this exercise as well as for future projects. For example, study existing reports, base them on new or
existing data flow diagrams, and so on.

SELECTED BIBLIOGRAPHY
Baskerville, R., and J. Pries-Heje. “Short Cycle Time Systems Development.” Information Systems Journal,

Vol. 14, 2004, pp. 237–264.
Conboy, K., and B. Fitzgerald. “Toward a Conceptual Framework of Agile Methods: A Study of Agility in

Different Disciplines.” WISER ‘04, November 5, 2004, Newport Beach, CA, pp. 37–44.
Davis, G. B., and M. H. Olson. Management Information Systems, Conceptual Foundations, Structure, and

Development, 2d ed. New York: McGraw-Hill, 1985.
Gane, C., and T. Sarson. Structured Systems Analysis and Design Tools and Techniques. Englewood Cliffs,

NJ: Prentice Hall, 1979.
Hoffer, J. A., M. Prescott, and H. Topi. Modern Database Management, 9th ed. Upper Saddle River, NJ:

Prentice Hall, 2009.
Lucas, H. Information Systems Concepts for Management, 3d ed. New York: McGraw-Hill, 1986.
Martin, J. Strategic Data-Planning Methodologies. Englewood Cliffs, NJ: Prentice Hall, 1982.
Sagheb-Tehrani, M. “Expert Systems Development and Some Ideas of Design Process.” ACM SIGSOFT

Software Engineering Notes, Vol. 30, No. 2, March 2005, pp. 1–5.
Schmidt, A. Working with Visible Analyst Workbench for Windows. Upper Saddle River, NJ: Prentice Hall,

1996.
Subramaniam, V., and A. Hunt. Practices of an Agile Developer. Raleigh, NC: Pragmatic Bookshelf, 2006.

252 PART III • THE ANALYSIS PROCESS

E P I S O D E 8
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Defining What You Mean
“We can use the data flow diagrams we completed to create data dictionary entries for all data flow and data
stores,” Chip says to Anna at their next meeting. Each of these components has a composition entry in the
repository. The records created for the computer system are thus linked directly to the data flow diagram
components that describe data.

Anna and Chip meet to divide the work of creating records and elements. “I’ll develop the data diction-
ary for the software portion of the system,” Anna says.

“Good thing I enjoy doing the hardware,” Chip kids her good-naturedly.
Records, or data structures, are created first. They may contain elements, the basic building blocks of

the data structure, and they may also contain other records in them called structural records. Visible Analyst
also maintains relationships among graph components, records, and elements that may be used for analysis
and reporting. Since Microsoft Visio does not have a repository for data flow diagram objects, Visible Ana-
lyst repository will be used to illustrate the repository in this episode.

Using information from interviews and the prototype screens, Anna starts to create the Software
records. Because the output of a system will determine what data need to be both stored and obtained via
data entry screens, the starting point is the output data flow SOFTWARE INSTALLATION LIST. This pro-
totype identifies some of the elements that should be stored in the SOFTWARE MASTER:

SOFTWARE INVENTORY NUMBER
VERSION NUMBER
NUMBER OF CDs
CAMPUS LOCATION
TITLE
HARDWARE INVENTORY
NUMBER
ROOM LOCATION

Other output prototype reports and screens are also examined. Additional elements are obtained from
the ADD SOFTWARE prototype screen. These elements are arranged into a logical sequence for the SOFT-
WARE MASTER database table. The following standards for arranging elements within a record are used:

1. The major key element that uniquely identifies the record. An example is the SOFTWARE INVEN-
TORY NUMBER.

2. Descriptive information, such as TITLE, VERSION NUMBER, and PUBLISHER.
3. Information that is periodically updated, such as NUMBER OF COPIES.
4. Any repeating elements, such as HARDWARE INVENTORY NUMBER, denoting the machines on

which the software has been installed.

Next, the SOFTWARE MASTER record is created using the Visible Analyst repository. The description
screen for creating a record is shown in Figure E8.1. (Note: This screen may differ from the data structure screen
in your copy of Visible Analyst. To view the screen that is in the same format, click the Options menu and then
click so there is a check in front of Classical User Interface.) Notice the entry area for an alias, or a different
name for the record, used by a different user group. Because each user may refer to the same record by a differ-
ent name, all such names should be documented, resulting in enriched communication among users.

Each element or structural record needs to be defined as part of the whole record, and it is entered in
the Composition area. If the element or structural record is a repeating group, the name is enclosed in curly
brackets ({ }) and the number of times it repeats is placed in front of the name. If the data are keys, a code
is put in brackets ([]) in front of the name. The symbol [pk] represents a primary key. The symbol [akn] rep-
resents an alternate key, where n is 1, 2, 3, and so on, and defines each different key or group of fields that,
when combined, make a secondary key. When a group of fields makes up a secondary key, that key is called
a concatenated key. The symbol [fk] represents a foreign key.

Examine the SOFTWARE MASTER. It contains a primary key of SOFTWARE INVENTORY NUM-
BER and secondary keys of TITLE, PUBLISHER, and SOFTWARE CATEGORY.

Visible Analyst allows you to easily describe each structural record or element composing the larger
record. Anna places the cursor in each name in the Composition area and clicks the Jump button. Further
record and element screens are displayed and detailed information is entered.

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 253

FIGURE E8.1
Record description screen,
SOFTWARE MASTER.

“This is great!” Anna thinks to herself. “It’s so easy to enter the details, and by using this method, I
won’t accidentally forget to describe an element.”

Chip is also impressed with the simplicity of creating the data dictionary. Following a process simi-
lar to Anna’s, he creates a record description for the COMPUTER MASTER. It contains a table of five in-
ternal boards and two structural records, PERIPHERAL EQUIPMENT and MAINTENANCE
INFORMATION. The Composition area for entering element or record names is a scroll region, meaning
that more lines may be keyed than will fit in the display area. As entries are added to the bottom of the re-
gion, top entries scroll out of the area.

As elements are added to the record, Chip decides to describe each in detail. The element description
screen for the HARDWARE INVENTORY NUMBER is shown in Figure E8.2. Observe the areas for en-
tering element attributes. Several aliases may be included along with a definition. A Notes area contains any
other useful information about the element. Chip and Anna employ this area to enter further edit criteria and

FIGURE E8.2
Element description screen,
HARDWARE INVENTORY
NUMBER.

254 PART III • THE ANALYSIS PROCESS

other useful notation. The description for the HARDWARE INVENTORY NUMBER details how this num-
ber is used to keep physical track of the machines.

Clicking on the Physical Characteristics tab displays a second screen for the HARDWARE INVEN-
TORY NUMBER, illustrated in Figure E8.3. It contains an area showing within which structures the ele-
ment is contained, as well as an area for the type of data, the length, and the picture used to describe how
the data are formatted. Each such picture is a coded entry, indicating how the element should be formatted.
Examples of some of the codes are as follows:

FIGURE E8.3
HARDWARE INVENTORY
NUMBER, element characteristics
display.

9 Represents numeric data: Only numbers may be entered when prototyping.

A Alphabetic: Only alphabetic characters may be entered.

X Alphanumeric: Any characters may be entered.

Z Zero suppression: Replace leading zeros with spaces.

$ Dollar sign: Replace leading zeros with a dollar sign.

Chip is careful to include complete entries for these areas, including any default values and whether the
entry may be null or not.

Anna and Chip repeat this process for all elements found on each record. This effort is time consuming
but worthwhile. After the first few records are created, it becomes easier to create the remaining record struc-
tures. Visible Analyst has a search feature that provides lists of the elements contained in the design.

“I think that we’ve designed a complete set of elements,” Chip says at a checkpoint meeting.
“Yes,” replies Anna. “There are reports that will show us the details of the data structures and help us

to spot duplications and omissions. Let’s put Visible Analyst to work producing record layouts for us.”
The Reports feature was used to print record layouts for all master data stores.

Record and Element Analysis
“Now let’s really put the power of Visible Analyst to use,” Anna says. “Let’s see how well we’ve really de-
signed our data.”

“What do you mean?” Chip asks.
“I’ve been studying the analysis features contained in Visible Analyst, and there’s a wealth of options

for checking our design for consistency and correctness,” Anna replies. “The first step is to use the Reports
feature to produce a summary report of the elements we’ve added. Then we can examine the list for dupli-
cations and redundancy.”

Figure E8.4 is an example of a portion of the element summary report displayed using Firefox. Ana-
lysts would examine the contents carefully and look for redundancy, or elements defined more than once.

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 255

These redundancies are usually easy to spot because the list is sorted by element name. The elements HARD-
WARE INVENTORY NUMBER and HARDWARE NUMBER and the elements SOFTWARE INVEN-
TORY NUMBER and SOFTWARE NUM appear to be duplicate elements. Other duplicates, such as ROOM
LOCATION and LOCATION, are harder to spot.

“Next we should use the No Location References option, which shows all the elements that are not in-
cluded on any record,” says Anna.

“This is terrific!” exclaims Chip. “This No Location References shows design work that needs to be
completed. We should produce this report for all the design components.”

The elements were either added to other structures or deleted as duplicates. Producing the No Location
References report a second time revealed no further isolated elements.

“Well, I guess that wraps up the data portion of the system design,” Chip says.
“Guess again,” replies Anna. “We’ve only begun to analyze. The Report Query feature will provide

us with a lot of design information, both for analysis and documentation.”
The analysts select a report called Def Entities without Composition as their first choice. The report

shows entries that are a data store or data structure and do have a composition entry. The output shows that
there are no records in error. The next report query is Elements without Pictures, and it shows all ele-
ments that do not have pictures defined for them. A last report that Chip and Anna create is called
Undefined Elements, indicating all elements that have not been defined; that is, they exist in the reposi-
tory as a name only, but with no physical characteristics.

“We’re not finished yet. There are some useful matrices that will provide documentation for any
changes that may be made in the future. Let’s produce the Data Elements versus Data Structures matrix,
which shows records and their elements,” Anna suggests.

The Report feature has the ability to produce reports as well as matrices in a grid representation. It
shows all elements and the data structures in which they are contained. This matrix is used to access the ef-
fect of changing an element by showing which corresponding data structures must be changed.

The next matrix created is the Diagram Location Matrix, showing all data stores and the diagrams in
which they are located. This information is useful if a change needs to be made to the data store, because it
will indicate where programs and documentation need to be changed.

A final matrix is the Composition Matrix, showing all data elements and the data stores in which they
are contained. This matrix gives Chip and Anna a picture of which elements may be stored redundantly, that
is, in several data stores rather than one.

“There are many other reports and matrices that would be useful for us to produce,” Anna says. “Some
of these should be used later for documentation and tracking any proposed changes. I’m really pleased with
what we’ve accomplished.”

EXERCISES
Note: If you are not using Visible Analyst, some of the following exercises may be done using a Microsoft
Word or Microsoft Excel template. The repository information is included in a repository.html Web page
that you may save.

FIGURE E8.4
Element summary preview.

256 PART III • THE ANALYSIS PROCESS

E-1. Use Visible Analyst to view the COMPUTER MASTER data store. Jump to the data structure and
browse the elements and structural records.

E-2. Print the SOFTWARE MASTER record using the Report feature.

E-3. Use the Jump button to move to the Software Record Structure. Delete the following elements:

ACTIVE SOFTWARE CODE
INSTALLATION COMPUTER
SOFTWARE EXPERT

E-4. Modify the SOFTWARE CHANGES record, supplying changes to the SOFTWARE MASTER record.
The modifications are as follows:
a. Add a [pk], for primary key, in front of the SOFTWARE INVENTORY NUMBER.
b. Add the following elements: COMPUTER BRAND, COMPUTER MODEL, MEMORY RE-

QUIRED, SITE LICENSE, and NUMBER OF COPIES.

E-5. Modify the COMPUTER ADD TRANSACTION record, which contains new computer records to be
placed on the COMPUTER MASTER data store.
a. Insert the BRAND NAME and MODEL above the SERIAL NUMBER.
b. Place the CAMPUS LOCATION and ROOM LOCATION after the SERIAL NUMBER.
c. Add the following elements at the bottom of the list: HARD DRIVE, SECOND HARD DRIVE,

and OPTICAL DRIVE.

E-6. Modify the INSTALLED SOFTWARE TRANSACTION, which is used to update the SOFTWARE
MASTER and to produce the SOFTWARE INSTALLATION LISTING. Delete the TITLE and VER-
SION NUMBER, because they may be obtained from the SOFTWARE MASTER and are redundant
keying. Add the HARDWARE INVENTORY NUMBER, specifying the installation computer. Delete
the CAMPUS LOCATION and ROOM LOCATION, because they are elements of the installation
computer.

E-7. View the alias entry for the SOFTWARE CHANGES.

E-8. Modify the INSTALLED SOFTWARE data store. Add the composition record INSTALLED SOFT-
WARE TRANSACTION. The index elements are SOFTWARE INVENTORY NUMBER and
HARDWARE INVENTORY NUMBER.

E-9. Define the data store SOFTWARE LOG FILE. This file is used to store information on the new soft-
ware records, plus the date, time, and user ID of the person entering the record. Index elements are
SOFTWARE INVENTORY NUMBER, TITLE, VERSION (a concatenated key), and SOFTWARE
CATEGORY.

E-10. Define the data store PENDING COMPUTER ORDERS. This file is created when a purchase order
is made for ordering new computers, and it is updated by the computer system. Place a comment in
the Notes area stating that the average number of records is 100. Index elements are PURCHASE OR-
DER NUMBER and a concatenated key consisting of BRAND NAME and MODEL.

E-11. View the entry for the SOFTWARE RECORD data flow. Click Jump with the cursor in the
Composition area and examine the SOFTWARE MASTER record. Click Back to return to the data
flow description screen.

E-12. Modify the SOFTWARE UPGRADE INFORMATION data flow. The composition record is SOFT-
WARE UPGRADE INFORMATION.

E-13. Modify the SOFTWARE CROSS-REFERENCE REPORT data flow. The composition record is
SOFTWARE CROSS-REFERENCE REPORT.

E-14. Modify the data flow entity for INSTALL UPDATE. This flow updates the COMPUTER MAS-
TER record with installation information. Its data structure is INSTALL UPDATE RECORD. In-
clude a comment that it processes about 50 records per month in updating the COMPUTER
MASTER.

E-15. Use the INSTALL UPDATE data flow to jump to (and create) the INSTALL UPDATE RECORD. Pro-
vide a definition based on information supplied in the previous problem. Enter the following elements:

HARDWARE INVENTORY NUMBER (primary key)
CAMPUS LOCATION

CHAPTER 8 • ANALYZING SYSTEMS USING DATA DICTIONARIES 257

ROOM
HARD DRIVE
MAINTENANCE INTERVAL
DATE INSTALLED

E-16. Create the data flow description for the SOFTWARE INSTALLATION LIST. This flow contains in-
formation on specific software packages and the machines on which the software should be installed.
The composition should include the SOFTWARE INSTALLATION LISTING, a data structure.

E-17. Use the SOFTWARE INSTALL LIST to jump to (and therefore create) the SOFTWARE INSTAL-
LATION LISTING. The elements on the listing are as follows:

SOFTWARE INVENTORY NUMBER
TITLE
VERSION NUMBER
HARDWARE INVENTORY NUMBER
CAMPUS LOCATION
ROOM LOCATION

E-18. Modify and print the element HARDWARE SUBTOTAL. Change the type to Decimal, the length to
7,2, and the picture to Z, ZZZ, ZZ9.99.

E-19. Modify the COMPUTER TYPE element. The description should be: The physical type of computer.
Values & Meanings should contain: L—Laptop, D—Desktop, N—Netbook, H—Handheld. The type
is Char with a Length of 1, and a Picture and Display of X. Do not allow a null value.

E-20. Modify and print the DEPARTMENT NAME element. Create an alias of STAFF DEPARTMENT
NAME. In the Notes area, enter the following comment: Table of codes: Department Table. The type
should be Character, the length 25, and the picture X(25).

E-21. Create the following element descriptions. Use the values supplied in the table. Create any alternate
names and definitions based on your understanding of the element.

Name PURCHASE ORDER NUMBER PROBLEM DESCRIPTION
Type Character Character

Length 7 70

Picture 9999999 X(70)

Name TOTAL
COMPUTER COST

NEXT PREVENTIVE
MAINTENANCE DATE

Type Numeric Date

Length 7,2 8

Picture Z, ZZZ, ZZ9.99 Z9/99/9999

Notes The NEXT PREVENTIVE
MAINTENANCE DATE is
calculated by adding the MAINTENANCE
INTERVAL to the LAST PREVENTIVE
MAINTENANCE DATE

Name PHONE NUMBER REPAIR STATUS

Type Character Character

Length 7 1

Picture 999-9999 X

Notes Table of codes: Repair Table

Default C

E-22. Use the Repository Reports feature of Visible Analyst to produce the following reports and matri-
ces, either by printing the reports or by previewing them using your Web browser. The selection cri-
teria from the Repository Reports dialogue box are listed, separated with a slash (/). Explain in a
paragraph where the information produced may be effectively used.
a. Data Flow/Cross-Reference Listing/Data Element/Entire Project
b. Data Flow/Cross-Reference Listing/Data Structure/Entire Project

258 PART III • THE ANALYSIS PROCESS

c. Record Contains Element (One Level) Matrix
d. Data Flow/Single-Entry Listing/Software Master—Normalized
e. Data Flow/Diagram Location Matrix/Data Stores versus Diagrams
f. Data Flow/Composition Matrix/Data Elements versus Data Flows
g. Data Flow/Composition Matrix/Data Elements versus Data Structures
h. Data Flow/Composition Matrix/Data Element versus Data Stores

E-23. Use the Report Query feature of Visible Analyst to produce the following reports. Explain in a sen-
tence what information the report is providing you with.
a. The Undefined Elements report
b. The Elements without Pictures report
c. The Coded Elements report
d. The Any Item with Components report

E-24. Use Visible Analyst to print a summary report for all data flow components that do not have a descrip-
tion. (Hint: Click the No Descriptive Info. radio button.)

E-25. Use Visible Analyst to print a summary report for all data flow components that are not on a diagram.
(Hint: Click the No Location References radio button.)

E-26. Use Visible Analyst to print a detailed report for all elements. Include only the physical information
and the values and meanings. (Hint: Click the Fields button and then the Invert button and select the
fields that you want printed.) Why would this report be useful to the analyst?

The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft Project, or
a Microsoft Access file that can be used to complete the exercises.

www.pearsonhighered.com/kendall

259

C H A P T E R 9

Process Specifications
and Structured Decisions

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Understand the purpose of process specifications.

2. Recognize the difference between structured and semistructured decisions.

3. Use structured English, decision tables, and decision trees to analyze, describe, and
document structured decisions.

4. Choose an appropriate decision analysis method for analyzing structured decisions and
creating process specifications.

The systems analyst approaching process specifications and structured
decisions has many options for documenting and analyzing them. In
Chapters 7 and 8 you noted processes such as VERIFY AND COMPUTE
FEES, but you did not explain the logic necessary to execute these tasks.
The methods available for documenting and analyzing the logic of deci-

sions include structured English, decision tables, and decision trees. It is important to be able
to recognize logic and structured decisions that occur in a business and how they are distin-
guishable from semistructured decisions that tend to involve human judgment. Then it is criti-
cal to recognize that structured decisions lend themselves particularly well to analysis with
systematic methods that promote completeness, accuracy, and communication.

OVERVIEW OF PROCESS SPECIFICATIONS
To determine the human information requirements of a decision analysis strategy, the systems an-
alyst must first determine the users’ objectives, along with the organization’s objectives, using ei-
ther a top-down approach or an object-oriented approach. The systems analyst must understand
the principles of organizations and have a working knowledge of data-gathering techniques. The
top-down approach is critical because all human decisions in the organization should be related,
at least indirectly, to the broad objectives of the entire organization.

Process specifications—sometimes called minispecs, because they are a small portion of the
total project specifications—are created for primitive processes on a data flow diagram as well as
for some higher-level processes that explode to a child diagram. They also may be created for
class methods in object-oriented design, and, in a more general sense, for the steps in a use case
(as discussed in Chapters 2 and 10). These specifications explain the decision-making logic and
formulas that will transform process input data into output. Each derived element must have
process logic to show how it is produced from the base elements or other previously created de-
rived elements that are input to the primitive process.

The three goals of producing process specifications are as follows:

1. To reduce the ambiguity of the process. This goal compels the analyst to learn details about
how the process works. Any vague areas should be noted, written down, and consolidated
for all process specifications. These observations form a basis and provide the questions
for follow-up interviews with the user community.

2. To obtain a precise description of what is accomplished, which is usually included in a
packet of specifications for the programmer.

3. To validate the system design. This goal includes ensuring that a process has all the input
data flow necessary for producing the output. In addition, all input and output must be
represented on the data flow diagram.

You will find many situations in which process specifications are not created. Sometimes the
process is very simple or the computer code already exists. This eventuality would be noted in
the process description, and no further design would be required. Categories of processes that
generally do not require specifications are as follows:

1. Processes that represent physical input or output, such as read and write. These processes
usually require only simple logic.

2. Processes that represent simple data validation, which is usually fairly easy to accomplish.
The edit criteria are included in the data dictionary and incorporated into the computer
source code. Process specifications may be produced for complex editing.

3. Processes that use prewritten code. These processes are generally included in a system as
procedures, methods, and functions or in class libraries (that are either purchased or
available free on the Web).

These blocks are computer program code that is stored on the computer system. They usu-
ally perform a general system function, such as validating a date or a check digit. These general-
purpose subprograms are written and documented only once but form a series of building blocks
that may be used in many systems throughout the organization. Thus, these subprograms appear
as processes on many data flow diagrams (or as class methods discussed in Chapter 10).

Process Specification Format
Process specifications link the process to the data flow diagram, and hence the data dictionary, as
illustrated in Figure 9.1. Each process specification should be entered on a separate form or into
a CASE tool screen such as the one used for Visible Analyst and shown in the CPU case at the
end of this chapter. Enter the following information:

1. The process number, which must match the process ID on the data flow diagram. This
specification allows an analyst to work on or review any process, and to locate the data
flow diagram containing the process easily.

2. The process name, which again must be the same as the name displayed in the process
symbol on the data flow diagram.

3. A brief description of what the process accomplishes.
4. A list of input data flows, using the names found on the data flow diagram. Data names

used in the formula or logic should match those in the data dictionary to ensure consistency
and good communication.

5. The output data flows, also using data flow diagram and data dictionary names.
6. An indication of the type of process: batch, online, or manual. All online processes require

screen designs, and all manual processes should have well-defined procedures for
employees performing the process tasks.

7. If the process uses prewritten code, include the name of the subprogram or function
containing that code.

8. A description of the process logic that states policy and business rules in everyday language,
not computer language pseudo-code. Business rules are the procedures, or perhaps a set of
conditions or formulas, that allow a corporation to run its business. The early problem
definition (as explained in Chapter 3) that you completed initially may provide a starting
place for this description. Common business rule formats include the following:
• Definitions of business terms.
• Business conditions and actions.

260 PART III • THE ANALYSIS PROCESS

CHAPTER 9 • PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 261

• Data integrity constraints.
• Mathematical and functional derivations.
• Logical inferences.
• Processing sequences.
• Relationships among facts about the business.

9. If there is not enough room on the form for a complete structured English description, or
if there is a decision table or tree depicting the logic, include the corresponding table or
tree name.

10. List any unresolved issues, incomplete portions of logic, or other concerns. These issues
form the basis of the questions used for follow-up interviews with users or business experts
you have added to your project team.

These items should be entered to complete a process specification form, which includes a process
number, process name, or both from the data flow diagram, as well as the eight other items shown
in the World’s Trend example (Figure 9.2). Notice that completing this form thoroughly facili-
tates linking the process to the data flow diagram and the data dictionary.

STRUCTURED ENGLISH
When the process logic involves formulas or iteration, or when structured decisions are not com-
plex, an appropriate technique for analyzing the decision process is the use of structured English.
As the name implies, structured English is based on (1) structured logic, or instructions organized
into nested and grouped procedures, and (2) simple English statements such as add, multiply, and
move. A word problem can be transformed into structured English by putting the decision rules
into their proper sequence and using the convention of IF-THEN-ELSE statements throughout.

Writing Structured English
To write structured English, you may want to use the following conventions:

1. Express all logic in terms of one of these four types: sequential structures, decision
structures, case structures, or iterations (see Figure 9.3 for examples).

Decision
Table

Process
Specification

Form

Decision
Tree

Rules

X

P

Q

T

20 40

5010

30

Process

Data Flow Diagram Process Specification and Logic

Structured
English

2' 3' 4'1'

Y
Y Y Y
X

X
X

N
N

I F c o n s t r u c t i o n
T H E N d e d u c

 E N D I F
I F r e p l a c e m e n t
T H E N a d d 1

 E N D I F
I F o w n e r c h o o s e
T H E N a d d 1

 E N D I F

FIGURE 9.1
How process specifications relate
to the data flow diagram.

Process Specification Form

Number
Name
Description

Input Data Flow

Output Data Flow

Type of Process
Online Batch Manual

Subprogram/Function Name
Process Logic:

Refer to: Name:
Structured English Decision Table

Decision TreeUnresolved Issues:

1.3
Determine Quantity Available

Determine if an item is available for sale. If it is not available, create a backordered
item record. Determine the quantity available.

Valid item from Process 1.2Quantity on Hand from Item Record

Available Item (Item Number + Quantity Sold) to Processes 1.4 & 1.5Backordered item to Inventory Control

IF the Order Item Quantity is greater than Quantity on Hand Then Move Order Item Quantity to Available Item Quantity Move Order Item Number to Available Item NumberELSE
 Subtract Quantity on Hand from Order Item Quantity giving Quantity Backordered Move Quantity Backordered to Backordered Item Record Move Item Number to Backordered Item Record DO write Backordered Record Move Quantity on Hand to Available Item Quantity Move Order Item Number to Available Item NumberENDIF

Should the amount that is on order for this item be taken into account?
Would this, combined with the expected arrival date of goods on order, change how the quantity
available is calculated?

FIGURE 9.2
An example of a completed
process specification form for
determining whether an item is
available.

2. Use and capitalize accepted keywords such as IF, THEN, ELSE, DO, DO WHILE, DO
UNTIL, and PERFORM.

3. Indent blocks of statements to show their hierarchy (nesting) clearly.
4. When words or phrases have been defined in a data dictionary (as in Chapter 8), underline

those words or phrases to signify that they have a specialized, reserved meaning.
5. Be careful when using “and” and “or,” and avoid confusion when distinguishing between

“greater than” and “greater than or equal to” and like relationships. “A and B” means both
A and B; “A or B” means either A or B, but not both. Clarify the logical statements now
rather than waiting until the program coding stage.

262 PART III • THE ANALYSIS PROCESS

CHAPTER 9 • PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 263

Structured English Type

Sequential Structure
 A block of instructions in which no
 branching occurs

Action #1
Action #2
Action #3

IF Condition A is True
 THEN implement Action A
ELSE implement Action B
ENDIF

IF Case #1 implement Action #1
ELSE IF Case #2
 Implement Action #2
ELSE IF Case #3
 Implement Action #3
ELSE IF Case #4
 Implement Action #4
ELSE print error
ENDIF

Decision Structure
 Only IF a condition is true,
 complete the following
 statements; otherwise, jump to the
 ELSE

Case Structure
 A special type of decision
 structure in which the cases are
 mutually exclusive (if one occurs,
 the others cannot)

Iteration
 Blocks of statements that are
 repeated until done

DO WHILE there are customers.
Action #1
ENDDO

Example FIGURE 9.3
Examples of logic expressed in a
sequential structure, a decision
structure, a case structure, and an
iteration.

A STRUCTURED ENGLISH EXAMPLE. The following example demonstrates how a spoken
procedure for processing medical claims is transformed into structured English:

We process all our claims in this manner. First, we determine whether the claimant has
ever sent in a claim before; if not, we set up a new record. The claim totals for the year

C O N S U L T I N G O P P O R T U N I T Y 9 . 1

Kit Chen Kaboodle, Inc.

“I don’t want to get anyone stirred up, but I think we need to sift
through our unfilled order policies,” says Kit Chen. “I wouldn’t
want to put a strain on our customers. As you know already, Kit
Chen Kaboodle is a Web and mail-order cookware business special-
izing in ‘klassy kitsch for kitchens,’ as our latest catalog says. I
mean, we’ve got everything you need to do gourmet cooking and
entertaining: nutmeg grinders, potato whisks, egg separators,
turkey basters, placemats with cats on ‘em, ice cube trays in sham-
rock shapes, and more.

“Here’s how we’ve been handling unfilled orders. We search
our unfilled orders file from the Internet as well as mail-order sales
once a week. If the order was filled this week, we delete the record,
and the rest is gravy. If we haven’t written to the customer in four
weeks, we send ‘em this cute card with a chef peeking into the oven,
saying, ‘Not ready yet.’ (It’s a notification that their item is still on
back order.)

“If the back order date changed to greater than 45 days from
now, we send out a notice. If the merchandise is seasonal (as with

Halloween treat bags, Christmas cookie cutters, or Valentine’s Day
cake molds) and the back order date is 30 days or more, though, we
send out a notice with a chef glaring at his egg timer.

“If the back order date changed at all and we haven’t sent out
a card in the last two weeks, we send out a card with a chef check-
ing his recipe. If the merchandise is no longer available, we send a
notice (complete with chef crying in the corner) and delete the
record. We haven’t begun to use email in place of mailed cards, but
I’d like to.

“Thanks for listening to all this. I think we’ve got the right in-
gredients for a good policy; we just need to blend them together and
cook up something special.”

Because you are the systems analyst whom Kit hired, go
through the narrative of how Kit Chen Kaboodle, Inc., handles un-
filled orders, drawing boxes around each action Kit mentions and
circling each condition brought up. Make a list of any ambiguities
you would like to clarify in a later interview, and then write five
questions to address them.

C O N S U L T I N G O P P O R T U N I T Y 9 . 2

Kneading Structure

K it Chen has risen to the occasion and answered your questions
concerning the policy for handling unfilled orders at Kit Chen Ka-
boodle, Inc. Based on those answers and any assumptions you need
to make, pour Kit’s narrative (from Consulting Opportunity 9.1)

into a new mold by rewriting the recipe for handling unfilled orders
in structured English. In a paragraph, describe how this process
might change if you used email for notification rather than regular
mail.

DO WHILE there are claims remaining IF claimant has not sent in a claim THEN set up new claimant record ELSE continue
Add claim to YTD Claim
 IF claimant has policy–plan A THEN IF deductible of $100.00 has not been met THEN subtract deductible–not–met from claim Update deductible

 ELSE continue
 ENDIF
 Subtract copayment of 40% of claim from claim ELSE IF claimant has policy–plan B. THEN IF deductible of $50.00 has not been met THEN subtract deductible–not–met from claim Update deductible

 ELSE continue
 ENDIF
 Subtract copayment of 60% of claim from claim ELSE continue
 ELSE write plan–error–message ENDIF
 ENDIF
 IF claim is greater than zero
 THEN print check
 ENDIF
 Print summary for claimant
 Update accounts
ENDDO

FIGURE 9.4
Structured English for the
medical-claim processing system.
Underlining signifies that the
terms have been defined in the
data dictionary.

are then updated. Next, we determine if a claimant has policy A or policy B, which differ in deductibles
and copayments (the percentage of the claim claimants pay themselves). For both policies, we check to
see if the deductible has been met ($100 for policy A and $50 for policy B). If the deductible has not
been met, we apply the claim to the deductible. Another step adjusts for the copayment; we subtract the
percentage the claimant pays (40 percent for policy A and 60 percent for policy B) from the claim. Then
we issue a check if there is money coming to the claimant, print a summary of the transaction, and
update our accounts. We do this until all claims for that day are processed.

In examining the foregoing statements, one notices some simple sequence structures, particularly at the begin-
ning and end. There are a couple of decision structures, and it is most appropriate to nest them, first by deter-

264 PART III • THE ANALYSIS PROCESS

CHAPTER 9 • PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 265

mining which policy (A or B) to use and then by subtracting the correct deductibles and copay-
ments. The last sentence points to an iteration: Either DO UNTIL all the claims are processed or
DO WHILE there are claims remaining.

Realizing that it is possible to nest the decision structures according to policy plans, we can
write the structured English for the foregoing example (see Figure 9.4). As one begins to work on
the structured English, one finds that some logic and relationships that seemed clear at one time
are actually ambiguous. For example, do we add the claim to the year-to-date (YTD) claim be-
fore or after updating the deductible? Is it possible that an error can occur if something other than
policy A or B is stored in the claimant’s record? We subtract 40 percent of what from the claim?
These ambiguities need to be clarified at this point.

Besides the obvious advantage of clarifying the logic and relationships found in human lan-
guages, structured English has another important advantage: It is a communication tool. Struc-
tured English can be taught to and hence understood by users in the organization, so if
communication is important, structured English is a viable alternative for decision analysis.

Data Dictionary and Process Specifications
All computer programs may be coded using the three basic constructs: sequence, selection (IF . . .
THEN . . . ELSE and the case structure), and iteration or looping. The data dictionary indicates
which of these constructs must be included in the process specifications.

If the data dictionary for the input and output data flow contains a series of fields without any
iteration—{ }—or selection—[]—the process specification will contain a simple sequence of
statements, such as MOVE, ADD, and SUBTRACT. Refer to the example of a data dictionary for
the SHIPPING STATEMENT, illustrated in Figure 9.5. Notice that the data dictionary for the

Shipping Statement = Order Number +
Order Date +
Customer Number +
Customer Name +
Customer Address +5{Order Item Lines} +
Number of Items +
Merchandise Total +
(Tax) +
Shipping and Handling +
Order Total

First Name +
(Middle Initial) +
Last Name

Street +
(Apartment) +
City +
State +
Zip +
(Zip Expansion) +
(Country)

Item Number +
Quantity Ordered +
Quantity Backordered +
Item Description +
Size Description +
Color Description +
Unit Price +
Extended Amount

Customer Name =

Address =

Order Item Lines =

1

FIGURE 9.5
Data structure for a shipping
statement for World’s Trend.

SHIPPING STATEMENT has the ORDER NUMBER, ORDER DATE, and CUSTOMER NUM-
BER as simple sequential fields. The corresponding logic, shown in lines 3 through 5 in the cor-
responding structured English in Figure 9.6, consists of simple MOVE statements.

A data structure with optional elements contained in parentheses or either/or elements con-
tained in brackets will have a corresponding IF . . . THEN . . . ELSE statement in the process spec-
ification. Also, if an amount, such as QUANTITY BACKORDERED, is greater than zero, the
underlying logic will be IF . . . THEN . . . ELSE. Iteration, indicated by braces on a data struc-
ture, must have a corresponding DO WHILE, DO UNTIL, or PERFORM UNTIL to control loop-
ing on the process specification. The data structure for the ORDER ITEM LINES allows up to
five items in the loop. Lines 8 through 17 show the statements contained in the DO WHILE
through the END DO necessary to produce the multiple ORDER ITEM LINES.

DECISION TABLES
A decision table is a table of rows and columns, separated into four quadrants, as shown in
Figure 9.7. The upper left quadrant contains the condition(s); the upper right quadrant contains
the condition alternatives. The lower half of the table contains the actions to be taken on the left
and the rules for executing the actions on the right. When a decision table is used to determine
which action needs to be taken, the logic moves clockwise beginning from the upper left.

Structured English

Format the Shipping Statement. After each line of the statement has been
formatted, write the shipping line.

1. GET Order Record
2. GET Customer Record
3. Move Order Number to shipping statement4. Move Order Date to Shipping Statement5. Move Customer Number to Shipping Statement6. DO format Customer Name (leave only one space between First/Middle/Last)

7. DO format Customer Address lines8. DO WHILE there are items for the order9. GET Item Record
10. DO Format Item Line
11. Multiply Unit Price by Quantity Ordered giving Extended Amount12. Move Extended Amount to Order Item Lines13. Add Extended Amount to Merchandise Total14. IF Quantity Backordered is greater than zero15. Move Quantity Backordered to Order Item Lines16. ENDIF

17. ENDDO
18. Move Merchandise Total to Shipping Statement19. Move 0 to Tax
20. IF State is equal to CT
21. Multiply Merchandise Total by Tax Rate giving Tax22. ENDIF
23. Move Tax to Shipping Statement24. DO calculate Shipping and Handling25. Move Shipping and Handling to Shipping Statement26. Add Merchandise Total, Tax, and Shipping and Handling giving Order Total

27. Move Order Total to Shipping Statement

FIGURE 9.6
Structured English for creating the
shipping statement for World’s
Trend.

266 PART III • THE ANALYSIS PROCESS

CHAPTER 9 • PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 267

Conditions and Actions

Conditions

Actions

Rules

Condition Alternatives

Action Entries

FIGURE 9.7
The standard format used for
presenting a decision table.

IF N (the total sale is NOT under $50.00)

AND

IF Y (the customer paid by check and had two forms of ID)

AND

IF N (the customer did not use a credit card)

THEN

DO X (call the supervisor for approval).

Suppose a store wanted to illustrate its policy on noncash customer purchases. The company
could do so using a simple decision table as shown in Figure 9.8. Each of the three conditions
(sale under $50, pays by check, and uses credit cards) has only two alternatives. The two alterna-
tives are Y (yes, it is true) or N (no, it is not true). Four actions are possible:

1. Complete the sale after verifying the signature.
2. Complete the sale. No signature needed.
3. Call the supervisor for approval.
4. Communicate electronically with the bank for credit card authorization.

The final ingredient that makes the decision table worthwhile is the set of rules for each of
the actions. Rules are the combinations of the condition alternatives that precipitate an action. For
example, Rule 3 says:

Conditions and Actions

Under $50
Pays by check with two forms of ID
Uses credit card

Complete the sale after verifying signature.
Complete the sale. No signature needed.
Call supervisor for approval.
Communicate electronically with bank for credit card authorization.

Rules
1

Y Y N N
Y N Y N
N

X

Y

X

N

X

Y

X

2 3 4

FIGURE 9.8
Using a decision table for
illustrating a store’s policy of
customer checkout with four sets
of rules and four possible actions.

The foregoing example featured a problem with four sets of rules and four possible actions,
but that is only a coincidence. The next example demonstrates that decision tables often become
large and involved.

Developing Decision Tables
To build decision tables, the analyst needs to determine the maximum size of the table; eliminate any
impossible situations, inconsistencies, or redundancies; and simplify the table as much as possible.
The following steps provide the analyst with a systematic method for developing decision tables:

1. Determine the number of conditions that may affect the decision. Combine rows that
overlap, such as conditions that are mutually exclusive. The number of conditions becomes
the number of rows in the top half of the decision table.

2. Determine the number of possible actions that can be taken. That number becomes the
number of rows in the lower half of the decision table.

3. Determine the number of condition alternatives for each condition. In the simplest form of
decision table, there would be two alternatives (Y or N) for each condition. In an extended-
entry table, there may be many alternatives for each condition. Make sure that all possible
values for the condition are included. For example, if a problem statement calculating a
customer discount mentions one range of values for an order total from $100 to $1,000 and
another range of greater than $1,000, the analyst should realize that the range from 0 up to
$100 should also be added as a condition. This is especially true when there are other
conditions that may apply to the 0 up to $100 order total.

4. Calculate the maximum number of columns in the decision table by multiplying the
number of alternatives for each condition. If there were four conditions and two
alternatives (Y or N) for each of the conditions, there would be 16 possibilities as follows:

Condition 1: � 2 alternatives

Condition 2: � 2 alternatives

Condition 3: � 2 alternatives

Condition 4: � 2 alternatives

16 possibilities

5. Fill in the condition alternatives. Start with the first condition and divide the number of
columns by the number of alternatives for that condition. In the foregoing example, there
are 16 columns and two alternatives (Y or N), so 16 divided by 2 is 8. Then choose one of
the alternatives, say Y, and write it in the first eight columns. Finish by writing N in the
remaining eight columns as follows:

Condition 1: Y Y Y Y Y Y Y Y N N N N N N N N

Condition 1: Y Y Y Y Y Y Y Y N N N N N N N N

Condition 2: Y Y Y Y N N N N

Condition 3: Y Y N N

Condition 4: Y N

Condition 1: Y Y

Condition 2: Y N

Action 1: X X

6. Complete the table by inserting an X where rules suggest certain actions.
7. Combine rules where it is apparent that an alternative does not make a difference in the

outcome. For example,

Repeat this step for each condition, using a subset of the table,

and continue the pattern for each condition:

Condition 1 Y Y Y Y Y Y Y Y N N N N N N N N

Condition 2: Y Y Y Y N N N N Y Y Y Y N N N N

Condition 3: Y Y N N Y Y N N Y Y N N Y Y N N

Condition 4: Y N Y N Y N Y N Y N Y N Y N Y N

can be expressed as:

Condition 1: Y

Condition 2: —

Action 1: X

The dash [—] signifies that Condition 2 can be either Y or N, and the action will still be taken.
8. Check the table for any impossible situations, contradictions, and redundancies. They are

discussed in more detail later.
9. Rearrange the conditions and actions (or even rules) if it makes the decision table more

understandable.

268 PART III • THE ANALYSIS PROCESS

CHAPTER 9 • PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 269

C O N S U L T I N G O P P O R T U N I T Y 9 . 3

Saving a Cent on Citron Car Rental

“We feel lucky to be this popular. I think customers feel we
have so many options to offer that they ought to rent an auto from
us,” says Ricardo Limon, who manages several outlets for Citron
Car Rental. “Our slogan is, ‘You’ll never feel squeezed at Citron.’
We have five sizes of cars that we list as A through E.

upgrade from their reserved car size if their company has an account
with us. There’s a discount for membership in any of the frequent-
flyer clubs run by cooperating airlines, too. When customers step up
to the counter, they tell us what size car they reserved, and then we
check to see if we have it in the lot ready to go. They usually bring
up any discounts, and we ask them if they want insurance and how
long they will use the car. Then we calculate their rate and write out
a slip for them to sign right there.”

Ricardo has asked you to computerize the billing process for
Citron so that customers can get their cars quickly and still be
billed correctly. Draw a decision table that represents the condi-
tions, condition alternatives, actions, and action rules you gained
from Ricardo’s narrative that will guide an automated billing process.

Ricardo wants to expand the ecommerce portion of his busi-
ness by making it possible to reserve a car over the Web. Draw an
updated decision table that shows a 10-percent discount for book-
ing a car over the Web.

A Subcompact

B Compact

C Midsize

D Full-size

E Luxury

“Standard transmission is available only for A, B, and C. Au-
tomatic transmission is available for all cars.”

“If a customer reserves a subcompact (A) and finds on arriv-
ing that we don’t have one, that customer gets a free upgrade to the
next-sized car, in this case a compact (B). Customers also get a free

A DECISION TABLE EXAMPLE. Figure 9.9 is an illustration of a decision table developed using the
steps previously outlined. In this example a company is trying to maintain a meaningful mailing
list of customers. The objective is to send out only the catalogs from which customers will buy
merchandise.

The managers realize that certain loyal customers order from every catalog and that some
people on the mailing list never order. These ordering patterns are easy to observe, but deciding
which catalogs to send customers who order only from selected catalogs is more difficult. Once
these decisions are made, a decision table is constructed for three conditions (C1: customer or-
dered from Fall catalog; C2: customer ordered from Christmas catalog; and C3: customer ordered
from specialty catalog), each having two alternatives (Y or N). Three actions can be taken (A1:
send out this year’s Christmas catalog; A2: send out the new specialty catalog; and A3: send out
both catalogs). The resulting decision table has six rows (three conditions and three actions) and
eight columns (two alternatives � two alternatives � two alternatives).

The decision table is now examined to see if it can be reduced. There are no mutually exclu-
sive conditions, so it is not possible to get by with fewer than three condition rows. No rules al-
low the combination of actions. It is possible, however, to combine some of the rules as shown in

Conditions and Actions

Customer ordered from Fall catalog.
Customer ordered from Christmas catalog.
Customer ordered from specialty catalog.

Send out this year’s Christmas catalog.
Send out specialty catalog.
Send out both catalogs.

Rules
1 2 3 4 5 6 7 8

Y Y Y Y N N N N
Y Y N N Y Y N N
Y N

X
X

X X
X

X X X

Y N Y N Y N

FIGURE 9.9
Constructing a decision table for
deciding which catalog to send to
customers who order only from
selected catalogs.

Figure 9.10. For instance, Rules 2, 4, 6, and 8 can be combined because they all have two things
in common:

1. They instruct us to send out this year’s Christmas catalog.
2. The alternative for Condition 3 is always N.

It doesn’t matter what the alternatives are for the first two conditions, so it is possible to insert
dashes [—] in place of the Y or N.

The remaining rules—Rules 1, 3, 5, and 7—cannot be reduced to a single rule because two
different actions remain. Instead, Rules 1 and 5 can be combined; likewise, Rules 3 and 7 can be
combined.

Checking for Completeness and Accuracy
Checking over your decision tables for completeness and accuracy is essential. Four main prob-
lems can occur in developing decision tables: incompleteness, impossible situations, contradic-
tions, and redundancy.

Ensuring that all conditions, condition alternatives, actions, and action rules are complete is of
utmost importance. Suppose an important condition—if a customer ordered less than $50—had
been left out of the catalog store problem discussed earlier. The whole decision table would change
because a new condition, new set of alternatives, new action, and one or more new action rules would
have to be added. Suppose the rule is: IF the customer did not order more than $50, THEN do not
send any catalogs. A new Rule 4 would be added to the decision table, as shown in Figure 9.11.

Conditions and Actions

Conditions and Actions

Rules

Rules

Customer ordered from Fall catalog.
Customer ordered from Christmas catalog.
Customer ordered from specialty catalog.

Send out this year’s Christmas catalog.
Send out specialty catalog.
Send out both catalogs.

Customer ordered from Fall catalog.
Customer ordered from Christmas catalog.
Customer ordered from specialty catalog.

Send out this year’s Christmas catalog.
Send out specialty catalog.
Send out both catalogs.

Y
Y
Y

Y
Y Y

Y

Y
Y
Y

Y
Y

Y
Y Y

N
N N

N

N N

N

N
N

N
N
N

N
N

X

X
X

X

X

X
X

X

X
X

X

1 2 3 4 5 6 7 8

1' 2' 3'

FIGURE 9.10
Combining rules to simplify the
customer-catalog decision table.

Conditions and Actions
Rules

Customer ordered from Fall catalog.
Customer ordered from Christmas catalog.
Customer ordered from specialty catalog.

Send out this year’s Christmas catalog.
Send out specialty catalog.
Send out both catalogs.
Do not send out any catalog.

Y
Y

Y Y
Y
Y

N
N

N

X

X
X

X

1' 2' 3' 4'

Customer ordered $50 or more.

FIGURE 9.11
Adding a rule to the customer-
catalog decision table changes the
entire table.

270 PART III • THE ANALYSIS PROCESS

CHAPTER 9 • PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 271

When building decision tables as outlined in the foregoing steps, it is sometimes possible to
set up impossible situations. An example is shown in Figure 9.12. Rule 1 is not feasible, because
a person cannot earn greater than $50,000 per year and less than $2,000 per month at the same
time. The other three rules are valid. The problem went unnoticed because the first condition was
measured in years and the second condition in months.

Contradictions occur when rules suggest different actions but satisfy the same conditions.
The fault could lie with the way the analyst constructed the table or with the information the an-
alyst received. Contradictions often occur if dashes [—] are incorrectly inserted into the table. Re-
dundancy occurs when identical sets of alternatives require the exact same action. Figure 9.13
illustrates a contradiction and a redundancy. The analyst has to determine what is correct and then
resolve the contradiction or redundancy.

Decision tables are an important tool in the analysis of structured decisions. One major ad-
vantage of using decision tables over other methods is that tables help the analyst ensure com-
pleteness. When using decision tables, it is also easy to check for possible errors, such as
impossible situations, contradictions, and redundancy. Decision table processors, which take the
table as input and provide computer program code as output, are also available.

DECISION TREES
Decision trees are used when complex branching occurs in a structured decision process. Trees are
also useful when it is essential to keep a string of decisions in a particular sequence. Although the
decision tree derives its name from natural trees, decision trees are most often drawn on their side,
with the root of the tree on the left side of the paper; from there, the tree branches out to the right.
This orientation allows the analyst to write on the branches to describe conditions and actions.

Unlike the decision tree used in management science, the analyst’s tree does not contain
probabilities and outcomes. In systems analysis, trees are used mainly for identifying and organ-
izing conditions and actions in a completely structured decision process.

Conditions and Actions

Salary > $50,000/year
Salary < $2,000/month

Action 1
Action 2

Rules
1 2 3 4

Y Y N N
Y N Y N

This is an
impossible
situation.

FIGURE 9.12
Checking the decision table for
impossible situations is important.

Conditions and Actions
Rules

Y
Y Y

Y Y
Y

Y
Y

YN
N

N

N

N
N

X

X
X

X X
X

X

1 2 3 4 5 6 7

Y
N

Condition 1
Condition 2
Condition 3

Action 1
Action 2
Action 3

Contradiction Redundancy

FIGURE 9.13
Checking the decision table for
inadvertent contradictions and
redundancy is important.

Drawing Decision Trees
It is useful to distinguish between conditions and actions when drawing decision trees. This dis-
tinction is especially relevant when conditions and actions take place over a period of time and
their sequence is important. For this purpose, use a square node to indicate an action and a circle
to represent a condition. Using notation makes the decision tree more readable, as does number-
ing the circles and squares sequentially. Think of a circle as signifying IF, whereas the square
means THEN.

When decision tables were discussed in an earlier section, a point-of-sale example was used
to determine the purchase approval actions for a department store. Conditions included the
amount of the sale (under $50) and whether the customer paid by check or credit card. The four
actions possible were to: complete the sale after verifying the signature; complete the sale with
no signature needed; call the supervisor for approval; or communicate electronically with the
bank for credit card authorization. Figure 9.14 illustrates how this example can be drawn as a de-
cision tree. In drawing the tree:

1. Identify all conditions and actions and their order and timing (if they are critical).
2. Begin building the tree from left to right, making sure you list all possible alternatives

before moving to the right.

This simple tree is symmetrical, and the four actions at the end are unique. A tree does not need
to be symmetrical. Most decision trees have conditions that have a different number of branches.
Also, identical actions may appear more than once.

C O N S U L T I N G O P P O R T U N I T Y 9 . 4

A Tree for Free

“I know you’ve got a plane to catch, but let me try to explain it
once again to you, sir,” pleads Glen Curtiss, a marketing manager
for Premium Airlines. Curtiss has been attempting (unsuccessfully)
to explain the airline’s new policy for accumulating miles for
awards (such as upgrades to first class and free flights) to a mem-
ber of Premium’s “Flying for Prizes” club.

Glen takes another pass at getting the policy off the ground,
saying, “You see, sir, the traveler (that’s you, Mr. Icarus) will be
awarded the miles actually flown. If the actual mileage for the leg
was less than 500 miles, the traveler will get 500 miles credit. If the
trip was made on a Saturday, the actual mileage will be multiplied
by two. If the trip was made on a Tuesday, the multiplication factor
is 1.5. If this is the ninth leg traveled during the calendar month, the

mileage is doubled no matter what day, and if it is the 17th leg trav-
eled, the mileage is tripled. If the traveler booked the flight on the
Web or through a travel service such as Orbitz or Travelocity,
100 miles are added.

“I hope that clears it up for you, Mr. Icarus. Enjoy your flight,
and thanks for flying Premium.”

Mr. Icarus, whose desire to board the Premium plane has all
but melted away during Glen’s long explanation, fades into the sea
of people wading through the security lanes, without so much as a
peep in reply.

Develop a decision tree for Premium Airlines’ new policy for
accumulating award miles so that the policy becomes clearer, is eas-
ier to grasp visually, and hence is easier to explain.

Complete the sale after verifying signature.
Check

Credit Card

Check

Under $50

≥ $50

Credit Card

Complete the sale. No signature needed.

Call supervisor for approval.

Communicate electronically with bank for
credit card authorization.

2

5

7

6

4

3

1

FIGURE 9.14
Drawing a decision tree to show
the noncash purchase approval
actions for a department store.

272 PART III • THE ANALYSIS PROCESS

CHAPTER 9 • PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 273

The decision tree has three main advantages over a decision table. First, it takes advantage
of the sequential structure of decision tree branches so that the order of checking conditions and
executing actions is immediately noticeable. Second, conditions and actions of decision trees are
found on some branches but not on others, which contrasts with decision tables, in which they are
all part of the same table. Those conditions and actions that are critical are connected directly to
other conditions and actions, whereas those conditions that do not matter are absent. In other
words, the tree does not have to be symmetrical. Third, compared with decision tables, decision
trees are more readily understood by others in the organization. Consequently, they are more ap-
propriate as a communication tool.

CHOOSING A STRUCTURED DECISION ANALYSIS TECHNIQUE
We have examined the three techniques for analysis of structured decisions: structured English,
decision tables, and decision trees. Although they need not be used exclusively, it is customary to
choose one analysis technique for a decision rather than employing all three. The following guide-
lines provide you with a way to choose one of the three techniques for a particular case:

1. Use structured English when
a. There are many repetitious actions,

OR
b. Communication to end users is important.

2. Use decision tables when
a. Complex combinations of conditions, actions, and rules are found,

OR
b. You require a method that effectively avoids impossible situations, redundancies, and

contradictions.
3. Use decision trees when

a. The sequence of conditions and actions is critical,
OR

b. When not every condition is relevant to every action (the branches are different).

SUMMARY
Once the analyst works with users to identify data flows and begins constructing a data dictionary, it is time
to turn to process specification and decision analysis. The three methods for decision analysis and describ-
ing process logic discussed in this chapter are structured English, decision tables, and decision trees.

Process specifications (or minispecs) are created for primitive processes on a data flow diagram as
well as for some higher-level processes that explode to a child diagram. These specifications explain the
decision-making logic and formulas that will transform process input data into output. The three goals of
process specification are to reduce the ambiguity of the process, to obtain a precise description of what is
accomplished, and to validate the system design.

One way to describe structured decisions is to use the method referred to as structured English, in which
logic is expressed in sequential structures, decision structures, case structures, or iterations. Structured En-
glish uses accepted keywords such as IF, THEN, ELSE, DO, DO WHILE, and DO UNTIL to describe the
logic used, and it indents to indicate the hierarchical structure of the decision process.

Decision tables provide another way to examine, describe, and document decisions. Four quadrants
(viewed clockwise from the upper left corner) are used to (1) describe the conditions, (2) identify possible
decision alternatives (such as Y or N), (3) indicate which actions should be performed, and (4) describe the
actions. Decision tables are advantageous because the rules for developing the table itself, as well as the rules
for eliminating redundancy, contradictions, and impossible situations, are straightforward and manageable.
The use of decision tables promotes completeness and accuracy in analyzing structured decisions.

The third method for decision analysis is the decision tree, consisting of nodes (a square for actions and
a circle for conditions) and branches. Decision trees are appropriate when actions must be accomplished in
a certain sequence. There is no requirement that the tree be symmetrical, so only those conditions and ac-
tions that are critical to the decisions at hand are found on a particular branch.

Each of the decision analysis methods has its own advantages and should be used accordingly. Struc-
tured English is useful when many actions are repeated and when communicating with others is important.
Decision tables provide a complete analysis of complex situations while limiting the need for change attrib-
utable to impossible situations, redundancies, or contradictions. Decision trees are important when proper
sequencing of conditions and actions is critical and when each condition is not relevant to each action.

H Y P E R C A S E ® E X P E R I E N C E 9

“It’s really great that you’ve been able to spend all of this time
with us. One thing’s for sure, we can use the help. And clearly, from
your conversations with Snowden and others, you must realize we
all believe that consultants have a role to play in helping companies
change. Well, most of us believe it anyway.

“Sometimes structure is good for a person. Or even a company.
As you know, Snowden is keen on any kind of structure. That’s why
some of the Training people can drive him wild sometimes. They’re
good at structuring things for their clients, but when it comes to or-
ganizing their own work, it’s another story. Oh well, let me know if
there’s any way I can help you.”

HYPERCASE Question
1. Assume you will create the specifications for an automated

project tracking system for the Training employees. One of
the system’s functions will be to allow project members to
update or add names, addresses, and phone/fax numbers of
new clients. Using structured English, write a procedure for
carrying out the process of entering a new client name,
address, and phone/fax number. [Hint: The procedure should
ask for a client name, check to see if the name is already in
an existing client file, and let the user either validate and
update the current client address and phone/fax number (if
necessary) or add a new client’s address and phone/fax
number to the client file.]

KEYWORDS AND PHRASES
action
action rule
condition
condition alternative
decision table

decision tree
minispecs
process specifications
structured decision
structured English

REVIEW QUESTIONS
1. List three reasons for producing process specifications.
2. Define what is meant by a structured decision.
3. What four elements must be known for the systems analyst to design systems for structured

decisions?
4. What are the two building blocks of structured English?
5. List five conventions that should be followed when using structured English.
6. What is the advantage of using structured English to communicate with people in the organization?
7. Which quadrant of the decision table is used for conditions? Which is used for condition alternatives?
8. What is the first step to take in developing a decision table?
9. List the four main problems that can occur in developing decision tables.

10. What is one of the major advantages of decision tables over other methods of decision analysis?
11. What are the main uses of decision trees in systems analysis?
12. List the four major steps in building decision trees.
13. What three advantages do decision trees have over decision tables?
14. In which two situations should you use structured English?
15. In which two situations do decision tables work best?
16. In which two situations are decision trees preferable?

PROBLEMS
1. Clyde Clerk is reviewing his firm’s expense reimbursement policies with the new salesperson, Trav

Farr. “Our reimbursement policies depend on the situation. You see, first we determine if it is a local

274 PART III • THE ANALYSIS PROCESS

CHAPTER 9 • PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 275

trip. If it is, we only pay mileage of 18.5 cents a mile. If the trip was a one-day trip, we pay mileage
and then check the times of departure and return. To be reimbursed for breakfast, you must leave by
7:00 A.M., lunch by 11:00 A.M., and have dinner by 5:00 P.M. To receive reimbursement for breakfast,
you must return later than 10:00 A.M., lunch later than 2:00 P.M., and have dinner by 7:00 P.M. On a
trip lasting more than one day, we allow hotel, taxi, and airfare, as well as meal allowances. The
same times apply for meal expenses.” Write structured English for Clyde’s narrative of the
reimbursement policies.

2. Draw a decision tree depicting the reimbursement policy in Problem 1.
3. Draw a decision table for the reimbursement policy in Problem 1.
4. A computer supplies firm called True Disk has set up accounts for countless businesses in Dosville.

True Disk sends out invoices monthly and will give discounts if payments are made within 10 days.
The discounting policy is as follows: If the amount of the order for computer supplies is greater than
$1,000, subtract 4 percent for the order; if the amount is between $500 and $1,000, subtract a
2 percent discount; if the amount is less than $500, do not apply any discount. All orders made via
the Web automatically receive an extra 5 percent discount. Any special order (computer furniture, for
example) is exempt from all discounting.

Develop a decision table for True Disk discounting decisions, for which the condition
alternatives are limited to Y and N.

5. Develop an extended-entry decision table for the True Disk company discount policy described in
Problem 4.

6. Develop a decision tree for the True Disk company discount policy in Problem 4.
7. Write structured English to solve the True Disk company situation in Problem 4.
8. Premium Airlines has recently offered to settle claims for a class-action suit, which was originated

for alleged price fixing of tickets. The proposed settlement is stated as follows:

Initially, Premium Airlines will make available to the settlement class a main fund of $25 million in
coupons. If the number of valid claims submitted is 1.25 million or fewer, the value of each claim
will be the result obtained by dividing $25 million by the total number of valid claims submitted. For
example, if there are 500,000 valid claims, each person submitting a valid claim will receive a
coupon with a value of $50.

The denomination of each coupon distributed will be in a whole dollar amount not to exceed
$50. Thus, if there are fewer than 500,000 valid claims, the value of each claim will be divided
among two coupons or more. For example, if there are 250,000 valid claims, each person submitting
a valid claim will receive two coupons, each having a face value of $50, for a total coupon value of
$100.

If the number of valid claims submitted is between 1.25 million and 1.5 million, Premium
Airlines will make available a supplemental fund of coupons, with a potential value of $5 million.
The supplemental fund will be made available to the extent necessary to provide one $20 coupon for
each valid claim.

If there are more than 1.5 million valid claims, the total amount of the main fund and the
supplemental fund, $30 million, will be divided evenly to produce one coupon for each valid claim.
The value of each such coupon will be $30 million divided by the total number of valid claims.

Draw a decision tree for the Premium Airlines settlement.
9. Write structured English for the Premium Airlines settlement in Problem 8.

10. “Well, it’s sort of hard to describe,” says Sharon, a counselor at Less Is More Nutrition Center. “I’ve
never had to really tell anybody about the way we charge clients or anything, but here goes.

“When clients come into Less Is More, we check to see if they’ve ever used our service before.
Unfortunately for them, I guess, we have a lot of repeat clients who keep bouncing back. Repeat
clients get a reduced rate (pardon the pun) of $100 for the first visit if they return within a year of the
end of their program.

“Everyone new pays an initial fee, which is $200 for a physical evaluation. The client may bring
in a coupon at this time, and then we deduct $50 from the up-front fee. Half of our clients use our
coupons and find out about us from them. We just give our repeaters their $100 off, though; they
can’t use a coupon, too! Clients who transfer in from one of our centers in another city get $75 off
their first payment fee, but the coupon doesn’t apply. Customers who pay cash get 10 percent off the
$200, but they can’t use a coupon with that.”

Create a decision table with Y and N conditions for the client charge system at Less Is More
Nutrition Center.

11. Reduce the decision table in Figure 9.EX1 to the minimum number of rules.

Rules

Sufficient quantity
 on hand
Quantity large enough
 for discount
Wholesale customer
Sales tax exemption
filed

Ship items and
 prepare invoice
Set up backorder
Deduct discount
Add sales tax

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X

Y Y Y Y Y Y Y Y N N N N N N N N

Y Y Y Y N N N N Y Y Y Y NN N N

Y Y N N Y Y N N Y Y N N Y Y N N
Y N Y N Y N Y N Y N Y N Y N Y N

X

X X
X X X X X X

X X X X X X

X X X X X X X X

Conditions and Actions
FIGURE 9.EX1
A decision table for a warehouse.

12. Azure Isle Resort has a pricing structure for vacationers in one of its three dwelling categories: the
hotel, villas, and beach bungalows. The base price is for staying in the hotel. Beach bungalows have
a 10 percent surcharge and renting a villa has a 15 percent surcharge. The final price includes a
discount of 4 percent for returning customers. Further conditions apply to how close the resort is
filled to capacity and whether the requested date is within one month from the current date. If the
resort is 50 percent full and the time is within one month, there is a 12 percent discount. If the resort
is 70 percent full and the time is within one month, there is a 6 percent discount. If the resort is
85 percent full and it is within one month, there is a 4 percent discount.

Develop an optimized decision table for the Azure Isle Resort pricing structure.
13. Create a decision tree for Problem 12.
14. The base ticket price for Cloudliner Airlines is determined by the distance traveled and the day of the

week a passenger is traveling. In addition, the airline adjusts its ticket prices based on a number of
categories. If the seats remaining are greater than 50 percent of capacity and the number of days
before the flight is less than 7, the price is deeply discounted with a special Web offer for the flight. If
the seats remaining are greater than 50 percent and the flight date is from 7 to 21 days in the future,
there is a medium price discount. If the seats remaining are greater than 50 percent and the number of
days before travel are greater than 21, there is only a small discount.

If the seats remaining are from 20 to 50 percent and the days before the flight are fewer than 7,
the ticket has a medium discount. If the seats remaining are from 20 to 50 percent and the flight date
is from 7 to 21 days in the future, there is a low discount for prices. If the seats remaining are from
20 to 50 percent and the number of days before travel are greater than 21, there is no discount.

If the seats remaining are less than 20 percent and the number of days before the flight is less than 7,
the ticket has the highest increase in price. If the seats remaining are less than 20 percent and the flight
date is from 7 to 21 days in the future, there is a large increase in price. If the seats remaining are less than
20 percent and number of days before travel are greater than 21, there is a small increase in price.

Develop an optimized decision table for the Cloudliner Airlines ticket price adjustment policies.
15. Develop a decision tree for the situation in Problem 14.

GROUP PROJECTS
1. Each group member (or each subgroup) should choose to become an “expert” and prepare to explain

how and when to use one of the following structured decision techniques: structured English,
decision tables, or decision trees. Each group member or subgroup should then make a case for the
usefulness of its assigned decision analysis technique for studying the types of structured decisions
made by Maverick Transport on dispatching particular trucks to particular destinations. Each group
should make a presentation of its preferred technique.

2. After hearing each presentation, the group should reach a consensus on which technique is most
appropriate for analyzing the dispatching decisions of Maverick Transport and why that technique is
best in this instance.

SELECTED BIBLIOGRAPHY
Anderson, D. R., D. J. Sweeney, T. A. Williams, and R. K. Martin. An Introduction to Management Science,

10th ed. Florence, KY: South-Western College Publishing (an imprint of Cengage), 2007.
Evans, J. R. Applied Production and Operations Management, 4th ed. St. Paul, MN: West, 1993.

276 PART III • THE ANALYSIS PROCESS

CHAPTER 9 • PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 277

E P I S O D E 9
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Tabling a Decision
After doing many follow-up interviews with Dot Matricks, Anna tells Chip, “I’ve determined the logic
needed to update the PENDING COMPUTER ORDERS data store. Because many computers may be or-
dered on the same purchase order, as each computer is entered, the matching record is located and one is
subtracted from the number of outstanding computers per purchase order.”

Anna shows Chip the Process repository screen print. “The name of the corresponding process, UP-
DATE PENDING COMPUTER ORDER (process 2.5), links the process specification to the data flow dia-
gram,” she explains. Inputs and outputs are listed and should match the data flow into or out of the process.
“The VALID COMPUTER TRANSACTION record is input, and the updated PENDING ORDER is the out-
put flow.”

“That will be useful,” Chip says, “even though it took a while to untangle it all.”
Anna points out, “The Process Description area contains the logic, shown in structured English.”
When the logic is complete, Anna further enters a few notes on the nature of the process, notes that it

is a batch process, and also adds timing information.
A decision table may be created for control or process logic. Before the decision table is keyed, it is a

good idea to create it on paper and optimize the table. This way only the essential conditions and actions will
be entered.

“I’ve been busy, too,” Chip assures Anna. “I’ve spoken with Cher Ware several times since you inter-
viewed her. I’ve finally captured some of the logic for calculating the cost of a software upgrade.

“Cher indicated three different conditions affecting the cost. The site license provides unlimited copies
and is used for popular software installed on many computers. An educational discount is provided by many
publishers, and a discount for quantity is usually available,” he continues.

“First I determined the values for the conditions and the number of combinations,” Chip says. He set
out the three conditions and their values as follows:

Condition Values Number of Values
SITE LICENSE Y/N 2

EDUCATIONAL DISCOUNT Y/N 2

DISCOUNT FOR QUANTITY Y/N 2

Condition 1 2 3 4 5 6 7 8
SITE LICENSE Y Y Y Y N N N N

“The total number of combinations is found by multiplying the number of values for each of the con-
ditions, 2 � 2 � 2 � 8. The next step is to decide which conditions should be first.” Chip continues, “I rea-
son that a site license would not have a discount for quantity or an additional educational discount, because
the actual site license cost already reflects this kind of discount. Therefore, SITE LICENSE should be the
first condition. Each of the two other conditions would not have any particular advantage over the other, so
the order is unimportant.

“Because the total number of conditions is eight and the SITE LICENSE condition has two possible
values, the repeat factor would be 8/2, or 4.” Chip continues by noting that the first row of the decision table
would be

“The next condition is EDUCATIONAL DISCOUNT, which also has two values. Dividing these two into
the previous factor of four yields 4/2 � 2 for the next repeat factor.” Chip notes that the decision table now
expands to

Condition 1 2 3 4 5 6 7 8
SITE LICENSE Y Y Y Y N N N N

EDUCATIONAL DISCOUNT Y Y N N Y Y N N

Actions

COST = SITE LICENSE COST X X X X

COST = EDUCATIONAL COST � COPIES X

COST = DISCOUNT COST � COPIES X

COST = UPGRADE COST � COPIES X

COST = (EDUC COST � DISC) � COPIES X

Condition 1 2 3 4 5
SITE LICENSE Y N N N N

EDUCATIONAL DISCOUNT — Y Y N N

DISCOUNT FOR QUANTITY — Y N Y N

Actions

COST = SITE LICENSE COST X

COST = EDUCATIONAL COST � COPIES X

COST = DISCOUNT COST � COPIES X

COST = UPGRADE COST � COPIES X

COST = (EDUC COST � DISC) � COPIES X

Chip continues, “The last condition, DISCOUNT FOR QUANTITY, also has two values, and dividing these
two into the previous repeat factor of two gives 2/2 � 1, which should always be the repeat factor for the
last row of the conditions.” He notes that the completed condition entry is

Condition 1 2 3 4 5 6 7 8
SITE LICENSE Y Y Y Y N N N N

EDUCATIONAL DISCOUNT Y Y N N Y Y N N

DISCOUNT FOR QUANTITY Y N Y N Y N Y N

Chip points out that when the actions are included, the completed decision table is

Condition 1 2 3 4 5 6 7 8
SITE LICENSE Y Y Y Y N N N N

EDUCATIONAL DISCOUNT Y Y N N Y Y N N

DISCOUNT FOR QUANTITY Y N Y N Y N Y N

“I have proceeded to reduce some of the redundant actions, specifically those occurring when a site license
has been obtained,” Chip continues. “Because the actions are the same for Site License values of Y, the edu-
cational and quantity discounts are meaningless to the condition and don’t have to be considered. Rules 1
through 4 may be reduced to one rule.” Chip concludes by noting that the final, optimized decision table is

The final decision table, shown in Figure E9.1, contains the optimized decision table. There are three
conditions: whether a site license, an educational discount, or a quantity discount is available. The top left
quadrant contains the conditions. Directly below it are the actions. The condition alternatives are in the up-
per right quadrant, and the action entries are in the lower right quadrant. The actions show how the upgrade
cost is determined for each condition, indicated by an X in the rule columns.

Conditions and Actions
1 2 3 4 5Site license
Y N N N NEducational discount

Y Y N NDiscount for quantity
Y N Y N

Upgrade cost = Site license cost
XUpgrade cost = Educational cost * Number of copies XUpgrade cost = Discount cost * Number of copies

XUpgrade cost = Cost per copy * Number of copies
XUpgrade cost = (Educational cost – Discount)*Number of copies

X

FIGURE E9.1
Decision Table,
UPGRADE COST.

278 PART III • THE ANALYSIS PROCESS

CHAPTER 9 • PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS 279

EXERCISES
Note: If you are not using Visible Analyst, some of the following exercises may be done using a Microsoft Word or a
Microsoft Excel template for decision tables. The repository is also available as a Web page.

E-1. Use Visible Analyst to view the Process repository entry for UPDATE PENDING COMPUTER
ORDER.

E-2. Use Visible Analyst to modify and print the ACCUMULATIVE HARDWARE SUBTOTALS
Process entry. Add the Process Description, “Accumulate the hardware subtotals. These include the
number of machines for each hardware brand.”

E-3. Use Visible Analyst to modify and print the CONFIRM COMPUTER DELETION Process entry.
Add the following Process Description:

Use the COMPUTER RECORD to format the Deletion Confirmation screen (refer to the Delete
Computer Prototype screen).
Prompt the user to click the OK button to confirm the deletion; otherwise, click the Cancel button
to cancel the deletion.
If the operator clicks OK to delete the record, delete the record and display a “Record Deleted”
message; otherwise, display a “Deletion Canceled” message.

E-4. Create Process specifications for process 6.6, VALIDATE COMPUTER CHANGES. The Process
Description for the process is as follows:

Validate the changes to the COMPUTER MASTER. Include a note to use the edit criteria
established for each element. Provide the following additional editing criteria:
The ROOM LOCATION must be valid for a particular campus.
There must not be a second hard drive without the first one.
The LAST PREVENTIVE MAINTENANCE DATE must not be greater than the current date.
The DATE PURCHASED must not be greater than the LAST PREVENTIVE MAINTENANCE
DATE or greater than the current date.
The MODEL must conform to the type supported by the BRAND name.
No changes may be made to an inactive record.

E-5. Create process specifications for process 1.4, CREATE SOFTWARE LOG FILE. Use the data flow
diagram examples to determine inputs and outputs. Process details are as follows:

Format the SOFTWARE LOG RECORD from the following information:
The confirmed NEW SOFTWARE RECORD elements.
The following system elements: SYSTEM DATE, SYSTEM TIME, USER ID.
When the record has been formatted, write to the SOFTWARE LOG FILE.

E-6. Produce process specifications for process 9.7.2, FIND MATCHING HARDWARE RECORD. This
process is part of a program producing a report showing all computers on which each software pack-
age is located. Use Visible Analyst or Microsoft Visio to view data flow diagram 9.7. Use structured
English to depict the following logic:

For each SOFTWARE RECORD, loop while there is a matching hardware inventory number.
Within the loop, accomplish the following tasks:
Read the COMPUTER MASTER.
If a record is found, format the MATCHING COMPUTER RECORD information.
If no record is found, format a NO MATCHING error line.
Furthermore, if the found COMPUTER RECORD is inactive, indicating that it has been removed
from service, format an INACTIVE MATCHING COMPUTER error line.

E-7. Create the FIND SOFTWARE LOCATION decision table, representing the logic for an inquiry pro-
gram for displaying all locations for a given SOFTWARE TITLE and VERSION. The conditions have
been created and optimized, resulting in five rules, illustrated in Figure E9.2. Enter the actions that
need to be entered and an X in the column related to the conditions. If you are using a word proces-
sor, print the final decision table. The conditions and actions are represented by the following logic:

The SOFTWARE MASTER file is located for the specified TITLE. If the matching record is not
found, an error message is displayed. Because there may be several versions, the VERSION NUM-
BER on the record is checked for a match to the version entered. If the requested version is not found,
further records are read using the alternate index. If all records are read and the version number is not
found, an error message, VERSION NOT AVAILABLE, is displayed.

Once the correct software has been located, a matching COMPUTER MASTER record is ob-
tained. If the COMPUTER MASTER is not found, the error message MACHINE NOT FOUND is
displayed. For each matching machine, the CAMPUS TABLE is searched for the CAMPUS LOCA-
TION code. If the code is not found, the message CAMPUS CODE NOT FOUND is displayed.

If no errors occur, the requested information is displayed.

E-8. Create a decision table for a batch update of the COMPUTER MASTER database table. Information
is sent from a regional campus in an XML format containing three types of updates: Add, Delete, and
Change.

The COMPUTER MASTER record must be read. If the transaction is an Add and the master is
not found, format and write the new COMPUTER MASTER record. Print a valid transaction line on
an UPDATE REPORT. For a Change or Delete transaction, print a CHANGE ERROR LINE or a
DELETE ERROR LINE if the COMPUTER MASTER record is not found.

If the COMPUTER MASTER record is found, check the active code. If the record is inactive
and the transaction is an Add, format and rewrite the new COMPUTER MASTER record. Print a
valid transaction line on an UPDATE REPORT. For a Change or Delete transaction, print a CHANGE
ERROR LINE or a DELETE ERROR LINE.

If the COMPUTER MASTER record is active and the transaction is an Add, print an ADD ER-
ROR LINE. For a Change transaction, format the changes and rewrite the COMPUTER MASTER
record. Print the VALID TRANSACTION LINE. For a Delete transaction, change the ACTIVE
CODE to inactive and rewrite the COMPUTER MASTER record. Print the VALID TRANSAC-
TION LINE.

The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft Project, or
a Microsoft Access file that can be used to complete the exercises.

Conditions and Actions
1 2 3 4 5Matching software record found Y Y Y Y NVersion of software found
Y Y Y NMatching computer record found Y Y NCampus code found in table
Y N

Display ‘No Matching Software Record’ error message
XDisplay ‘Version Not Available’ error message

XDisplay ‘Machine Not Found’ error message
XDisplay ‘Campus Code Not Found’ error message XDisplay location information

X

FIGURE E9.2
Decision Table, FIND
SOFTWARE LOCATION.

280 PART III • THE ANALYSIS PROCESS

www.pearsonhighered.com/kendall

281

C H A P T E R 1 0

Object-Oriented
Systems Analysis
and Design Using UML*

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Understand what object-oriented systems analysis and design is and appreciate its
usefulness.

2. Comprehend the concepts of unified modeling language (UML), the standard approach for
modeling a system in the object-oriented world.

3. Apply the steps used in UML to break down the system into a use case model and then a
class model.

4. Diagram systems with the UML toolset so they can be described and properly designed.

5. Document and communicate the newly modeled object-oriented system to users and other
analysts.

Object-oriented analysis and design can offer an approach that facilitates
logical, rapid, and thorough methods for creating new systems responsive
to a changing business landscape. Object-oriented techniques work well in
situations in which complicated information systems are undergoing con-
tinuous maintenance, adaptation, and redesign.

In this chapter, we introduce the unified modeling language (UML), the industry stan-
dard for modeling object-oriented systems. The UML toolset includes diagrams that allow
you to visualize the construction of an object-oriented system. Each design iteration takes a
successively more detailed look at the design of the system until the things and relationships
in the system are clearly and precisely defined in UML documents. UML is a powerful tool
that can greatly improve the quality of your systems analysis and design, and thereby help
create higher-quality information systems.

When the object-oriented approach was first introduced, advocates cited reusability of the
objects as the main benefit of their approach. It makes intuitive sense that the recycling of pro-
gram parts should reduce the costs of development in computer-based systems. It has proved
to be very effective in the development of GUIs and databases.Although reusability is the main
goal, maintaining systems is also very important, and because the object-oriented approach
creates objects that contain both data and program code, a change in one object has a mini-
mal impact on other objects.

*By Julie E. Kendall, Kenneth E. Kendall, and Allen Schmidt.

282 PART III • THE ANALYSIS PROCESS

OBJECT-ORIENTED CONCEPTS
Object-oriented programming differs from traditional procedural programming by examining the ob-
jects that are part of a system. Each object is a computer representation of some actual thing or event.
General descriptions of the key object-oriented concepts of objects, classes, and inheritance are pre-
sented in this section, with further details on other UML concepts introduced later in this chapter.

Objects
Objects are persons, places, or things that are relevant to the system we are analyzing. Object-
oriented systems describe entities as objects. Typical objects may be customers, items, orders,
and so on. Objects may also be GUI displays or text areas on the display.

Classes
Objects are typically part of a group of similar items called classes. The desire to place items into
classes is not new. Describing the world as being made up of animals, vegetables, and minerals is an
example of classification. The scientific approach includes classes of animals (such as mammals),
and then divides the classes into subclasses (such as egg-laying animals and pouched mammals).

The idea behind classes is to have a reference point and describe a specific object in terms of its
similarities to or differences from members of its own class. In doing so, it is more efficient for some-
one to say, “The koala bear is a marsupial (or pouched animal) with a large round head and furry
ears,” than it is to describe a koala bear by describing all of its characteristics as a mammal. It is more
efficient to describe characteristics, appearance, and even behavior in this way. When you hear the
word reusable in the object-oriented world, it means you can be more efficient, because you do not
have to start at the beginning to describe an object every time it is needed for software development.

Objects are represented by and grouped into classes that are optimal for reuse and maintainabil-
ity. A class defines the set of shared attributes and behaviors found in each object in the class. For
example, records for students in a course section have similar information stored for each student.
The students could be said to make up a class (no pun intended). The values may be different for
each student, but the type of information is the same. Programmers must define the various classes
in the program they are writing. When the program runs, objects can be created from the established
class. The term instantiate is used when an object is created from a class. For example, a program
could instantiate a student named Peter Wellington as an object from the class labeled as student.

What makes object-oriented programming, and thus object-oriented analysis and design, dif-
ferent from classical programming is the technique of putting all of an object’s attributes and
methods within one self-contained structure, the class itself. This is a familiar occurrence in the
physical world. For example, a packaged cake mix is analogous to a class since it has the ingredi-
ents as well as instructions on how to mix and bake the cake. A wool sweater is similar to a class
because it has a label with care instructions sewn into it that caution you to wash it by hand and
lay it flat to dry.

Each class should have a name that differentiates it from all other classes. Class names are
usually nouns or short phrases and begin with an uppercase letter. In Figure 10.1 the class is called
RentalCar. In UML, a class is drawn as a rectangle. The rectangle contains two other important
features: a list of attributes and a series of methods. These items describe a class, the unit of analy-
sis that is a large part of what we call object-oriented analysis and design.

An attribute describes some property that is possessed by all objects of the class. Notice that
the RentalCar class possesses the attributes of size, color, make, and model. All cars possess these

RentalCar

size
color
make
model

rentOut()
checkIn()
service()

Class Name

Attributes

Methods (Operations)

FIGURE 10.1
An example of a UML class. A
class is depicted as a rectangle
consisting of the class name,
attributes, and methods.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 283

attributes, but each car will have different values for its attributes. For example, a car can be blue,
white, or some other color. Later on we will demonstrate that you can be more specific about the
range of values for these properties. When specifying attributes, the first letter is usually lowercase.

A method is an action that can be requested from any object of the class. Methods are the
processes that a class knows to carry out. Methods are also called operations. For the class of
RentalCar, rentOut(), checkIn(), and service() are examples of methods. When specifying
methods, the first letter is usually lowercase.

Inheritance
Another key concept of object-oriented systems is inheritance. Classes can have children; that is,
one class can be created out of another class. In UML, the original—or parent—class is known
as a base class. The child class is called a derived class. A derived class can be created in such a
way that it will inherit all the attributes and behaviors of the base class. A derived class, however,
may have additional attributes and behaviors. For example, there might be a Vehicle class for a
car rental company that contains attributes such as size, color, and make.

Inheritance reduces programming labor by using common objects easily. The programmer only
needs to declare that the Car class inherits from the Vehicle class, and then provide any additional
details about new attributes or behaviors that are unique to a car. All the attributes and behaviors of
the Vehicle class are automatically and implicitly part of the Car class and require no additional
programming. This enables the analyst to define once but use many times, and is similar to data that
is in the third normal form, defined only once in one database table (as discussed in Chapter 13).

The derived classes shown in Figure 10.2 are Car or Truck. Here the attributes are preceded
by minus signs and methods are preceded by plus signs. We will discuss this in more detail later
in the chapter, but for now take note that the minus signs mean that these attributes are private
(not shared with other classes) and these methods are public (may be invoked by other classes).

Vehicle

–size
–color
–make
–model
–available
–ratePerDay
–ratePerWeek
–ratePerMile

+rentOut()
+checkIn()
+service()
+addNew()

Car

is a is a

–size
–color
–make
–model
–available
–ratePerDay
–ratePerWeek
–ratePerMile
–style

+rentOut()
+checkIn()
+service()
+addNew()

Truck

–size
–color
–make
–model
–available
–ratePerDay
–ratePerWeek
–ratePerMile
–length
–4WheelDrive
–manualShift

+rentOut()
+checkIn()
+service()
+addNew()

FIGURE 10.2
A class diagram showing
inheritance. Car and Truck are
specific examples of vehicles and
inherit the characteristics of the
more general class, Vehicle.

284 PART III • THE ANALYSIS PROCESS

Program code reuse has been a part of structured systems development and programming lan-
guages (such as COBOL) for many years, and there have been subprograms that encapsulate data.
Inheritance, however, is a feature that is only found in object-oriented systems.

CRC CARDS AND OBJECT THINK
Now that we have covered the fundamental concepts of object-oriented systems analysis and de-
sign, we need to examine ways to create classes and objects from the business problems and sys-
tems we are facing. One way to begin enacting the object-oriented approach is to start thinking
and talking in this new way. One handy approach is to develop CRC cards.

CRC stands for class, responsibilities, and collaborators. The analyst can use these concepts
when beginning to talk about or model the system from an object-oriented perspective. CRC
cards are used to represent the responsibilities of classes and the interaction between the classes.
Analysts create the cards based on scenarios that outline system requirements. These scenarios
model the behavior of the system under study. If they are to be used in a group, CRC cards can
be created manually on small note cards for flexibility, or they can be created using a computer.

We have added two columns to the original CRC card template: the Object Think column and
the property column. The Object Think statements are written in plain English, and the property,
or attribute, name is entered in its proper place. The purpose of these columns is to clarify think-
ing and help move toward creating UML diagrams.

Interacting During a CRC Session
CRC cards can be created interactively with a handful of analysts who can work together to iden-
tify the class in the problem domain presented by the business. One suggestion is to find all the
nouns and verbs in a problem statement that has been created to capture the problem. Nouns usu-
ally indicate the classes in the system, and responsibilities can be found by identifying the verbs.

With your analyst group, brainstorm to identify all the classes you can. Follow the standard
format for brainstorming, which is not to criticize any participant’s response at this point, but
rather to elicit as many responses as possible. When all classes have been identified, the analysts
can then compile them, weed out the illogical ones, and write each one on its own card. Assign
one class to each person in the group, who will “own” it for the duration of the CRC session.

Next, the group creates scenarios that are actually walk-throughs of system functions by tak-
ing desired functionality from the requirements document previously created. Typical systems
methods should be considered first, with exceptions such as error recovery taken up after the rou-
tine ones have been covered.

As the group decides which class is responsible for a particular function, the analyst who
owns the class for the session picks up that card and declares, “I need to fulfill my responsibil-
ity.” When a card is held in the air, it is considered an object and can do things. The group then

C O N S U L T I N G O P P O R T U N I T Y 1 0 . 1

Around the World in 80 Objects

Because you have described the advantages of using object-
oriented approaches, Jules and Vern, two top executives at
World’s Trend, would like you to analyze their business using this
approach. You can find a summary of World’s Trend business ac-
tivities in Figure 7.15. Notice also the series of data flow dia-
grams in that chapter to help you conceptualize the problem and
begin making the transition to Object Think.

Because you are such good friends with Jules and Vern and be-
cause you wouldn’t mind a little practical experience using O-O
thinking, you agree to apply what you know and give them a report.

Once you have reread the business activities for World’s Trend, pro-
vide a timely review by completing the following tasks:

� Use the CRC cards technique to list classes, responsibilities,
and collaborators.

� Use the Object Think technique to list “knows” and
corresponding attributes for the objects in those classes
identified in the previous stage.

Write up both steps and fly over to World’s Trend headquarters
with your report in hand. Clearly, Jules and Vern are hoping for a
fantastic voyage into the new world of object-oriented methods.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 285

Class Name:

Superclasses:

Subclasses:

Responsibilities Collaborators Object Think Property

Department

Add a new department Course I know my name

I know my department chairProvide department information

Department Name

Chair Name

Class Name:
Superclasses:
Subclasses:
Responsibilities Collaborators Object Think Property

Course

Add a new course Department I know my course number
I know my description
I know my number of credits

Assignment
Exam

Textbook
Change course information
Display course information

Course Number
Course Description
Credits

Class Name:

Superclasses:

Subclasses:

Responsibilities Collaborators Object Think Property

Textbook

Add a new textbook Course I know my ISBN

I know my author

I know my title

I know my edition

I know my publisher

I know if I am required

Edition

Publisher

Required

Change textbook information

Find textbook information

Remove obsolete textbooks

ISBN

Author

Title

Class Name:
Superclasses:
Subclasses:
Responsibilities Collaborators Object Think Property

Assignment

Add a new assignment
I know my assignment number
I know my description
I know how many points I am worth

Change an assignment
View an assignment

I know when I am due

Task Number
Task Description
Points
Due Date

Course

FIGURE 10.3
Four CRC cards for course
offerings show how analysts fill in
the details for classes,
responsibilities, and collaborators,
as well as for object think
statements and property names.

proceeds to refine the responsibility into smaller and smaller tasks, if possible. These tasks can
be fulfilled by the object if it is appropriate, or the group can decide that it can be fulfilled by in-
teracting with other things. If there are no other appropriate classes in existence, the group may
need to create one.

The four CRC cards depicted in Figure 10.3 show four classes for course offerings. Notice
that in a class called Course, the systems analyst is referred to four collaborators: the department,

286 PART III • THE ANALYSIS PROCESS

the textbook, the course assignment, and the course exam. These collaborators are then described
as classes of their own on the other CRC cards.

The responsibilities listed will eventually evolve into what are called methods in UML. The
Object Think statements seem elementary, but they are conversational so as to encourage a group
of analysts during a CRC session to describe as many of these statements as possible. As shown
in the example, all dialog during a CRC session is carried out in the first person, so that even the
textbook speaks: “I know my ISBN.” “I know my author.” These statements can then be used to
describe attributes in UML. These attributes can be called by their variable names, such as edition
and publisher.

THE UNIFIED MODELING LANGUAGE (UML)
CONCEPTS AND DIAGRAMS
The UML approach is well worth investigating and understanding, due to its wide acceptance and
usage. UML provides a standardized set of tools to document the analysis and design of a soft-
ware system. The UML toolset includes diagrams that allow people to visualize the construction
of an object-oriented system, similar to the way a set of blueprints allows people to visualize the
construction of a building. Whether you are working independently or with a large systems de-
velopment team, the documentation that you create with UML provides an effective means of
communication between the development team and the business team on a project.

UML consists of things, relationships, and diagrams, as illustrated in Figure 10.4. The first
components, or primary elements, of UML are called things. You may prefer another word, such

UML Category

Things

UML Elements

Structural Things

Behavioral Things Interactions
State Machines

Grouping Things Packages

Annotational Things Notes

Classes
Interfaces
Collaborations
Use Cases
Active Classes
Components
Nodes

Relationships Structural Relationships Dependencies
Aggregations
Associations
Generalizations

Diagrams Structural Diagrams Class Diagrams
Component Diagrams
Deployment Diagrams

Behavioral Relationships Communicates
Includes
Extends
Generalizes

Behavioral Diagrams Use Case Diagrams
Sequence Diagrams
Communication Diagrams
Statechart Diagrams
Activity Diagrams

Specific UML DetailsFIGURE 10.4
An overall view of UML and its
components: Things,
Relationships, and Diagrams.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 287

as object, but in UML they are called things. Structural things are most common. Structural things
are classes, interfaces, use cases, and many other elements that provide a way to create models.
Structural things allow the user to describe relationships. Behavioral things describe how things
work. Examples of behavioral things are interactions and state machines. Group things are used
to define boundaries. An example of a group thing is a package. Finally, we have annotational
things, so that we can add notes to the diagrams.

Relationships are the glue that holds the things together. It is useful to think of relationships
in two ways. Structural relationships are used to tie the things together in the structural diagrams.
Structural relationships include dependencies, aggregations, associations, and generalizations.
Structural relationships show inheritance, for example. Behavioral relationships are used in the
behavioral diagrams. The four basic types of behavioral relationships are communicates, in-
cludes, extends, and generalizes.

There are two main types of diagrams in UML: structural diagrams and behavioral diagrams.
Structural diagrams are used, for example, to describe the relationships between classes. They in-
clude class diagrams, object diagrams, component diagrams, and deployment diagrams. Behav-
ioral diagrams, on the other hand, can be used to describe the interaction between people (called
actors in UML) and the thing we refer to as a use case, or how the actors use the system. Behav-
ioral diagrams include use case diagrams, sequence diagrams, communication diagrams, state-
chart diagrams, and activity diagrams.

In the remainder of this chapter, we first discuss use case modeling, the basis for all UML
techniques. Next, we look at how a use case is used to derive activities, sequences, and classes—
the most commonly used UML diagrams. Because entire books are dedicated to the syntax and
usage of UML (the actual UML specification document is over 800 pages long), we provide only
a brief summary of the most valuable and commonly used aspects of UML.

The six most commonly used UML diagrams are:

1. A use case diagram, describing how the system is used. Analysts start with a use case
diagram.

2. A use case scenario (although technically it is not a diagram). This scenario is a verbal
articulation of exceptions to the main behavior described by the primary use case.

3. An activity diagram, illustrating the overall flow of activities. Each use case may create
one activity diagram.

4. Sequence diagrams, showing the sequence of activities and class relationships. Each use
case may create one or more sequence diagrams. An alternative to a sequence diagram is a
communication diagram, which contains the same information but emphasizes
communication instead of timing.

5. Class diagrams, showing the classes and relationships. Sequence diagrams are used (along
with CRC cards) to determine classes. An offshoot of a class diagram is a gen/spec
diagram (which stands for generalization/specialization).

6. Statechart diagrams, showing the state transitions. Each class may create a statechart
diagram, which is useful for determining class methods.

How these diagrams relate to one another is illustrated in Figure 10.5. We will discuss each
of these diagrams in the following sections.

USE CASE MODELING
UML is fundamentally based on an object-oriented analysis technique known as use case model-
ing, which was introduced in Chapter 2. A use case model shows a view of the system from the
user perspective, thus describing what a system does without describing how the system does it.
UML can be used to analyze the use case model, and to derive system objects and their interac-
tions with each other and with the users of the system. Using UML techniques, you further ana-
lyze the objects and their interactions to derive object behavior, attributes, and relationships.

A use case provides developers with a view of what the users want. It is free of technical or
implementation details. We can think of a use case as a sequence of transactions in a system. The
use case model is based on the interactions and relationships of individual use cases.

A use case always describes three things: an actor that initiates an event; the event that trig-
gers a use case; and the use case that performs the actions triggered by the event. In a use case,

288 PART III • THE ANALYSIS PROCESS

Each use casemay create oneactivity diagram.

Each use casescenario maycreate onesequencediagram.

Class Diagram

Statechart Diagram

Sequence Diagram

Use Case Diagram

Communication Diagram

1 1..

11

Activity Diagram

Sequence andcommunicationdiagrams areinterchangeable.Each class mayhave a statechart
diagram to helpdetermineoperations.

Use casescenarios maybe generated fromthe use casediagram.

Use cases andsequencediagramshelp determineclasses.

Use Case Scenario

Identifiers

Steps

Conditions

FIGURE 10.5
An overall view of UML diagrams
showing how each diagram leads
to the development of other UML
diagrams.

an actor using the system initiates an event that begins a related series of interactions in the sys-
tem. Use cases are used to document a single transaction or event. An event is an input to the
system that happens at a specific time and place and causes the system to do something. For
more information about use case symbols and how to draw use case diagrams, see Chapter 2.

Figure 10.6 is a use case example of student enrollment at a university. Notice that only the
most important functions are represented. The Add Student use case does not indicate how
to add students, the method of implementation. Students could be added in person, using the
Web, using a touch-tone telephone, or any combination of these methods. The Add Student
use case includes the Verify Identity use case to verify the identity of the student. The
Purchase Textbook use case extends the Enroll in Class use case, and may be part of a sys-
tem to enroll students in an online course.

It may seem as if the Change Student Information use case is a minor system feature and
should not be included on the use case diagram, but because this information changes fre-

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 289

quently, administration has a keen interest in allowing students to change their own personal in-
formation. The fact that the administrators deem this to be important not only justifies, but calls
for, the use case to be written up.

Students would not be allowed to change grade point average, outstanding fees, and other in-
formation. This use case also includes the Verify Identity use case, and in this situation, it means
having the student enter a user ID and password before gaining access to the system. View Student
Information allows students to view their personal information, as well as courses and grades.

A use case scenario example is shown in Figure 10.7. Some of the areas included are op-
tional, and may not be used by all organizations. The three main areas are:

1. A header area containing case identifiers and initiators.
2. Steps performed.
3. A footer area containing preconditions, assumptions, questions, and other information.

In the first area the use case is identified by its name, Change Student Information; the ac-
tor is identified as a Student; and the Use Case and Triggering Event are described. The second
area contains a series of steps that are performed as long as no errors are encountered. Finally, in
the third area, all of the pre- and postconditions and assumptions are identified. Some of these are
obvious, such as the precondition that the student is on the correct Web page and the assumption
that the student has a valid student ID and password. Others are not so obvious, such as the out-
standing issue regarding how many times the student is allowed to log on to the system.

<< include >>

<< include >>

<< include >>

<
<

 in
cl

ud
e

>
> << extend >>

RegistrationStudent

Change Student
Information

Verify
Identity

Financial Office

Bookstore

DepartmentStudent

Transfer
Credits

View Student
Information

Purchase
Textbook

Enroll
in Class

Add
Student

FIGURE 10.6
A use case example of student
enrollment.

290 PART III • THE ANALYSIS PROCESS

Use case diagrams provide the basis for creating other types of diagrams, such as class dia-
grams and activity diagrams. Use case scenarios are helpful in drawing sequence diagrams. Both
use case diagrams and use case scenarios are powerful tools to help us understand how a system
works in general.

ACTIVITY DIAGRAMS
Activity diagrams show the sequence of activities in a process, including sequential and parallel
activities, and decisions that are made. An activity diagram is usually created for one use case and
may show the different possible scenarios.

The symbols on an activity diagram are illustrated in Figure 10.8. A rectangle with rounded
ends represents an activity, either a manual one, such as signing a legal document, or an auto-
mated one, such as a method or program.

Use case name: Change Student Information

UniqueID: Student UC 005

Area:

Actor(s):

Description:

Triggering Event:

Preconditions:

Postconditions:
Assumptions:

Steps Performed (Main Path)

Student System

Student is on the Change Student Information Web page.

Student has a browser and a valid user ID and password.

Student has successfully changed personal information.
Requirements Met: Allow students to be able to change personal information using a secure Web site.

Outstanding Issues: Should the number of times a student is allowed to logon be controlled?
Priority:

Medium
Risk:

Medium

Student uses Change Student Information Web site, enters student ID and password, and clicks

the Submit button.

1. Student logs on to the secure Web server.2. Student record is read and password is verified.3. Current student personal information is displayed on the Change Student Web page.
4. Student enters changes on the Change Student Web
 form and clicks Submit button.
5. Changes are validated on the Web server.6. Change Student Journal record is written.7. Student record is updated on the Student Master.8. Confirmation Web page is sent to the student.

Student ID, Password
Student Record, Student ID, Password
Student Record

Change Student Web Form

Change Student Web Form
Change Student Web Form
Change Student Web Form, Student Record
Confirmation Page

Trigger type:

Student

Allow student to change his or her own information, such as name, home address, home telephone, campus

address, campus telephone, cell phone, and other information using a secure Web site.

Information for Steps

External Temporal

FIGURE 10.7
A use case scenario is divided into
three sections: identification and
initiation, steps performed, and
conditions, assumptions, and
questions.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 291

An arrow represents an event. Events represent things that happen at a certain time and place.
A diamond represents either a decision (also called a branch) or a merge. Decisions have one

arrow going into the diamond and several going out. A guard condition, showing the condition
values, may be included. Merges show several events combining to form one event.

A long, flat rectangle represents a synchronization bar. These are used to show parallel ac-
tivities, and may have one event going into the synchronization bar and several events going
out of it, called a fork. A synchronization in which several events merge into one event is called
a join.

There are two symbols that show the start and end of the diagram. The initial state is shown
as a filled-in circle. The final state is shown as a black circle surrounded by a white circle.

Rectangles surrounding other symbols, called swimlanes, indicate partitioning and are used
to show which activities are done on which platform, such as a browser, server, or mainframe
computer; or to show activities done by different user groups. Swimlanes are zones that can de-
pict logic as well as the responsibility of a class.

You can see an example of swimlanes in Figure 10.9, which illustrates an activity diagram
for the Change Student Information use case. It starts with the student logging onto the system
by filling out a Web form and clicking the Submit button. The form is transmitted to the Web
server, which then passes the data to the mainframe computer. The mainframe accesses the STU-
DENT database and passes either a “Not Found” message or selected student data to the Web
server.

The diamond below the Get Student Record state indicates this decision. If the student
record has not been found, the Web server displays an error message on the Web page. If the stu-
dent record has been found, the Web server formats a new Web page containing the current stu-
dent data in a Web form. The student may cancel the change from either the Logon System or the
Enter Changes states, and the activity halts.

If the student enters changes on the Web form and clicks the Submit button, the change data
is transmitted to the server and a program starts running that validates the changes. If there are er-
rors, an error message is sent to the Web page. If the data are valid, the student record is updated
and a Change Student Journal Record is written. After a valid update, a confirmation Web page
is sent to the browser and the activity terminates.

[condition] [else]

Merge

Branch

Join

Fork

Start

Activity

End

ActivityActivityActivity

We can add

swimlanes to

this diagram

to assign
responsibilities.

Forks allow

activities to go

in parallel.

Branches allow

alternative

activities given

different
conditions.

FIGURE 10.8
Specialized symbols are used to
draw an activity diagram.

292 PART III • THE ANALYSIS PROCESS

Creating Activity Diagrams
Activity diagrams are created by asking what happens first, what happens second, and so on. You
must determine whether activities are done in sequence or in parallel. If physical data flow diagrams
(as described in Chapter 7) have been created, they may be examined to determine the sequence of
activities. Look for places where decisions are made, and ask what happens for each of the decision
outcomes. Activity diagrams may be created by examining all the scenarios for a use case.

Each path through the various decisions included on the use case is a different scenario. In
the main path would be Logon System, Receive Web Form, Get Student Record, Display Cur-
rent Student Data, Enter Changes, Validate Changes, Update Student Record, Create
Change Student Journal Record, and Display Confirmation.

This isn’t the only scenario that comes from this use case. Other scenarios may occur. One pos-
sibility could be Logon System, Receive Web Form, Get Student Record, and Display Error
Message. Another scenario could be Logon System, Receive Web Form, Get Student Record,
Display Current Student Data, Enter Changes,Validate Changes, and Display Error Message.

Create Change
Student Journal

Record

Update Student
Record

Valid DataValid Data

User ID and Password

Not Found

Exchange Data Placed in Message Queue

Record
Status

Valid Update

Cancel

Cancel

Record
Updated

Record
Written

Logon System

Client Web Page Web Server Mainframe

Receive Web
Form

Display Error
Message

Display Current
Student Data

Validate Changes

Valid Data Received

Enter Changes

Display
Error Message

Display
Confirmation

Get Student
Record

Form Transmitted

Send Error Message

Web Form Sent

Web Form Received

Send Error Messages

Confirmation Sent

Invalid Data Received

Validation Status

FIGURE 10.9
This activity diagram shows three
swimlanes: Client Web Page, Web
Server, and Mainframe.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 293

The swimlanes are useful to show how the data must be transmitted or converted, such as
from Web to server or from server to mainframe. For example, the Change Student Record ac-
tivity diagram has three swimlanes.

The swimlane on the left shows activities that occur on the client browser. Web pages must
be created for these activities. The middle swimlane shows activities that happen on the server.
Events, such as Form Transmitted, represent data transmitted from the browser to the server, and
there must be programs on the server to receive and process the client data.

The swimlane on the right represents the mainframe computer. In large organizations it is
typical for many Web applications to work with a mainframe computer. Much of the data in large
organizations exists on mainframe databases and there is an enormous number of mainframe pro-
grams in existence.

When an event crosses the swimlane from the server to the mainframe computer, there must
be a mechanism for transmitting the event data between the two platforms. Servers use a differ-
ent format to represent data (ASCII) than do mainframe computers (they use a format called
EBCDIC). Middleware must be present to take care of the conversion. IBM computers often use
an mqueue (for message queue). The mqueue receives data from the server programs, places it in
a holding area, and calls a mainframe program, usually written in a language called CICS. This
program retrieves or updates the data, and sends the results back to the mqueue.

In the example activity diagram shown, the decision below the Get Student Record state is
made on the mainframe computer. This means that the message queue receives either a “Not
Found” message or the database record for the student. If the mainframe simply placed the
Record Status Received in the message queue and the decision was evaluated on the server, the
server would have to call the mainframe again to obtain the valid data. This would slow down the
response to the person waiting at the browser.

C O N S U L T I N G O P P O R T U N I T Y 1 0 . 2

Recycling the Programming Environment

“I feel like I’m writing the same code over and over again,” says
Benito Pérez, a programmer working on a new automated ware-
house design. “I have written so many programs lately that dealt
with robotic-type things that control themselves: automated mail-
room trolleys, building surveillance robots, automatic pool clean-
ers, automatic lawn mowers, monorail trains, and now warehouse
trolleys. They are all variations on a theme.”

Lisa Bernoulli, the project manager, had heard this sort of
complaint for years. She replies, “Oh come on, Ben. These things
aren’t really that close. How can you compare a mailroom robot, an
automated warehouse, and a monorail train? I’ll bet less than 10
percent of the code is the same.”

“Look,” says Benito. “All three involve machines that have to
find a starting point, follow a circuitous route, make stops for load-
ing and unloading, and eventually go to a stopping point. All three
have to make decisions at branches in their routes. All three have to
avoid colliding with things. I’m tired of redesigning code that is
largely familiar to me.”

“Hmmm,” Lisa muses as she looks over the basic requirements
for the warehouse system and remembers the monorail system she
and Benito had worked on last year. The requirements regarded a
small-lot electronics manufacturing firm that was automating its
warehouse and product movement system. The warehouse contains
incoming parts, work in progress, and finished goods. The auto-

mated warehouse uses a flatbed robot trolley. This robot is a four-
wheel electric cart, similar to a golf cart except that it has no seats.
Flatbed robot trolleys have a flat, 6	 � 4	 cargo surface about 3	
above ground level. These trolleys have a radio communications de-
vice that provides a real-time data link to a central warehouse com-
puter. Flatbed trolleys have two sensors: a path sensor that detects a
special type of paint and a motion sensor that detects movement.
These trolleys follow painted paths around the factory floor. Special
paint codes mark forks and branches in the paths, trolley start and
stop points, and general location points.

The facility includes three loading dock stations and 10
workstations. Each station has a video terminal or computer con-
nected to the central computer. When products are needed or are
ready to be collected from a workstation, the central computer is
informed by the worker at the station. The central computer then
dispatches trolleys accordingly. Each station has a drop point and
a pickup point. Flatbed trolleys move about the factory picking up
work at pickup points and dropping off work at drop points. The
program that will run the trolleys must interact heavily with the
existing job-scheduling program that helps schedule workstation
tasks.

How should Lisa go about reusing Benito Pérez’s work on the
monorail in their current task of creating a trolley object? Explain
in two paragraphs.

294 PART III • THE ANALYSIS PROCESS

Swimlanes also help to divide up the tasks in a team. Web designers would be needed for the
Web pages displayed on the client browser. Other members would work with programming lan-
guages, such as Java, PHP, Ruby on Rails, PERL, or .NET, on the server. Mainframe CICS pro-
grammers would write programs that would work with the message queue. The analyst must
ensure that the data that the various team members need is available and correctly defined. Some-
times the data in the message queue is an XML document. If an outside organization is involved,
the data also might be an XML document.

The activity diagram provides a map of a use case, and allows the analyst to experiment with
moving portions of the design to different platforms and ask “What if?” for a variety of decisions.
The use of unique symbols and swimlanes makes this diagram one that people want to use to com-
municate with others.

Activity diagrams may be used to construct test plans. Each event must be tested to see
whether the activity diagram goes to the next state. Each decision must be tested to see whether
the correct path is taken when the decision conditions occur.

Activity diagrams are not used for all use cases. Use the activity diagram when:

1. It helps to understand the activities of a use case.
2. The flow of control is complex.
3. There is a need to model workflow.
4. All scenarios need to be shown.

The analyst would not need an activity diagram when the use case is simple or there is a need to
model the change of state.

Activity diagrams may also be used to model a lower-level method, showing detailed logic.

Repository Entries for an Activity Diagram
Each state and event may be further defined using a text description in a repository, which is a
collection of text descriptions for the project. Describe states with information about the state,
such as the Web page name, elements on the Web page, and so on. Describe events with the in-
formation that is required to communicate with the next state, such as the data from the Web form,
the data that is put into a message queue, or with a description of the event that caused the tran-
sition, such as a button click.

SEQUENCE AND COMMUNICATION DIAGRAMS
An interaction diagram is either a sequence diagram or a communication diagram, both of which
show essentially the same information. These diagrams, along with class diagrams, are used in a
use case realization, which is a way to achieve or accomplish a use case.

Sequence Diagrams
Sequence diagrams can illustrate a succession of interactions between classes or object instances
over time. Sequence diagrams are often used to illustrate the processing described in use case sce-
narios. In practice, sequence diagrams are derived from use case analysis and are used in systems
design to derive the interactions, relationships, and methods of the objects in the system. Se-
quence diagrams are used to show the overall pattern of the activities or interactions in a use case.
Each use case scenario may create one sequence diagram, although sequence diagrams are not al-
ways created for minor scenarios.

The symbols used in sequence diagrams are shown in Figure 10.10. Actors and classes or ob-
ject instances are shown in boxes along the top of the diagram. The leftmost object is the starting
object and may be a person (for which a use case actor symbol is used), window, dialog box, or
other user interface. Some of the interactions are physical only, such as signing a contract. The
top rectangles use indicators in the name to indicate whether the rectangle represents an object, a
class, or a class and object.

objectName: A name with a colon after it represents an object.
:class A colon with a name after it represents a class.
objectName:class A name, followed by a colon and another name,

represents an object in a class.

A vertical line represents the lifeline for the class or object, which corresponds to the time from
when it is created through when it is destroyed. An X on the bottom of the lifeline represents when
the object is destroyed. A lateral bar or vertical rectangle on the lifeline shows the focus of con-
trol when the object is busy doing things.

Horizontal arrows show messages or signals that are sent between the classes. Messages be-
long to the receiving class. There are some variations in the message arrows. Solid arrowheads
represent synchronous calls, which are the most common. These are used when the sending class
waits for a response from the receiving class, and control is returned to the sending class when
the class receiving the message finishes executing. Half (or open) arrowheads represent asynchro-
nous calls, or those that are sent without an expectation of returning to the sending class. An ex-
ample would be using a menu to run a program. A return is shown as an arrow, sometimes with a
dashed line. Messages are labeled using one of the following formats:

� The name of the message followed by empty parentheses: messageName().
� The name of the message followed by parameters in parentheses:

messageName(parameter1, parameter2 . . .).
� The message name followed by the parameter type, parameter name, and any default value

for the parameter in parentheses:
messageName(parameterType:parameterName(defaultValue). Parameter types
indicate the type of data, such as string, number, or date.

� The message may be a stereotype, such as «Create», indicating that a new object is
created as a result of the message.

Timing in the sequence diagram is displayed from top to bottom; the first interaction is drawn
at the top of the diagram, and the interaction that occurs last is drawn at the bottom of the dia-
gram. The interaction arrows begin at the bar of the actor or object that initiates the interaction,
and they end pointing at the bar of the actor or object that receives the interaction request. The
starting actor, class, or object is shown on the left. This may be the actor that initiates the activity
or it may be a class representing the user interface.

Figure 10.11 is a simplified example of a sequence diagram for a use case that admits a stu-
dent to a university. On the left is the newStudentUserInterface class that is used to obtain stu-
dent information. The initialize() message is sent to the Student class, which creates a new
student record and returns the student number. To simplify the diagram, the parameters that are
sent to the Student class have been omitted, but would include the student name, address, and so

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 295

method(Parameter)

return

asynchronousSignal()

::Class Object::Class
FIGURE 10.10
Specialized symbols used to draw
a sequence diagram.

296 PART III • THE ANALYSIS PROCESS

on. The next activity is to send a selectDorm message to the Dorm class. This message would
include dorm selection information, such as a health dorm or other student requirements. The
Dorm class returns the dorm name and room number. The third activity is to send a
selectProgram message to the Program class, including the program name and other course of
study information. The program advisor name is returned to the newStudentUserInterface class.
A studentComplete message is sent to the Student class with the dorm, advisor name, and other
information.

Sequence diagrams can be used to translate the use case scenario into a visual tool for sys-
tems analysis. The initial sequence diagram used in systems analysis shows the actors and classes
in the system and the interactions between them for a specific process. You can use this version
of the sequence diagram to verify processes with the business area experts who have assisted you
in developing the system requirements. A sequence diagram emphasizes the time ordering (se-
quence) of messages.

During the systems design phase, the sequence diagrams are refined to derive the methods and
interactions between classes. Messages from one class are used to identify class relationships. The
actors in the earlier sequence diagrams are translated to interfaces, and class interactions are trans-
lated to class methods. Class methods used to create instances of other classes and to perform other
internal system functions become apparent in the system design using sequence diagrams.

Communication Diagrams
Communication diagrams were introduced in UML 2.0. Their original name in UML 1.x was
collaboration diagrams. Communication diagrams describe the interactions of two or more
things in the system that perform a behavior that is more than any one of the things can do
alone. For instance, a car can be broken down into several thousand individual parts. The parts
are put together to form the major subsystems of the vehicle: the engine, the transmission, the
brake system, and so forth. The individual parts of the car can be thought of as classes, because
they have distinct attributes and functions. The individual parts of the engine form a collabo-
ration, because they “communicate” with each other to make the engine run when the driver
steps on the accelerator.

A communication diagram is made up of three parts: objects (also called participants), the
communication links, and the messages that can be passed along those links. Communication di-

::Student

initialize()

selectDorm()

studentComplete()

return dormRoom

return studentNumber

::dorm ::program
::newStudent
UserInterface

selectProgram()

return programAdvisor

FIGURE 10.11
A sequence diagram for student
admission. Sequence diagrams
emphasize the time ordering of
messages.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 297

agrams show the same information as a sequence diagram but may be more difficult to read. In
order to show time ordering, you must indicate a sequence number and describe the message.

A communication diagram emphasizes the organization of objects, whereas a sequence dia-
gram emphasizes the time ordering of messages. A communication diagram will show a path to
indicate how one object is linked to another.

Some UML modeling software, such as IBM’s Rational Rose, will automatically convert a se-
quence diagram to a communication diagram or a communication diagram to a sequence diagram
with the click of a button. A communication diagram for the student admission example is illustrated
in Figure 10.12. Each rectangle represents an object or a class. Connecting lines show the classes
that need to collaborate or work with each other. The messages sent from one class to another are
shown along connecting lines. Messages are numbered to show the time sequence. Return values
may also be included and numbered to indicate when they are returned within the time sequence.

CLASS DIAGRAMS
Object-oriented methodologies work to discover classes, attributes, methods, and relationships
between classes. Because programming occurs at the class level, defining classes is one of the
most important object-oriented analysis tasks. Class diagrams show the static features of the sys-
tem and do not represent any particular processing. A class diagram also shows the nature of the
relationships between classes.

Classes are represented by a rectangle on a class diagram. In the simplest format, the rectan-
gle may include only the class name, but may also include the attributes and methods. Attributes
are what the class knows about characteristics of the objects, and methods (also called operations)
are what the class knows about how to do things. Methods are small sections of code that work
with the attributes.

Figure 10.13 illustrates a class diagram for course offerings. Notice that the name is centered
at the top of the class, usually in boldface type. The area directly below the name shows the at-
tributes, and the bottom portion lists the methods. The class diagram shows data storage require-
ments as well as processing requirements. Later in the chapter we will discuss the meaning of the
diamond symbols shown in this figure.

The attributes (or properties) are usually designated as private, or only available in the ob-
ject. This is represented on a class diagram by a minus sign in front of the attribute name. Attrib-
utes may also be protected, indicated with a pound symbol (#). These attributes are hidden from
all classes except immediate subclasses. Under rare circumstances, an attribute is public, mean-
ing that it is visible to other objects outside its class. Making attributes private means that the at-
tributes are only available to outside objects through the class methods, a technique called
encapsulation, or information hiding.

A class diagram may show just the class name; or the class name and attributes; or the class
name, attributes, and methods. Showing only the class name is useful when the diagram is very
complex and includes many classes. If the diagram is simpler, attributes and methods may be in-
cluded. When attributes are included, there are three ways to show the attribute information. The
simplest is to include only the attribute name, which takes the least amount of space.

1:initialize()
3:selectProgram()

2:selectDorm()

4:studentComplete()

::student ::program

::dorm

::newStudent
UserInterface

FIGURE 10.12
A communication diagram for
student admission.
Communication diagrams show
the same information that is
depicted in a sequence diagram
but emphasize the organization of
objects rather than the time
ordering.

Department
–departmentName
–departmentChair

+addDepartment()
+viewDepartment()

Course
–courseNumber
–courseDescription
–numberOfCredits
–departmentNumber
+addCourse()
+changeCourse()
+findCourse()

Textbook
–ISBN
–author
–title
–edition
–publisher
–required
+addText()
+changeText()
+findText()
+removeText()

Exam
–examNumber
–examName
–examPoints
–examVersion
+addExam()
+changeExam()
+findExam()

Assignment
–assignmentNumber
–assignmentDescription
–assignmentPoints
–assignmentDueDate
+addAssignment()
+changeAssignment()
+viewAssignment()

has a

is a
part
of

is a
part
of

consists
of

is for a

1 1..

consists
of

FIGURE 10.13
A class diagram for course
offerings. The filled-in
diamonds show aggregation
and the empty diamond shows
a whole-part relationship.

298 PART III • THE ANALYSIS PROCESS

The type of data (such as string, double, integer, or date) may be included on the class dia-
gram. The most complete descriptions would include an equal sign (�) after the type of data fol-
lowed by the initial value for the attribute. Figure 10.14 illustrates class attributes.

If the attribute must take on one of a finite number of values, such as a student type with val-
ues of F for full-time, P for part-time, and N for nonmatriculating, these may be included in curly
brackets separated by commas: studentType:char{F,P,N}.

Information hiding means that objects’methods must be available to other classes, so meth-
ods are often public, meaning that they may be invoked from other classes. On a class diagram,
public messages (and any public attributes) are shown with a plus sign (�) in front of them.
Methods also have parentheses after them, indicating that data may be passed as parameters
along with the message. The message parameters, as well as the type of data, may be included
on the class diagram.

There are two types of methods: standard and custom. Standard methods are basic things that
all classes of objects know how to do, such as create a new object instance. Custom methods are
designed for a specific class.

Method Overloading
Method overloading refers to including the same method (or operation) several times in a class.
The method signature includes the method name and the parameters included with the method.
The same method may be defined more than once in a given class, as long as the parameters sent
as part of the message are different; that is, there must be a different message signature. There
may be a different number of parameters, or the parameters might be a different type, such as a

FIGURE 10.14
An extended Student class that
shows the type of data and, in
some cases, its initial value or
default value.

Student
studentNumber: Integer
lastName: String
firstName: String
creditsCompleted: Decimal=0.0
gradePointAverage: Decimal=0.0
currentStudent: Boolean=Y
dateEnrolled: Date=
new()
changeStudent()
viewStudent()

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 299

number in one method and a string in another method. An example of method overloading may
be found in the use of a plus sign in many programming languages. If the attributes on either side
of the plus sign are numbers, the two numbers are added. If the attributes are strings of charac-
ters, the strings are concatenated to form one long string.

In a bank deposit example, a deposit slip could contain just the amount of the deposit, in
which case the bank would deposit the entire amount, or it could contain the deposit amount and
the amount of cash to be returned. Both situations would use a deposit check method, but the pa-
rameters (one situation would also request the amount of cash to be returned) would be different.

Types of Classes
Classes fall into four categories: entity, interface, abstract, and control. These categories are ex-
plained below.

ENTITY CLASSES. Entity classes represent real-world items, such as people, things, and so on.
Entity classes are the entities represented on an entity-relationship diagram. CASE tools such as
Visible Analyst will allow you to create a UML entity class from an entity on an E-R diagram.

The analyst needs to determine which attributes to include in the classes. Each object has
many attributes, but the class should include only those that are used by the organization. For ex-
ample, when creating an entity class for a student at a college, you would need to know attributes
that identify the student, such as home and campus address, as well as grade point average, total
credits, and so on. If you were keeping track of the same student for an online clothing store, you
would have to know basic identifying information, as well as other descriptive attributes such as
measurements or color preferences.

BOUNDARY, OR INTERFACE, CLASSES. Boundary, or interface, classes provide a means for users
to work with the system. There are two broad categories of interface classes: human and system.

A human interface may be a display, window, Web form, dialog box, menu, list box, or other
display control. It may also be a touch-tone telephone, bar code, or other way for users to inter-
act with the system. Human interfaces should be prototyped (as described in Chapter 6), and of-
ten a storyboard is used to model the sequence of interactions.

System interfaces involve sending data to or receiving data from other systems. This may in-
clude databases in the organization. If data are sent to an external organization, they are often in
the form of XML files or other well-published interfaces with clearly defined messages and pro-
tocols. External interfaces are the least stable, because there is often little or no control over an
external partner who may alter the format of the message or data.

XML helps to provide standardization, because an external partner may add new elements to
the XML document, but a corporation transforming the data to a format that may be used to append
to an internal database may simply choose to ignore the additional elements without any problems.

The attributes of these classes are those found on the display or report. The methods are those
required to work with the display, or to produce the report.

ABSTRACT CLASSES. Abstract classes are classes that cannot be directly instantiated. Abstract
classes are those that are linked to concrete classes in a generalization/specialization (gen/spec)
relationship. The name of an abstract class is usually denoted in italics.

CONTROL CLASSES. Control, or active, classes are used to control the flow of activities, and they act
as a coordinator when implementing classes. To achieve classes that are reusable, a class diagram
may include many small control classes. Control classes are often derived during system design.

Often a new control class will be created just to make another class reusable. An example
would be the logon process. There might be one control class that handles the logon user inter-
face, containing the logic to check the user ID and password. The problem that arises is that the
logon control class is designed for a specific logon display. By creating a logon control class that
handles just the unique logon display, the data may be passed to a more general validation con-
trol class, which performs a check on user IDs and passwords received from many other control
classes receiving messages from specific user interfaces. This increases reusability and isolates
the logon verification methods from the user interface handling methods.

The rules for creating sequence diagrams are that all interface classes must be connected to
a control class. Similarly, all entity classes must be connected to a control class. Interface classes,
unlike the other two, are never connected directly to entity classes.

300 PART III • THE ANALYSIS PROCESS

Defining Messages and Methods
Each message may be defined using a notation similar to that described for the data dictionary (as
shown in Chapter 8). The definition would include a list of the parameters passed with the mes-
sage as well as the elements contained in the return message. The methods may have logic de-
fined using structured English, a decision table, or a decision tree, as depicted in Chapter 9.

The analyst can use the techniques of horizontal balancing with any class method. All the
data returned from an entity class must be obtained either from the attributes stored in the entity
class, from the parameters passed on the message sent to the class, or as a result of a calculation
performed by the method of the class. The method logic and parameters must be examined to en-
sure that the method logic has all the information required to complete its work. Horizontal bal-
ancing is further described in Chapter 7.

ENHANCING SEQUENCE DIAGRAMS
Once the class diagram is drawn, it may be desirable to go back to the sequence diagram and in-
clude special symbols for each of the different types of classes introduced in the last section. Se-
quence diagrams in particular can be overbearing if an analyst doesn’t have a systematic approach
to drawing them. The following steps are a useful approach to enhancing a sequence diagram:

1. Include the actor from the use case diagram in the enhanced sequence diagram. This will
be a stick figure from the use case diagram. There may be an additional actor on the right
side of the diagram, such as a credit card company or bank.

2. Define one or more interface classes for each actor. Each actor should have his or her own
interface class.

3. Create prototype Web pages for all human interfaces.
4. Ensure each use case has one control class, although more may be created during the

detailed design. Look for that control class and include it in the sequence diagram.
5. Examine the use case to see what entity classes are present. Include these on the diagram.
6. Realize that the sequence diagram may be modified again when doing detailed design,

such as creating additional Web pages or control classes (one for each Web form
submitted).

7. To obtain a greater degree of reuse, consider moving methods from a control class to an
entity class.

A Class Example for the Web
Classes may also be represented using special symbols for entity, boundary (or interface), and
control classes. These are called stereotypes, an extension to UML, which are special symbols
that may be used during analysis, but are often used when performing object-oriented design.
They allow the analyst freedom to play with the design to optimize reusability.

The different types of classes are often used when working in the systems design phase.
Figure 10.15 is an example illustrating a sequence diagram representing a student viewing his or
her personal and course information. In the diagram, :View Student User Interface is an exam-
ple of an interface class; :Student, :Section, and :Course are examples of entity classes; and
:View Student Interface Controller and :Calculate Grade Point Average are control classes.

The student is shown on the left as an actor, and he or she provides a userLogon to the :View
Student User Interface class. This is a Web form that obtains the student’s user ID and password.
When the student clicks the Submit button, the Web form is passed to a :View Student Inter-
face Controller. This class is responsible for the coordination of sending messages and receiving
returned information from all the other classes.

The :View Student Interface Controller sends a getStudent() message to the :Student
class, which reads a database table and proceeds to return the studentData.

The studentWebPage is returned to the :View Student User Interface, which displays the
information in the Web browser. At the bottom of the page is a nextButton that the student clicks
to view courses. When the user clicks this button, it sends a Web form to the :View Student In-
terface Controller. This form contains the studentNumber(), sent along with the
studentWebPage, and is used to send a message to the :Section class to obtain the section grade.
If the studentNumber() was not automatically sent, it would mean that the student would have

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 301

to enter his or her studentNumber() again, which would not be a satisfactory user interface be-
cause it involves redundant keying. Notice that the :Student class is not involved, and that the
focus of control (the vertical bar that is connected to the :Student class) ends before the second
set of activities (the horizontal arrows pointing to the right) begins.

The :View Student Interface Controller class sends a getSection() message to the :Section
class, which returns a sectionGrade. The :Section class also sends a calculateGPA() message
to the :Calculate Grade Point Average class, which sends a message back to the :Course class.
The :Course class returns the credits, which enables the :Calculate Grade Point Average class
to determine the GPA and return it to the :View Student Interface Controller.

The :View Student Interface Controller would repeat sending messages to the :Section
class until all sections for the student have been included. At this time, the :View Student

:View
Student

User
Interface

:View
Student
Interface
Controller

:Student :Section :Course

:Calculate
Grade
Point

Average

Boundary

or
interface

class

Entity

class
Control

class

Student

provide
userLogon logon() getStudent()

return
studentData

return student-
WebPage

return
courseWebPage

display
courseWebPage

display student-
WebPage

click
nextButton

send
studentNumber() getSection()

return
sectionGrade

calculateGPA()

getCourse()

return credits

getCredits()

return courseData

return GPA

FIGURE 10.15
A sequence diagram for using two
Web pages: one for student
information, one for course
information.

Interface Controller would send the courseWebPage to the :View Student User Interface
class, which would display the information in the browser.

Using the user interface, control, and entity classes also allows the analyst to explore and play
with the design. The design mentioned previously would display all the student personal infor-
mation on one page and the course information on a second page. The analyst may modify the
design so that the student personal information and the course information appear on one Web
page. These two possible scenarios would be reviewed with users to determine the best option.

One of the difficulties for the analyst is to determine how to include the studentNumber af-
ter clicking the Next button, because the :Student class is no longer available. There are three
ways to store and retransmit data from a Web page:

1. Include the information in the URL displaying in the address or location area of the
browser. In this case, the location line might read something like the following:

http://www.cpu.edu/student/studentinq.html?studentNumber�12345
Everything after the question mark is data that may be used by the class methods. This

means of storing data is easy to implement and is often used in search engines.
There are several drawbacks to using this method, and the analyst must use due

caution. The first concern is privacy—anyone can read the Web address. If the application
involves medical information, credit card numbers, and so on, this is not a good choice.
Most browsers will also display previous Web address data in subsequent sessions if the
user enters the first few characters, and the information may be compromised, leading to
identity theft. A second disadvantage is that the data are usually lost after the user closes
the browser.

2. Store the information in a cookie, a small file stored on the client (browser) computer.
Cookies are the only way to store data that have persistence, existing beyond the current
browser session. This enables the Web page to display a message such as “Welcome back,
Robin. If you are not Robin, click here.” Cookies usually store primary key account
numbers, but not credit card numbers or other private information. Cookies are limited to
20 per domain (such as www.cpu.edu) and each cookie must be 4,000 characters or less.

The analyst must work with other business units to determine who needs to use
cookies, and there must be some central control over the names used in the cookies. If the
organization needs to have more than 20 cookies, a common solution is to create different
domain names used by the organization, such as support.cpu.edu or instruction.cpu.edu.

3. Use hidden Web form fields. These fields usually contain data that are sent by the server,
are invisible, and do not occupy any space on the Web page. In the view student
information example, the :View Student Interface Controller class added a hidden field
containing the studentNumber to the studentWebPage form along with the nextButton.
When the student clicks the nextButton, the studentNumber is sent to the server and the
:View Student Interface Controller knows which student to obtain course and grade
information for. The data in hidden forms is not saved from one browser session to another,
so privacy is maintained.

Presentation, Business, and Persistence Layers in Sequence Diagrams
In the previous example, we showed all of the classes in the same diagram. When it comes to writ-
ing code for systems, it has been useful to look at sequence diagrams as having three distinct lay-
ers as follows:

1. The presentation layer, which represents what the user sees. This layer contains the
interface or boundary classes.

2. The business layer, which contains the unique rules for this application. This layer contains
the control classes.

3. The persistence or data access layer, which describes obtaining and storing data. This layer
contains the entity classes.

Ideally program code would be written separately for each of these layers.
With the introduction of Ajax, the lines became blurred. Ajax, an acronym for asynchronous

JavaScript and XML, is a collection of techniques that allows Web applications to retrieve infor-
mation from the server without altering the display of the current page. This turns out to be an ad-

302 PART III • THE ANALYSIS PROCESS

http://www.cpu.edu/student/studentinq.html?studentNumber=12345
www.cpu.edu

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 303

vantage because the entire Web page does not need to be reloaded when it gets additional data
from the server.

Before Ajax was created a user visiting a Web site would answer some questions by entering
data on a Web-based form, then wait until a new page loaded. This was necessary because the code
to validate, get the data, then answer the user resided on the server. With the advent of Ajax, the
Web page is updated rapidly because much of the validation and other control logic is now
included in the browser JavaScript code or on the client side. This means that business rules are
included in both the boundary and the control class, so it might not be possible to have three
distinct layers.

ENHANCING CLASS DIAGRAMS
The class symbols also may be used on class and communication diagrams. Figure 10.16 illus-
trates the class diagram for a student viewing personal and course information on Web pages.
Each class has attributes and methods (which are not shown on diagrams using this notation).

If the class is a user interface type of class, the attributes are the controls (or fields) on the
screen or form. The methods would be those that work with the screen, such as submit or reset.
They might also be JavaScript for a Web page, because the code works directly with the Web
page.

If the class is a control class, the attributes would be those needed to implement the class,
such as variables used just in the control class. The methods would be those used to perform cal-
culations, make decisions, and send messages to other classes.

If the class is an entity class, the attributes represent those stored for the entity and the meth-
ods working directly with the entity, such as creating a new instance, modifying, deleting, obtain-
ing, or printing.

Web sites may use a combination of many different classes to accomplish user objectives.
For example, a Web site may use JavaScript to prevalidate data, then pass data to the server con-
trol classes, which perform thorough validation, including obtaining data. The server control
classes may in turn send JavaScript back to the Web page to do some formatting. It is not uncom-
mon to have a Web application involve many classes, some of them containing only one line of
code in a method, in order to achieve the goal of reusability.

Student

:Student :Course

:View
Student
Interface
Controller

:Section

:Calculate
Grade
Point

Average

:View
Student

User
Interface

FIGURE 10.16
A class diagram for the
studentWebPage using special
class symbols.

304 PART III • THE ANALYSIS PROCESS

Relationships
Another way to enhance class diagrams is to show relationships. Relationships are connections
between classes, similar to those found on an entity-relationship diagram. These are shown as
lines connecting classes on a class diagram. There are two categories of relationships: associa-
tions and whole/part relationships.

ASSOCIATIONS. The simplest type of relationship is an association, or a structural connection
between classes or objects. Associations are shown as a simple line on a class diagram. The end
points of the line are labeled with a symbol indicating the multiplicity, which is the same as
cardinality on an entity-relationship diagram. A zero represents none, a one represents one and
only one, and an asterisk represents many. The notation 0..1 represents from zero to one, and the
notation 1..* represents from one to many. Associations are illustrated in Figure 10.17.

Graduate Student
–studentNumber
–creditsCompleted
–gradePointAverage
–department
–major
–thesisNumber
–advisor

+acceptStudent()
+viewStudent()
+changeStudent()
+graduateStudent()

Thesis
–thesisNumber
–studentNumber
–thesisTitle
–dateStarted
–completionDate
–approvalDate
–approvedBy

+addThesis()
+change()
+approveThesis()

1 1

has

Student
–studentNumber
–creditsCompleted
–gradePointAverage
–department
–major

+initialize()
+viewStudent()
+changeStudent()
+graduateStudent()

Course
–courseNumber
–courseDescription
–numberOfCredits
–departmentNumber
+addCourse()
+changeCourse()
+findCourse()

1 1..

enrolls in

Student
–studentNumber
–creditsCompleted
–gradePointAverage
–department
–major

+initialize()
+viewStudent()
+changeStudent()
+graduateStudent()

Dorm Room
–dormName
–roomNumber
–roomSize
–occupantGender
–numberVacancies

+addRoom()
+changeRoom()
+findRoom()
+changeVacancy()

1 0..

is assigned to

Student
–studentNumber
–creditsCompleted
–gradePointAverage
–department
–major

+initialize()
+viewStudent()
+changeStudent()
+graduateStudent()

Volunteer Activity
–activityNumber
–activityDescription
–activityOrganization
–activityDate
–studentNumber
+addActivity()
+changeActivity()
+findActivity()
+addVolunteer()

1

participates in

FIGURE 10.17
Types of associations that may
occur in class diagrams.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 305

Class diagrams do not restrict the lower limit for an association. For example, an association
might be 5..*, indicating that a minimum of five must be present. The same is true for upper lim-
its. For example, the number of courses a student is currently enrolled in may be 1..10, represent-
ing from 1 to 10 courses. It can also include a range of values separated by commas, such as 2, 3,
4. In the UML model, associations are usually labeled with a descriptive name.

Association classes are those that are used to break up a many-to-many association between
classes. These are similar to associative entities on an entity-relationship diagram. Student and
Course have a many-to-many relationship, which is resolved by adding an association class
called Section between the classes of Student and Course. Figure 10.18 illustrates an associa-
tion class called Section, shown with a dotted line connected to the many-to-many relationship
line.

An object in a class may have a relationship to other objects in the same class, called a re-
flexive association. An example would be a task having a precedent task, or an employee super-
vising another employee. This is shown as an association line connecting the class to itself, with
labels indicating the role names, such as task and precedent task.

WHOLE/PART RELATIONSHIPS. Whole/part relationships are when one class represents the whole
object and other classes represent parts. The whole acts as a container for the parts. These
relationships are shown on a class diagram by a line with a diamond on one end. The diamond is
connected to the object that is the whole. Whole/part relationships (as well as aggregation,
discussed later) are shown in Figure 10.19.

A whole/part relationship may be an entity object that has distinct parts, such as a computer
system that includes the computer, printer, display, and so on, or an automobile that has an en-
gine, brake system, transmission, and so on. Whole/part relationships may also be used to de-
scribe a user interface, in which one GUI screen contains a series of objects such as lists, boxes,
or radio buttons, or perhaps a header, body, and footer area. Whole/part relationships have three
categories: aggregation, collection, and composition.

Aggregation An aggregation is often described as a “has a” relationship. Aggregation provides
a means of showing that the whole object is composed of the sum of its parts (other objects). In
the student enrollment example, the department has a course and the course is for a department.
This is a weaker relationship, because a department may be changed or removed and the course
may still exist. A computer package may not be available any longer, but the printers and other
components still exist. The diamond at the end of the relationship line is not filled in.

Collection A collection consists of a whole and its members. This may be a voting district with
voters or a library with books. The voters or books may change, but the whole retains its identity.
This is a weak association.

Student
–studentNumber
–creditsCompleted
–gradePointAverage
–department
–major
–minor
+changeStudent()
+findStudent()
+graduateStudent()
+initialize()
+studentComplete()
+viewStudent()

Course
–courseNumber
–courseDescription
–numberOfCredits
–departmentNumber

+addCourse()
+changeCourse()
+findCourse()

Section
–studentNumber
–courseNumber
–year
–semester
–grade

+addSection()
+changeGrade()
+enrollStudent()
+recordGrade()
+withdrawStudent()

1.. 0..

hastakes

FIGURE 10.18
An example of an associative class
in which a particular section
defines the relationship between a
student and a course.

306 PART III • THE ANALYSIS PROCESS

Composition Composition, a whole/part relationship in which the whole has a responsibility for
the part, is a stronger relationship, and is usually shown with a filled-in diamond. Keywords for
composition are one class “always contains” another class. If the whole is deleted, all parts are
deleted. An example would be an insurance policy with riders. If the policy is canceled, the
insurance riders are also canceled. In a database, the referential integrity would be set to delete
cascading child records. In a university there is a composition relationship between a course and
an assignment as well as between a course and an exam. If the course is deleted, assignments and
exams are deleted as well.

Generalization/Specialization (Gen/Spec) Diagrams
A generalization/specialization (gen/spec) diagram may be considered to be an enhanced class di-
agram. Sometimes it is necessary to separate out the generalizations from the specific instances.
As we mentioned at the beginning of this chapter, a koala bear is part of a class of marsupials,
which is part of a class of animals. Sometimes we need to distinguish whether a koala bear is an
animal or a koala bear is a type of animal. Furthermore, a koala bear can be a stuffed toy animal.
So we often need to clarify these subtleties.

GENERALIZATION. A generalization describes a relationship between a general kind of thing and
a more specific kind of thing. This type of relationship is often described as an “is a” relationship.
For example, a car is a vehicle and a truck is a vehicle. In this case, vehicle is the general thing,
whereas car and truck are the more specific things. Generalization relationships are used for
modeling class inheritance and specialization. A general class is sometimes called a superclass,
base class, or parent class; a specialized class is called a subclass, derived class, or child class.

INHERITANCE. Several classes may have the same attributes and/or methods. When this occurs, a
general class is created containing the common attributes and methods. The specialized class
inherits or receives the attributes and methods of the general class. In addition, the specialized
class has attributes and methods that are unique and only defined in the specialized class. Creating
generalized classes and allowing the specialized class to inherit the attributes and methods helps
to foster reuse, because the code is used many times. It also helps to maintain existing program
code. This allows the analyst to define attributes and methods once but use them many times, in
each inherited class.

Student
–studentNumber
–creditsCompleted
–gradePointAverage
–department
–major
–minor
+changeStudent()
+findStudent()
+graduateStudent()
+initialize()
+studentComplete()
+viewStudent()

Campus Organization
–organizationNumber
–organizationName
–organizationType
–president
–treasurer
–secretary
–accountBalance
–numberOfMembers
+change()
+changeOfficers()
+new()

Fund Raising Activity
–activityNumber
–activityDescription
–activityType
–amountSpent
–amountReceived
–dateCompleted

+change()
+new()
+recordAmount()

FIGURE 10.19
An example of whole/part and
aggregation relationships.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 307

One of the special features of the object-oriented approach is the creation and maintenance of
large class libraries that are available in multiple languages. So, for instance, a programmer using
Java, .NET, or C# will have access to a huge number of classes that have already been developed.

POLYMORPHISM. Polymorphism (meaning many forms), or method overriding (not the same as
method overloading), is the capability of an object-oriented program to have several versions of
the same method with the same name within a superclass/subclass relationship. The subclass
inherits a parent method but may add to it or modify it. The subclass may change the type of data,
or change how the method works. For example, there might be a customer who receives an
additional volume discount, and the method for calculating an order total is modified. The
subclass method is said to override the superclass method.

When attributes or methods are defined more than once, the most specific one (the lowest in
the class hierarchy) is used. The compiled program walks up the chain of classes, looking for
methods.

ABSTRACT CLASSES. Abstract classes are general classes and are used when gen/spec is included
in the design. The general class becomes the abstract class. The abstract class has no direct objects
or class instances, and is only used in conjunction with specialized classes. Abstract classes
usually have attributes and may have a few methods.

Figure 10.20 is an example of a gen/spec class diagram. The arrow points to the general class,
or superclass. Often the lines connecting two or more subclasses to a superclass are joined using

Person
–lastName
–firstName
–street
–apartment
–city
–state
–zip
–telephone
–cellPhone
–email
+changeAddress()
+changeName()

Student
–studentNumber
–creditsCompleted
–gradePointAverage
–department
–major
–minor
+changeStudent()
+findStudent()
+graduateStudent()
+initialize()
+studentComplete()
+viewStudent()

Employee
–employeeNumber
–salary
–YTDGross
–YTDWithholding
–dateHired
–department
+changeEmployee()
+printTaxInformation()
+producePaycheck()

canbea

isa

canbea

isa

Faculty
–degree
–position
–webURL
+changePosition()
+changeURL()

Administrator

–title
+changeEmployee()

canbea

isa

canbea

isakinda

FIGURE 10.20
A gen/spec diagram is a refined
form of a class diagram.

308 PART III • THE ANALYSIS PROCESS

one arrow pointing to the superclass, but these could be shown as separate arrows as well. Notice
that the top level is Person, representing any person. The attributes describe qualities that all peo-
ple at a university have. The methods allow the class to change the name and the address (includ-
ing telephone and email address). This is an abstract class, with no instances.

Student and Employee are subclasses, because they have different attributes and methods. An
employee does not have a grade point average and a student does not have a salary. This is a sim-
ple version, and does not include employees that are students and students that work for the uni-
versity. If these were added, they would be subclasses of the Employee and Student classes.
Employee has two subclasses, Faculty and Administrator, because there are different attributes
and methods for each of these specialized classes.

Subclasses have special verbs to define them. These are often run-on words, using isa for “is
a,” isakinda for “is a kind of,” and canbea for “can be a.” There is no distinction between “is a”
and “is an;” they both use isa.

isa Faculty isa Employee
isakinda Administrator isakinda Employee
canbea Employee canbea Faculty

IDENTIFYING ABSTRACT CLASSES. You may be able to identify abstract classes by looking to see
if a number of classes or database tables have the same elements, or if a number of classes have
the same methods. You can create a general class by pulling out the common attributes and
methods, or you might create a specialized class for the unique attributes and methods. Using a
banking example, such as a withdrawal, a payment on a loan, or a check written, will all have the
same method—they subtract money from the customer balance.

FINDING CLASSES. There are a number of ways to determine classes. They may be discovered
during interviewing or JAD sessions (described in Chapter 4), during facilitated team sessions, or
from brainstorming sessions. Analyzing documents and memos may also reveal classes. One of
the easiest ways is to use the CRC method described previously in this chapter. The analyst should
also examine use cases, looking for nouns. Each noun may lead to a candidate, or potential, class.
They are called candidate classes because some of the nouns may be attributes of a class.

Each class should exist for a distinct object that has a clear definition. Ask what the class
knows, the attributes; and what the class knows how to do, the methods. Identify class relation-
ships and the multiplicity for each end of the relationship. If the relationship is many-to-many, cre-
ate an intersection or associative class, similar to the associative entity in an entity-relationship
diagram.

DETERMINING CLASS METHODS. The analyst must determine class attributes and methods.
Attributes are easy to identify, but the methods that work with the attributes may be more
difficult. Some of the methods are standard, and are always associated with a class, such as new(),
or the «create» method, which is an extension to UML created by a person or organization, called
a stereotype. The « » symbols are not simply pairs of greater than and less than symbols, but are
called guillemots or chevrons.

Another useful way to determine methods is to examine a CRUD matrix (see Chapter 7).
Figure 10.21 illustrates a CRUD matrix for course offerings. Each letter requires a different
method. If there is a C for create, add a new() method. If there is a U for update, add an update()
or change() method. If there is a D for delete, add a delete() or remove() method. If there is an R
for read, add methods for finding, viewing, or printing. In the example shown, the textbook class
would need a create method to add a textbook, and a read method to initiate a course inquiry,
change a textbook, or find a textbook. If a textbook was replaced, an update method would be
needed, and if a textbook was removed, a delete method would be required.

MESSAGES. In order to accomplish useful work, most classes need to communicate with one
another. Information can be sent by an object in one class to an object in another class using a
message, similar to a call in a traditional programming language. A message also acts as a command,
telling the receiving class to do something. A message consists of the name of the method in the
receiving class, as well as the attributes (parameters or arguments) that are passed with the method
name. The receiving class must have a method corresponding to the message name.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 309

Activity Department Course Textbook Exam

Add Department C

View Department

Add Course

C

Change Course

RU

Course Inquiry R R R R

R

C

U

R

RAdd Textbook

Change Textbook R

R

R

R

R

R

Find Textbook

Remove Textbook R

Add Assignment R

Change Assignment R

Assignment

D

C

RU

View Assignment R R

Add Exam R R

Change Exam R RU

View Exam R R

FIGURE 10.21
A CRUD matrix can be used to
help determine what methods are
needed. This CRUD matrix is used
to determine the methods and
operations for course offerings.

Since messages are sent from one class to another, they may be thought of as an output
or an input. The first class must supply the parameters included with the message and the sec-
ond class uses the parameters. If a physical child data flow diagram exists for the problem
domain, it may help to discover methods. The data flow from one primitive process to an-
other represents the message, and the primitive processes should be examined as candidate
methods.

STATECHART DIAGRAMS
The statechart, or state transition, diagram is another way to determine class methods. It is used
to examine the different states that an object may have.

A statechart diagram is created for a single class. Typically objects are created, go through
changes, and are deleted or removed.

Objects exist in these various states, which are the conditions of an object at a specific time.
An object’s attribute values define the state that the object is in, and sometimes there is an attrib-
ute, such as Order Status (pending, picking, packaged, shipped, received, and so on) that indicates
the state. A state has a name with each word capitalized. The name should be unique and mean-
ingful to the users. A state also has entry and exit actions, the things the object must do every time
it enters or leaves a given state.

An event is something that happens at a specific time and place. Events cause a change of
the object state, and it is said that a transition “fires.” States separate events, such as an order that
is waiting to be filled, and events separate states, such as an Order Received event or an Order
Complete event.

An event causes the transition, and happens when a guard condition has been met. A guard
condition is something that evaluates to either true or false, and may be as simple as “Click to
confirm order.” It also may be a condition that occurs in a method, such as an item that is out of
stock. Guard conditions are shown in square brackets next to the event label.

310 PART III • THE ANALYSIS PROCESS

There are also deferred events, or events that are held until an object changes to a state that
can accept them. A user keying something in when a word processor is performing a timed backup
is an example of a deferred event. After the timed backup has completed, the text appears in the
document.

Events fall into three different categories:

1. Signals or asynchronous messages, which occur when the calling program does not wait
for a returning message, such as a feature run from a menu.

2. Synchronous messages, which are calls to functions or subroutines. The calling object
stops and waits for control to be returned to it, along with an optional message.

3. Temporal events, which occur at a predetermined time. These usually do not involve an
actor or any external event.

Material objects have persistence; that is, they exist for a long period of time. Airplane flights,
concerts, and sporting events have shorter persistence (they may have states that transition in a
shorter time). Some objects, called transient objects, do not survive the end of a session. These in-
clude main memory, Web URL (or location) data, Web pages, CICS displays, and so on. The only
way to save transient objects is to store information about them, such as storing Web data in a
cookie.

Each time an object changes state, some of the attributes change their values. Furthermore,
each time an object’s attributes change, there must be a method to change the attributes. Each of
the methods would need a display or Web form to add or change the attributes. These become the
interface objects. The display or Web form would often have more controls (or fields) on them than
just the attributes that change. They would usually have primary keys, identifying information
(such as a name or address), and other attributes that are needed for a good user interface. The ex-
ception is a temporal event, which may use database tables or a queue containing the information.

A State Transition Example
Consider a student enrolling at a university and the various states that he or she would go through.
Three of the states are listed below in detail:

State: Potential Student
Event: Application Submitted
Method: new()
Attributes changed: Number

Name

Address
User interface: Student Application Web Form
State: Accepted Student
Event: Requirements Met
Method: acceptStudent()
Attributes changed: Admission Date

Student Status

Return Acceptance Letter
User interface: Accept Student Display
State: Dorm Assigned Student
Event: Dorm Selected
Method: assignDorm()
Attributes changed: Dorm Name

Dorm Room

Meal Plan
User interface: Assign Student Dorm Display

The other states are Program Student, Current Student, Continuing Student, and
Graduated Student. Each state would have an event, methods, attributes changed, and a user in-
terface associated with it. This series of states can be used to determine the attributes and meth-
ods that make up part of the class.

The states and events that trigger the changes may be represented on a statechart diagram (or
a state transition diagram). The statechart diagram for Student is illustrated in Figure 10.22.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 311

States are represented by rectangles, and events or activities are the arrows that link the states and
cause one state to change to another state. Transition events are named in the past tense, because
they have already occurred to create the transition.

Statechart diagrams are not created for all classes. They are created when:

1. A class has a complex life cycle.
2. An instance of a class may update its attributes in a number of ways through the life cycle.
3. A class has an operational life cycle.
4. Two classes depend on each other.
5. The object’s current behavior depends on what happened previously.

When you examine a statechart diagram, use the opportunity to look for errors and excep-
tions. Inspect the diagram to see whether events are happening at the wrong time. Also check that
all events and states have been represented. Statechart diagrams have only two problems to avoid.
Check to see that a state does not have all transitions going into the state or all transitions com-
ing out of the state.

Each state should have at least one transition in and out of it. Some statechart diagrams use
the same start and terminator symbols that an activity diagram uses: a filled-in circle to represent
the start, and concentric circles with the center filled in to signify the end of the diagram.

PACKAGES AND OTHER UML ARTIFACTS
Packages are containers for other UML things, such as use cases or classes. Packages can show sys-
tem partitioning, indicating which classes or use cases are grouped into a subsystem, called logical
packages. They may also be component packages, which contain physical system components, or

Potential
Student

Accepted
Student

application
submitted

requirements
met

dorm
selected

student enrolled
in class

Dorm Assigned
Student

program
selected

Program
Student

graduation
requirements
complete

Current
Student

successful
course
completion

student
enrolled
in class

student
graduated

Graduated
Student

Continuing
Student

FIGURE 10.22
A statechart diagram showing how
a student progresses from a
potential student to a graduated
student.

312 PART III • THE ANALYSIS PROCESS

use case packages, containing a group of use cases. Packages use a folder symbol with the package
name either in the folder tab or centered in the folder. Packaging can occur during systems analy-
sis, or later when the system is being designed. Packages may also have relationships, similar to
class diagrams, which may include associations and inheritance.

Figure 10.23 is an example of a use case package diagram. It shows that four use cases, Add
Student, Enroll in Class, Transfer Credits, and View Student Information, are part of the
Student package. There are three use cases, Add Faculty, View Faculty Information, and
Assign Faculty to Course, that are part of the Faculty package.

As you continue constructing diagrams, you will want to make use of component diagrams,
deployment diagrams, and annotational things. These permit different perspectives on the work
being accomplished.

The component diagram is similar to a class diagram, but is more of a bird’s-eye view of the
system architecture. The component diagram shows the components of the system, such as a class
file, a package, shared libraries, a database, and so on, and how they are related to each other. The
individual components in a component diagram are considered in more detail within other UML
diagrams, such as class diagrams and use case diagrams.

The deployment diagram illustrates the physical implementation of the system, including the
hardware, the relationships between the hardware, and the system on which it is deployed. The
deployment diagram may show servers, workstations, printers, and so on.

Annotational things give developers more information about the system. These consist of
notes that can be attached to anything in UML: objects, behaviors, relationships, diagrams, or
anything that requires detailed descriptions, assumptions, or any information relevant to the de-
sign and functionality of the system. The success of UML relies on the complete and accurate
documentation of your system model to provide as much information as possible to the develop-
ment team. Notes provide a source of common knowledge and understanding about your system
to help put your developers on the same page. Notes are shown as a paper symbol with a bent cor-
ner and a line connecting them to the area that needs elaboration.

Department

Faculty Member

Student

Financial Office

Registration

Student

Administration

View Faculty
Information

Add
Student

Transfer
Credits

Enroll
in Class

View Student
Information

Add
Faculty

Assign Faculty
to Course

Student

Faculty

FIGURE 10.23
Use cases can be grouped into
packages.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 313

PUTTING UML TO WORK
UML provides a useful toolset for systems analysis and design. As with any product created with the
help of tools, the value of UML deliverables in a project depends on the expertise with which the sys-
tems analyst wields the tools. The analyst will initially use the UML toolset to break down the sys-
tem requirements into a use case model and an object model. The use case model describes the use

C O N S U L T I N G O P P O R T U N I T Y 1 0 . 3

Developing a Fine System That Was Long Overdue:
Using Object-Oriented Analysis for the

Ruminski Public Library System*

A s Dewey Dezmal enters the high-ceilinged, wood-paneled
reading room of the Ruminski Public Library, a young woman,
seated at a long, oak table, pokes her head out from behind a mon-
itor, sees him, and stands, saying, “Welcome. I’m Peri Otticle, the
director of the library. I understand you are here to help us develop
our new information system.”

Still in awe of the beauty of the old library building and the
juxtaposition of so much technology amid so much history, Dewey
introduces himself as a systems analyst with a small IT consulting
firm, People and Objects, Inc.

“It’s the first time I’ve been assigned to this type of project, al-
though it’s actually interesting for me, because my degree is from
the Information Studies School at Upstate University. You can ma-
jor in library science or IT there, so lots of my classmates went on
to work in public libraries. I opted for the IT degree.”

“We should work well together, then,” Peri says. “Let’s go to
my office so we don’t disturb any patrons, and I can talk you
through a report I wrote.”

As they pass the beautiful, winding staircase seemingly sculpted
in wood, Peri notices Dewey looking at the surroundings and says,
“You may wonder about the grandeur of the building, because we are
a public institution. We are fortunate. Our benefactor is Valerian Ru-
minski. In fact, he has donated so much money to so many libraries
that the staff affectionately calls him ‘Valerian the Librarian.’”

As they pass several patrons, Peri continues, “As you can see,
it’s a very busy place. And, regardless of our old surroundings, we
don’t dwell in the past.”

Dewey reads the report Peri has handed him. One large section
is titled “Summary of Patrons’ Main Requirements,” and the bul-
leted list states:

� A library patron who is registered in the system can borrow
books and magazines from the system.

� The library system should periodically check (at least once
per week) whether a copy of a book or journal borrowed by a
patron has become overdue. If so, a notice will be sent to the
patron.

� A patron can reserve a book or journal that has been lent out
or is in the process of purchase. The reservation should be
canceled when the patron checks out the book or journal or
through a formal canceling service.

As Dewey looks up from the report, he says to Peri, “I’m be-
ginning to understand the patron (or user) requirements. I see lots
of similarities between my old university library and yours. One
item I didn’t see covered, though, was how you decide what the li-
brary should collect and what it should get rid of.”

Peri chuckles and replies, “That’s an insightful question. The
library staff handles the purchase of new books and journals for the
library. If something is popular, more than two copies are pur-
chased. We can create, update, and delete information about titles
and copies of books and journals, patrons, loan of materials, and
reservations in the system.”

Dewey looks up from his note pad and says, “I’m still a little
confused. What’s the difference between the terms title and copy?”

Peri responds, “The library can have several copies of a title.
Title normally refers to the name of a book or journal. Copies of a
title are actually lent out from the library.”

Based on Dewey’s interview with Peri and the requirements
description in her report, as well as your own experience using li-
brary services, use UML to answer the following questions. (Note:
It is important to make sure your solutions are logical and workable.
State your assumptions clearly whenever necessary.)

1. Draw a use case diagram to represent actors and use cases in
the system.

2. For each use case, describe the steps (as we did to organize
the use cases).

3. Describe scenarios for the steps. In other words, create a
patron and write up an example of the patron as he or she
goes through each step.

4. Develop a list of things.
5. Create sequence diagrams for use cases based on steps and

scenarios.
6. Complete the class diagram by determining relationships

between classes and defining the attributes and methods of
each class. Use the grouping thing called package to simplify
the class diagram.

*Based on a problem written by Dr. Wayne Huang.

314 PART III • THE ANALYSIS PROCESS

cases and actors. The object model describes the objects and object associations, and the responsibil-
ities, collaborators, and attributes of the objects.

1. Define the use case model.
• Find the actors in the problem domain by reviewing the system requirements and

interviewing some business experts.
• Identify the major events initiated by the actors, and develop a set of primary use cases

at a very high level that describe the events from the perspective of each actor.
• Develop the use case diagrams to provide understanding of how the actors relate to the

use cases that will define the system.
• Refine the primary use cases to develop a detailed description of system functionality

for each primary use case. Provide additional details by developing the use case
scenarios that document the alternate flows of the primary use cases.

• Review the use case scenarios with the business area experts to verify processes and
interactions. Make modifications as necessary until the business area experts agree that
the use case scenarios are complete and accurate.

2. Continue UML diagramming to model the system during the systems analysis phase.
• Derive activity diagrams from use case diagrams.
• Develop sequence and communication diagrams from use case scenarios.
• Review the sequence diagrams with the business area experts to verify processes and

interactions. Make modifications as necessary until the business area experts agree that the
sequence diagrams are complete and accurate. This additional review of the graphical
sequence diagrams often provides the business area experts an opportunity to rethink and
refine processes in more atomic detail than the review of the use case scenarios.

3. Develop the class diagrams.
• Look for nouns in use cases and list them. They are potential objects. Once you identify

the objects, look for similarities and differences in the objects due to the objects’ states
or behavior, and then create classes.

• Define the major relationships between the classes. Look for “has a” and “is a”
relationships between classes.

• Examine use case and sequence diagrams in order to determine classes.
• Beginning with the use cases that are the most important to the system design, create

class diagrams that show the classes and relationships that exist in the use cases. One
class diagram may represent the classes and relationships described in several related
use cases.

4. Draw statechart diagrams.
• Develop statechart diagrams for certain class diagrams to provide further analysis of the

system at this point. Use statechart diagrams to aid in understanding complex processes
that cannot be fully derived by the sequence diagrams.

• Determine methods by examining statechart diagrams. Derive state (data) class attributes
from use cases, business area experts, and class methods. Indicate whether the methods
and attributes of the class are public (accessible externally) or private (internal to the
class). The statechart diagrams are extremely useful in modifying class diagrams.

5. Begin systems design by refining UML diagrams and using them to derive classes and their
attributes and methods.
• Review all existing UML diagrams for the system. Write class specifications for each

class that include the class attributes, methods, and their descriptions. Review sequence
diagrams to identify other class methods.

• Develop methods specifications that detail the input and output requirements for the
method, along with a detailed description of the internal processing of the method.

• Create another set of sequence diagrams (if necessary) to reflect the actual class
methods and interactions with each other and the system interfaces.

• Create class diagrams using the specialized class symbols for boundary or interface
class, entity class, and control class.

• Analyze the class diagrams to derive the system components; that is, functionally and
logically related classes that will be compiled and deployed together as a .DLL, a .COM
object, a Java Bean, a package, and so forth.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 315

• Develop deployment diagrams to indicate how your system components will be
deployed in the production environment.

6. Document your system design in detail. This step is critical. The more complete the
information you provide the development team through documentation and UML
diagrams, the faster the development and the more solid the final production system.

THE IMPORTANCE OF USING UML FOR MODELING
UML is a powerful tool that can greatly improve the quality of your systems analysis and design,
and it is hoped that the improved practices will translate into higher-quality systems.

By using UML iteratively in analysis and design, you can achieve a greater understanding
between the business team and the IT team regarding the system requirements and the processes
that need to occur in the system to meet those requirements.

The first iteration of analysis should be at a very high level to identify the overall system ob-
jectives and validate the requirements through use case analysis. Identifying the actors and defin-
ing the initial use case model are part of this first iteration. Subsequent iterations of analysis
further refine the system requirements through the development of use case scenarios, class dia-
grams, sequence diagrams, statechart diagrams, and so on. Each iteration takes a successively
more detailed look at the design of the system until the things and relationships in the system are
clearly and precisely defined in UML documents.

When your analysis and design are complete, you should have an accurate and detailed set
of specifications for the classes, scenarios, activities, and sequencing in the system. In general,

C O N S U L T I N G O P P O R T U N I T Y 1 0 . 4

C-Shore��

“They want the core of the customer service representative’s
user interface to be radically reprogrammed again!” says Bradley
Vargo, the information systems development director at C-Shore
Mutual Funds. “Only eight months ago, we completed a two-year
development project of the Customer Service Representative Sys-
tem, CSR. During that entire project, we endured a parade of mov-
ing requirements. Every month, those guys in the Marketing
Department would invent some competitive new customer service
feature, and within a week, the CSR group would be down here with
vast changes to the CSR System specifications. I thought we’d
never finish that project! Now it looks as if we will have to start a
new reprogramming project on a system less than a year old. We
had forecast this system for a seven-year life span! Now I think it
may be going into eternal reconstruction.”

Bradley is talking with Rachael Ciupek, the senior application
systems analyst responsible for the CSR system, and Bridget Ciupek,
her sister and the programmer who wrote most of the user interface.
“Calm down, Bradley,” says Rachael. “It is not the fault of the kids in
Marketing or CSR. The nature of our business has been affected by
fast-paced competition. Marketing doesn’t invent these changes out
of boredom. They are often responding to new, computer-based cus-
tomer services offered by our competition. We have to stay ahead or
at least keep up, or we’ll all be looking for new jobs!”

“Bradley, Rachael, I think you better know that the situation
may be worse than you think,” Bridget chips in. “The programmers

have actually been making small changes in the CSR user interface
for the past eight months anyway. The CSR users have been calling
us directly and begging for help. They usually want just a small
change to one isolated part of the system, but that has created a high
labor drain because we have to recertify the entire system. You
know how the effects of a small change can ripple through a large
program. We’ve billed the time to program maintenance on the
grounds that we thought we were just fine-tuning the completed
system. Although the changes have been gradual, in eight months
we’ve pretty much rewritten about a quarter of the CSR user inter-
face code already. The work has not been falling off. It’s still pretty
steady.”

“So what you’re telling me,” says Bradley, “is that we have
system needs in this area that have been changing constantly while
we tried to write specifications, tried to write program code, and
tried to make a fixed solution work against a fluid problem. How
can we afford to write programs if they will only last a few months
without needing expensive maintenance?”

How can Bradley manage a systems development process that
no longer has fixed or constant business processes as part of its goal
set? Is there a way for Rachael to manage specification and control
maintenance costs when programmers are constantly asked to tin-
ker with isolated parts of a large program? Keep in mind that an im-
portant goal is to provide good support for the users’ needs and the
organization’s business strategies.

316 PART III • THE ANALYSIS PROCESS

you can relate the thoroughness of the analysis and design of a system to the amount of time re-
quired to develop the system and the resultant quality of the delivered product.

Often overlooked in the development of a new system is that the further a project pro-
gresses, the costlier the changes are to the business requirements of a system. Changing the de-
sign of a system using a CASE tool, or even on paper, during the analysis and design phases of
a project is easier, faster, and much less expensive than doing so during the development phase
of the project.

Unfortunately, some employers are shortsighted, believing that only when a programmer or
analyst is coding is that employee actually working. Some employers erroneously assume that
programmer productivity can be judged solely by the amount of code produced, without recog-
nizing that diagramming ultimately saves time and money that might otherwise be wasted if a
project is prototyped without proper planning.

An analogy to building a house is very apt in this situation. Although you hire a builder to
build a house, you do not want to live in a structure built without planning, one in which rooms
and features are randomly added without regard to function or cost. You want a builder to build
your agreed-upon design from blueprints containing specifications that have been carefully re-
viewed by everyone concerned. As a member of an analyst team so accurately observed, “Putting
a project on paper before coding will wind up costing less in the long run. It’s much cheaper to
erase a diagram than it is to change coding.”

When business requirements change during the analysis phase, you may have to redraw some
UML diagrams. If the business requirements change during the development phase, however, a
substantial amount of time and expense may be required to redesign, recode, and retest the sys-
tem. By confirming your analysis and design on paper (especially through the use of UML dia-
grams) with users who are business area experts, you help to ensure that correct business
requirements will be met when the system is completed.

SUMMARY
Object-oriented systems describe entities as objects. Objects are part of a general concept called classes, the
main unit of analysis in object-oriented analysis and design. When the object-oriented approach was first in-
troduced, advocates cited reusability of the objects as the main benefit of their approach. Although reusabil-
ity is the main goal, maintaining systems is also very important.

Analysts can use CRC cards to begin the process of object modeling in an informal way. Object
Think can be added to the CRC cards to assist the analyst in refining responsibilities into smaller and
smaller tasks. CRC sessions can be held with a group of analysts to determine classes and responsibili-
ties interactively.

Unified modeling language (UML) provides a standardized set of tools to document the analysis and
design of a software system. UML is fundamentally based on an object-oriented technique known as use
case modeling. A use case model describes what a system does without describing how the system does it.
A use case model partitions system functionality into behaviors (called use cases) that are significant to the
users of the system (called actors). Different scenarios are created for each different set of conditions of a
use case.

The main components of UML are things, relationships, and diagrams. Diagrams are related to one an-
other. Structural things are most common; they include classes, interfaces, use cases, and many other ele-
ments that provide a way to create models. Structural things allow the user to describe relationships.
Behavioral things describe how things work. Group things are used to define boundaries. Annotational
things permit the analyst to add notes to the diagrams.

Relationships are the glue that holds the things together. Structural relationships are used to tie the
things together in structural diagrams. Structural relationships include dependencies, aggregations, associa-
tions, and generalizations. Behavioral diagrams use the four basic types of behavioral relationships: com-
municates, includes, extends, and generalizes.

The toolset of UML is composed of UML diagrams. They include use case diagrams, activity diagrams,
sequence diagrams, communication diagrams, class diagrams, and statechart diagrams. In addition to the di-
agrams, analysts can describe a use case using a use case scenario.

By using UML iteratively in analysis and design, you can achieve a greater understanding between the
business team and the IT team regarding the system requirements and the processes that need to occur in the
system to meet those requirements.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 317

H Y P E R C A S E ® E X P E R I E N C E 1 0

“Ihope you still feel as if you’re learning new things about MRE
everyday. I understand you’ve been talking to some of the systems
people: Melissa, Todd, Roger (and even Lewis our new intern)
about using some different diagramming methods to understand us
better. I hope you see us as a family, not just a collection of people,
though. We all certainly feel as if we’ve ‘inherited’ some great wis-
dom from Jimmy Hyatt and Warren’s father. I’m all for using your
new approach, if it helps us improve our project reporting. Of
course, Snowden is eager to see your object-oriented work. Can you
have something on his desk in a couple of weeks?”

HYPERCASE Questions
1. Create an activity diagram for the Report Project Progress

use case. Refer to the use case specifications in Melissa
Smith’s office for details and a prototype.

2. Create an activity diagram for the Add Client use case. Refer to
the use case specifications in Melissa Smith’s office for details
and a prototype that can be found in Todd Taylor’s office.

3. Create a sequence diagram for the main path of the Report
Project Progress use case. Refer to the use case specifications
in Melissa Smith’s office for details and a prototype.

4. Create a sequence diagram for the main path of the Add
Client use case. Refer to the use case specifications in
Melissa Smith’s office for details and a prototype that can be
found in Todd Taylor’s office.

5. Create a statechart diagram for the Assignment class.
Assignments are created for tasks, resources are selected,
hours are updated, and assignments are finished.

6. Create a statechart diagram for the Task class. Tasks are
created, but not started; planned; sometimes put on hold;
currently being worked on; and are completed.

FIGURE 10.HC1
Sequence diagrams can be found
in HyperCase.

KEYWORDS AND PHRASES
abstract class
activity diagram
actor
aggregation
Ajax
annotational thing
association

asynchronous message
boundary class
branch
class
class diagram
collaboration
communication diagram

318 PART III • THE ANALYSIS PROCESS

control class
CRC cards
dependencies
deployment diagram
entity class
event
fork
generalization/specialization (gen/spec)
inheritance
join
main path
merge
message
method overloading
method overriding
object
object-oriented

package
polymorphism
primary use case
relationship
sequence diagram
state
statechart diagram
swimlane
synchronization bar
synchronous message
temporal event
unified modeling language (UML)
unified process
use case diagram
use case scenario
whole/part structure

REVIEW QUESTIONS
1. List two reasons for taking an object-oriented approach to systems development.
2. Describe the difference between a class and an object.
3. Explain the concept of inheritance in object-oriented systems.
4. What does CRC stand for?
5. Describe what Object Think adds to the CRC card.
6. What is UML?
7. What are the three major elements of UML?
8. List what the concept of structural things includes.
9. List what the concept of behavioral things includes.

10. What are the two main types of diagrams in UML?
11. List the diagrams included in structural diagrams.
12. List the diagrams included in behavioral diagrams.
13. What is it that a use case model describes?
14. Would you describe a use case model as a logical or physical model of the system? Defend your

answer in a paragraph.
15. Define what an actor is in a use case diagram.
16. What three things must a use case always describe?
17. What does an activity diagram depict?
18. Write a paragraph that describes the use of swimlanes on activity diagrams.
19. What can be depicted on a sequence or communication diagram?
20. Why is defining classes such an important object-oriented analysis task?
21. What can be shown on a class diagram?
22. Define method overloading.
23. List the four categories into which classes fall.
24. What are the steps for creating a sequence diagram?
25. What are the two categories of relationships between classes?
26. What are gen/spec diagrams used for?
27. What is another term for polymorphism?
28. What is depicted by a statechart diagram?
29. What is a package in UML approach?
30. Why is using UML for modeling important?

PROBLEMS
1. Create a series of CRC cards for World’s Trend Catalog Division. Once an order is placed, the order

fulfillment crew takes over and checks for availability, fills the order, and calculates the total amount
of the order. Use five CRC cards, one for each of the following classes: order, order fulfillment,
inventory, product, and customer. Complete the section on classes, responsibilities, and collaborators.

2. Finish the CRC cards in Problem 1 by creating Object Think statements and property names for each
of the five classes.

3. Draw a use case diagram for World’s Trend Catalog Division.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 319

4. Draw four pictures showing examples of four types of behavioral relationships for Joel Porter’s
BMW automobile dealership. What type of relationship is involved when a customer must arrange
financing? Are there common activities involved when a person either leases or buys an automobile?
What type of relationship is between an employee that is a manager or one that is a salesperson?

5. Draw a communication diagram for a student taking a course from a teacher, who is part of the
faculty.

6. Coleman County has a phone exchange that handles calls between callers and those receiving the
call. Given these three actors, draw a simple sequence diagram for making a simple phone call.

7. You are ready to begin UML modeling for the Kirt Clinic. Draw a class diagram that includes a
physician, a patient, an appointment, and a patient’s bill. Do not get the insurance company involved.

8. Use UML to draw examples of the four structural relationships for the Kirt Clinic.
9. Write a sample use case scenario for a patient who sees a physician in the Kirt Clinic.

10. Woody’s Supermarket, a small chain of grocery stores, is building a Web site to allow customers to
place orders for groceries and other items they sell. The customer places a Web order, the customer
master is updated, and an order record is created. The order prints at a local store, and the goods are
picked from the shelves by the store employees. Customers are sent an email notification that their
order is ready. When they pick up the order, frozen goods, chilled products, and other items are
assembled. Draw an activity diagram showing the customer using the Web site to place an order,
verification of the order, order confirmation, order details sent to the local store, and a customer
email sent to the customer.

11. Sludge’s Auto (refer to Chapter 12) is as an auto parts recycling center, using Ajax on Web sites for
customers to browse for parts. Ajax allows the Web site to obtain data from the server while the user
stays on the original Web page. The customer needs to know the make, model, and year of a car as
well as the part. If the part is in stock, the description, condition of the part, price, and shipping cost
are displayed, with the quantity available for each condition of the part, along with a picture of the
part. Draw a sequence diagram using boundary, control, and entity classes for the Auto Part Query
for Sludge’s Auto.

12. Musixscore.com is an online service providing sheet music to customers. On the “browse music”
Web page, customers select a genre of music from a drop-down list. The Web page uses Ajax to
obtain a list of performers, musicians, or groups that match the genre, which is formatted as a drop-
down list. When a selection is made from the performer’s drop-down list, the Web page uses Ajax to
display a third drop-down list displaying all the CDs or other works of the performer. When a CD is
selected, the Web page uses Ajax to obtain all the songs on the CD in a fourth drop-down list. The
viewer may make multiple selections. When the Add to Shopping Cart image is clicked, the songs
are added to the shopping cart. The viewer may change any of the drop-down lists to select additional
sheet music, and the process is repeated.
a. Write a use case description for the Browse Music Score use case, representing this activity.
b. Draw a sequence diagram using boundary, control, and entity classes for the Musixscore Web page.
c. Write a list of the messages, names, and the parameters, along with the data types, that would be

passed to the classes and the values (with data types) that are included with the return message.
Make any assumptions you need about the data.

d. Create a class diagram for the entity classes used in the sequence diagram.

SELECTED BIBLIOGRAPHY
Beck, K., and W. Cunningham. “Laboratory for Teaching Object-Oriented Thinking,” OOPSLA’89, as

quoted in D. Butler, CRC Card Session Tutorial. www.csc.calpoly.edu/~dbutler/tutorials/winter96/
crc_b/tutorial.html. Last accessed July 29, 2009.

Bellin, D., and S. Suchman Simone. The CRC Card Book. Indianapolis: Addison-Wesley Professional, 1997.
Booch, G., I. Jacobson, and J. Rumbaugh. The Unified Modeling Language User Guide, 2d ed. Indianapolis:

Addison-Wesley Professional, 2005.
Cockburn, A. Writing Effective Use Cases. Boston: Addison-Wesley Publishing Co., 2001.
Dobing, B., and J. Parsons. “How UML Is Used.” Communications of the ACM, Vol. 49, No. 5, May 2006,

pp. 109–113.
Fowler, M. UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3d ed. Indianapolis:

Addison-Wesley Professional, 2003.
Kulak, D., and E. Guiney. Use Cases: Requirements in Context, 2d ed. Indianapolis: Addison-Wesley Pro-

fessional, 2004.
Miles, R., and K. Hamilton. Learning UML 2.0. Indianapolis: O’Reilly Media, Inc., 2006.
Sahraoudi, A. E. K., and T. Blum. “Using Object-Oriented Methods in a System Lifecycle Process Model.”

ACM SIGSOFT Software Engineering Notes, Vol. 28, No. 2 (March 2003).

www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/tutorial.html
www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/tutorial.html

320 PART III • THE ANALYSIS PROCESS

E P I S O D E 10
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Classy Objects
“The prototypes and diagrams that we have created have really given us a feel for the project,” smiles Anna,
looking up from her computer. “I have a good sense about what we are doing.”

“Same here,” replies Chip. “But we need to work on the Web pages that will be used by a wide variety
of faculty and staff.”

“Where do you want to start?” asks Anna. “Do you think that we should work on the class diagram?”
Chip leans back in his chair and thinks out loud, “No, we need to do some other modeling to deter-

mine classes, attributes, and methods first. We have a preliminary E-R diagram as a starting point for en-
tity classes. We should model the behavior of a number of prototypes. As a prototype is examined, we
should be asking questions about each field. If the information is stored on a database table, we should ob-
tain it somehow.”

“Yes, typically we would include it in a drop-down list,” Anna muses.
“Well, not necessarily,” counters Chip. “If there are too many entries, or if one list depends on a previ-

ous action, we should use Ajax to retrieve the information and update the Web page, creating drop-down lists
or links.”

“The create programs that add new information will be the ones with the most keying, but the change,
delete, and query programs depend on stored data,” adds Anna. “Where should we start?”

“I’ve been giving a lot of thought to the prototype we created to use the Web to update the image of all
the software that is stored on a computer lab machine,” says Chip, leaning forward in his chair. “And by lab
room, I mean any classroom or lab that has the same set of software on each computer. The software image
is used to refresh any damaged computers or to replace software on a machine infected by a virus or other
problem.”

“Well, let’s have a look at that UPDATE LAB IMAGE prototype,” says Anna.
Chip displays the prototype (refer to the CPU case in Chapter 6). “We need to know the campus and

room number to find the software image,” says Chip, pointing to the first couple of fields on the Web page.
“These are stored on database tables.”

“Yes, but these are stored with the administrative scheduling software on the mainframe,” interjects
Anna. “We could copy them to the Web servers, but if the buildings or rooms change we will have inconsis-
tent data, and an unreliable system.”

“Ahh, I see what you mean,” says Chip. “Good thinking! We’ll have to get this data from the main-
frame.”

“This calls for the UPDATE LAB IMAGE activity diagram (illustrated in Figure E10.1),” remarks
Anna. “Why don’t I create the diagram and you check to verify that it’s correct? ”

“Sounds good,” remarks Chip.
Anna starts to draw the diagram. “Since only certain staff members will have the authorization to up-

date the lab image, I think that it should start with them logging onto the system. If it is a valid logon, a re-
quest will be sent to the mainframe state called GET CAMPUS BUILDING ROOMS to obtain both the
campus buildings and the rooms within them. This list gets sent back to the SEND CAMPUS BUILDING
LIST program on the Web server, where it gets converted to an XML document and sent to the SELECT
CAMPUS BUILDING Web page.”

Chip asks, “Are you going to put all the rooms into the list for all the buildings? That would be a large
XML document and may take a long time to load into the browser.”

“The other choice is to include just the buildings and then request the rooms for a selected campus
building,” answers Anna thoughtfully. “That would also be acceptable, but would slow down the room se-
lection since the browser would have to wait for the rooms to be updated in the drop-down list. If the entire
XML document were sent at once, the room list would be quickly updated from the document elements at
the browser level. It would be very fast. So the user would select a campus building and only the rooms for
that building would display.”

“I’ve got an idea,” exclaims Chip. “When the program gets the building rooms, is there a way to select
only rooms that are computer labs?”

“That’s an excellent idea,” says Anna. “The XML document would be smaller, and load faster in the
browser. We may have to request a modification of the database table to have a code for computer labs.”

“I’ll check into it,” replies Chip. “So what happens after we get a lab room?”

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 321

Logon System Validate Logon

Select Campus
Building

Select Campus
Building List

Get Computer
Software For Room

Get Computer
Software Room

Find Matching
Software

Select Room

Select New
Software

Update
Software List

Update Lab
Software Images

Request Image
Changes

Web Page Action

Form Transmitted

Get Campus Building Rooms

Building Rooms

Invalid Logon Error

Building Room XML Values

Selected Building and Room

Software List

Software Changes

Successful Update

First 3 Letters of Software Sent

Matching Software Found

Matching Software Not Found

Add Software To Image

No More New Software

No New Software

No Changes

 More Software

Client Web Page Web Server Mainframe

FIGURE E10.1
UPDATE LAB IMAGE activity
diagram.

Anna thinks for a moment, “We’ll need a lab image table on the Web server containing the room num-
ber and the software included in the room. This includes standard software, such as the operating system,
word processing, and virus scanning software, since they may change from room to room. I’ll add a state
for the GET COMPUTER SOFTWARE FOR ROOM in the Web Server swimlane.”

Chip asks, “Do we want to include a drop-down list for the software?”
“No, that would make it difficult to remove software, or to change the version,” replies Anna thought-

fully. “I think that we should display the software in a list on the Web page and allow them to update the ver-
sion number.”

“The problem is that we may have a large list of software, and we have to delete some of the software
as well,” states Chip. “Why don’t we use an email model, with a check box in front of each software title
and limit the number of software titles per page? We would include a next page button to display the next
group of software titles.”

“How does the delete program know which software package to delete?” Anna asks.
“We need to include the software number as a hidden field that is transmitted to the Web server,” an-

swers Chip. “What are your thoughts about adding software to the lab image?”

322 PART III • THE ANALYSIS PROCESS

Anna thinks for a few minutes, “Why don’t we use Ajax again to have them enter the first few letters of
the software title into an input text field? We could send the request to the Software table on the Web server
and return a list of the titles that match. The Web page would create a rectangular block floating on top of the
Web page with a list of the software title links and hidden fields stored with the link. The user would click a
title and it would be added to the image. Then they could add another software title if needed. This is the SE-
LECT NEW SOFTWARE activity sending the first three letters to the Web server FIND MATCHING SOFT-
WARE state. UPDATE SOFTWARE LIST creates the floating block of titles.”

“Great idea!” exclaims Chip.
“When they are done adding software, checking software to be removed, and changing version num-

bers, they click a submit button and the lab image database table is updated with the changes,” says Anna.
“The REQUEST IMAGE CHANGES state sends the changes to the UPDATE LAB SOFTWARE IMAGE
state.

“This is fun,” grins Chip. “Let me work on a sequence diagram for the UPDATE LAB IMAGE proto-
type (illustrated in Figure E10.2). Chip starts by sending the request for the Update Lab Web page. The
server sends the getCampus() message to the CAMPUS class, which returns the campusList, including a
campusCode and a campusDescription. The controller sends a message to the CAMPUS ROOM class to ob-
tain rooms that contain lab software, which are returned to the UPDATE COMPUTER LAB IMAGE CON-
TROLLER. The controller class creates the roomList XML document and sends it to the Web browser,
which creates the Campus Building selection list. When the Campus Building list is changed, the Web
browser uses the same XML document to change the Room Number drop-down list to include only lab
rooms in the selectedcampus building.

When the Room Number drop-down list is changed, a getRoomSoftware() request is sent to the con-
troller class, which sends a getImageSoftware() message to the SOFTWARE IMAGE class. Using the room
number, the software is obtained and returned in the softwareList. The controller class uses the softwareList
to create the XML that is sent to the UPDATE COMPUTER LAB IMAGE interface class, which updates the
Web page with the software titles.

When a partial software title is entered, a selectSoftware() request is sent to the UPDATE COMPUTER
LAB IMAGE CONTROLLER, which sends a findSoftware() message to the SOFTWARE entity class. The
matching software is found and the softwareList containing the software number, description, and version,
is sent to the controller class. This formats the XML document, which is sent to the UPDATE COMPUTER

:Update
Computer
Lab Image

:Campus :Campus
Room

:Software
Image :Software

load update lab
WebPage

update lab
softwareWebPage

change Campus List

sendWebPageURL

send Lab Image Page

getCampusRoom()

getcampus()

return campusList

return roomList

return softwareList

return success

return softwareList

findSoftware()

getRoom()

getRoomSoftware() get ImageSoftware()

updateRoomImage()

update roomList

update software list

selectSoftware()

return matchingTitles

update Image()

Send Confirmation

change Room List

display lab software

display New Software

send Image Request

enter Partial
software Title

room List Available

:Update
Computer
Lab Image
Controller

Faculty

FIGURE E10.2
UPDATE LAB IMAGE sequence
diagram.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 323

Received
Software

Moved
Software

Installed
Software

Updated
Software

Removed
Software

software installed
on machines

software updated

software moved to
new machine software

updated

unused
software

software
received

FIGURE E10.3
SOFTWARE statechart diagram.

LAB IMAGE interface class. The Web browser formats the floating block of software titles. When a title is
selected, the browser adds it to the list of software titles and the floating block is removed.

When the Send Image Request button is clicked on the Web page, the updateImage() request is sent to the
controller, which sends an updateRoomImage() message to the SOFTWARE IMAGE entity class. The data-
base table is updated and success is returned to the controller, which sends a confirmation Web page.

“The software seems to be a bit complicated, with different versions and software packages being re-
placed by different ones,” comments Anna. “I think that it is a good idea to draw a statechart diagram for
software. This will give us a feeling for the software methods and attributes, and the interface that we will
need to change the attributes.”

Anna starts to work on a SOFTWARE statechart diagram. When software is first received it is entered
into the system using the Microsoft Access ADD SOFTWARE form and the initial attribute values are
changed. All software must be added before it is permissible to install the software on machines, so the
SOFTWARE INSTALLED ON MACHINES event is deferred until it has been added.

After the software has been installed on any number of machines, it exists in the INSTALLED SOFT-
WARE state for a long time. The HARDWARE-SOFTWARE relational table is updated to reflect the current
state. From time to time a machine is replaced and the software is moved to a different machine. The HARD-
WARE-SOFTWARE is again updated to reflect the new location. When a new version of the software is avail-
able, the version is updated with a CHANGE SOFTWARE Microsoft Access form. Alternatively the software
may be removed from the system, using a DELETE SOFTWARE Microsoft Access form. The completed
SOFTWARE statechart diagram is illustrated in Figure E10.3.

Chip and Anna work on a number of activity, sequence, and statechart diagrams. After they have completed
a number of diagrams Chip remarks, “I think that we have enough information to create a class diagram.”

Anna agrees, “Yes, let’s map out the relationships.”
The COMPUTER SYSTEM class diagram is illustrated in Figure E10.4. Each class has private attributes

and public methods in Microsoft Access to update the attributes. The major classes are Computer and Software,
with a HardwareSoftware associative class connecting them. This is used to implement the many-to-many re-
lationship between hardware and software. Each software package belongs to one Software Category and also

324 PART III • THE ANALYSIS PROCESS

has one Software Expert to call upon for support. Each computer has one or more operating systems, and is lo-
cated in one campus building.

Exercises
E-1. Use either Microsoft Visio or Visible Analyst to view the UPDATE LAB IMAGE activity diagram.

E-2. Use either Microsoft Visio or Visible Analyst to view the UPDATE LAB IMAGE sequence diagram.

E-3. Use either Microsoft Visio or Visible Analyst to view the SOFTWARE statechart diagram.

E-4. Use either Microsoft Visio or Visible Analyst to view the COMPUTER SYSTEM class diagram.

Computer

–hardwareInventoryNumber
–computerType
–brandName
–model
–serialNumber
–datePurchased
–purchaseCost
–relacementCost
–memorySize
–hardDriveCapacity
–secondHardDriveCapacity
–opticalDrive
–warranty
–campusCode
–roomLocation
–vendorNumber
+addComputer()
+changeComputer()
+deleteComputer()
+getComputer()

Software

–softwareInventoryNumber
–title
–operatingSystemName
–versionNumber
–publisher
–softwareCategoryCode
–computerBrand
–memoryRequired
–siteLicense
–numberOfCopies
–softwareCost
–employeeNumber

+addSoftware()
+changeSoftware()
+getSoftware()
+getSoftwareTitle()
+removeSoftware()

Campus Building

–campusCode
–campusDescription

+addBuilding()

Software Expert

–employeeNumber
–lastName
–firstName
–officeTelephone
–email
–departmentCode
–teachCourse
+addExpert()
+changeExpert()
+removeExpert()
+getExpert()

HardwareSoftware
–hardwareInventoryNumber
–softwareInventoryNumber

+installSoftware()
+updateVersion()
+removeSoftware()
+getSoftware()
+getHardware()

Operating System
–operatingSystemCode
–operatingSystemMeaning

+addOperatingSystem()
+changeOperatingSystem()
+removeOperatingSystem()
+getOperatingSystem()

Software Category

–softwareCategoryCode
–softwareCategoryDescription

+addNewCategory()
+changeCategoryName()
+removeCategory()
+getCategory()

1
1

1

11

FIGURE E10.4
COMPUTER SYSTEM class
diagram.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 325

The following exercises may be done with either Microsoft Visio or Visible Analyst. A rectangle will
have to be used for a class symbol when drawing sequence diagrams when using Microsoft Visio or
Visible Analyst (the class stereotype symbols are not available). Place a text label above each rectan-
gle identifying the type of class: interface, control, or entity.

E-5. Modify and print the REGISTER FOR TRAINING activity diagram. Refer to Figure E12.3 in the
CPU Case Episode in Chapter 12 to see the prototype for this Web page. Add the following state sym-
bols and event connections:
a. The CREATE XML EMPLOYEE DATA state in the WEB SERVER swimlane, below the GET

EMPLOYEE INFORMATION state. Connect it with an event arrow coming from READ EM-
PLOYEE RECORD. Label the event SEND EMPLOYEE DATA.

b. Add the EMPLOYEE INFORMATION WEB PAGE state in the CLIENT WEB PAGE swimlane,
to the left of CREATE XML EMPLOYEE DATA state. Connect the two states with an event ar-
row into the EMPLOYEE INFORMATION WEB PAGE state labeled SEND EMPLOYEE XML
DOCUMENT.

c. Add a state below the CREATE XML EMPLOYEE DATA state called FIND SOFTWARE
TRAINING CLASS. Connect it with an event arrow coming from the EMPLOYEE INFORMA-
TION WEB PAGE state labeled SELECTED SOFTWARE AND TRAINING LEVEL.

d. Include a decision diamond symbol below the FIND SOFTWARE TRAINING CLASS state.
Connect it with an event arrow coming to it from the FIND SOFTWARE TRAINING CLASS
state. An event should flow to the left into the EMPLOYEE INFORMATION WEB PAGE state
labeled CLASS NOT FOUND.

e. Add a CHOOSE SOFTWARE CLASS state below the EMPLOYEE INFORMATION WEB
PAGE state, and somewhat below the decision diamond. Connect the bottom of the decision di-
amond with an event arrow going to the CHOOSE SOFTWARE CLASS state. Label it SOFT-
WARE TRAINING CLASSES.

f. Add a state below the decision diamond and somewhat below the CHOOSE SOFTWARE
CLASS state. Label it UPDATE CLASS PARTICIPANT.

g. Connect the CHOOSE SOFTWARE CLASS state with an event arrow pointing to the UPDATE
CLASS PARTICIPANT state. Label it SEND ENROLL CLASS REQUEST.

h. Add an exit circle symbol in the bottom of the Client Web Page swimlane. Connect the CHOOSE
SOFTWARE CLASS state with an event arrow pointing to the exit circle labeled CANCEL.

i. Connect the UPDATE CLASS PARTICIPANT state with an event arrow pointing to the exit cir-
cle labeled SUCCESSFUL UPDATE.

E-6. Create and print the TRAINING CALENDAR activity diagram. The prototype for this Web page is illus-
trated in Figure E11.4 which can be found in the CPU Case Episode in Chapter 11. Add a starting circle
at the top left of the diagram and add the following swimlanes, state symbols, and event connections:
a. Add a swimlane on the left labeled CLIENT WEB PAGE and one on the right called WEB

SERVER.
b. Add a starting circle at the top of the CLIENT WEB PAGE swimlane, and below it a state labeled

REQUEST TRAINING CALENDAR WEB PAGE. Connect the starting circle to the state with
an event arrow.

c. Add a state in the WEB SERVER swimlane, to the right of the REQUEST TRAINING CALEN-
DAR WEB PAGE state. Label it GET TRAINING CLASS.

d. Connect the left state to the right one with an event arrow labeled FORM TRANSMITTED.
e. Place a state below the GET TRAINING CLASS state. Label it GET TRAINING CLASS. Con-

nect the two states with a downward event arrow labeled SEND COURSE NUMBER.
f. Place a state in the CLIENT WEB PAGE swimlane to the left of the GET TRAINING CLASS

state. Label it TRAINING CALENDAR COURSE DISPLAY. Connect the two states with a left
pointing event arrow labeled SEND TRAINING CLASS XML VALUES.

g. Place an exit circle at the bottom of the CLIENT WEB PAGE swimlane. Connect the TRAIN-
ING CALENDAR COURSE DISPLAY state with the exit circle. Connect the TRAINING CAL-
ENDAR COURSE DISPLAY state with an event arrow to the right and up the right side of the
WEB SERVER swimlane to the GET TRAINING CLASS state. Label it DATE CHANGE OR
SORT CHANGE.

E-7. Modify and print the REGISTER FOR TRAINING sequence diagram. Add two new entity classes to
the right side of the diagram and extend the lifeline down to the bottom of the diagram. The classes
are Employee and Class. Add the following messages from the REGISTER FOR CLASS CON-
TROLLER, and add the focus of control rectangles where the messages interact with the class lifeline:
a. getEmployee() from the controller to EMPLOYEE.
b. return employeeData from the EMPLOYEE class to the controller.

326 PART III • THE ANALYSIS PROCESS

c. findSoftwareClass() from the controller to the CLASS entity class.
d. return softwareClassList from the CLASS entity class to the controller.
e. updateClassParticipant() from the controller to the CLASS entity class.
f. return success from the CLASS entity class to the controller.

E-8. Create and print the TRAINING CALENDAR sequence diagram. Add the Faculty actor in the upper
left corner of the diagram and then the following classes from left to right along the top of the diagram:
a. Display Training Classes interface class.
b. Display Training Classes control class.
c. Class entity class.
d. Course entity class.

Add the following messages between the classes or the actor to the class:
a. Load Training Calendar Web page from Faculty to the Display Training Classes interface class.
b. sendWebPageURL from Display Training Classes to Display Training Classes Controller.
c. getClass() from the controller to the Class entity class.
d. return classList from the Class entity class to the controller.
e. getCourseDescription() from the controller to the Course entity class.
f. return courseDescription from the Course entity class to the controller.
g. update courseList from the controller class to the Display Training Classes interface class.
h. Lab Software Web Page from the Display Training Classes interface class to the actor.
i. Change Month/Year from the actor to the Display Training Classes interface class.
j. A self-transition on the Display Training Classes interface class (using JavaScript to update the

calendar).
k. New Calendar from the Display Training Classes interface class to the actor.
l. Change Date from the actor to the Display Training Classes interface class.

m. getNewClass() from the Display Training Classes to the controller.
n. Repeat steps c through g.
o. Course List Available from the Display Training Classes interface class to the actor.

E-9. Modify and print the Training statechart diagram. Add two states after the CANCELED TRAINING
CLASS on the left side of the diagram. They are ACTIVE TRAINING CLASS and, below it, COM-
PLETED TRAINING CLASS. Add a class below SCHEDULED TRAINING CLASS called EN-
ROLLED TRAINING CLASS. Add the following transitions:
a. PARTICIPANTS ENROLLED from the SCHEDULED TRAINING CLASS state to the EN-

ROLLED TRAINING CLASS state.
b. IN SESSION CLASS from the ENROLLED TRAINING CLASS state to the ACTIVE TRAIN-

ING CLASS state.
c. TRAINING SESSION ENDED from the ACTIVE TRAINING CLASS state to the COM-

PLETED TRAINING CLASS state.
d. An ending arrow from the COMPLETED TRAINING CLASS state to a blank area to the right.

E-10. Create and print the COMPUTER statechart diagram. There are two columns of states. In the left col-
umn, include the following states from the top to the bottom: NEW COMPUTER, CLEANING
COMPUTER, and RECYCLED COMPUTER. In the right column, include the following states from
the top to the bottom: INSTALLED COMPUTER, FUNCTIONAL COMPUTER, and REPAIR
HELD COMPUTER. Add the following transitions:
a. Start with COMPUTER RECEIVED going from a point in space above the state rectangle into

the NEW COMPUTER state.
b. COMPUTER INSTALLED from the NEW COMPUTER state to the INSTALLED COMPUTER

state.
c. SOFTWARE INSTALLED from the INSTALLED COMPUTER state to the FUNCTIONAL

COMPUTER state.
d. MAINTENANCE SCHEDULED from the FUNCTIONAL COMPUTER state to the CLEAN-

ING COMPUTER state.
e. MAINTENANCE COMPLETE from the CLEANING COMPUTER state to the FUNCTIONAL

COMPUTER state.
f. PROBLEM REPORTED from the FUNCTIONAL COMPUTER state to the REPAIR HELD

COMPUTER state.
g. REPAIR COMPLETED from the REPAIR HELD COMPUTER state to the FUNCTIONAL

COMPUTER state.
h. REFRESH IDENTIFIED COMPUTER from the FUNCTIONAL COMPUTER state to the RE-

CYCLED COMPUTER state.

CHAPTER 10 • OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML 327

i. UNFEASIBLE REPAIR IDENTIFIED from the REPAIR HELD COMPUTER state to the RE-
CYCLED COMPUTER state.

J. An ending arrow from the RECYCLED COMPUTER state to a blank area below the state.

E-11. Modify and print the COMPUTER class diagram. Each computer may have one or more operating
systems installed. Move the Operating System class to the right of its current location and add a new
class called Computer Operating System below the Computer class. Change the connecting line from
Computer to Operating System to connect the Operating System class to the Computer Operating
System class. Add a new relationship between the Computer class (the one end) to the Computer Op-
erating System class (the many end). Add the following attributes to the Computer Operating System
class:

HardwareInventoryNumber
operatingSystemCode

Add the following methods to the Computer Operating System class:

addComputerOperatingSystem()
removeComputerOperatingSystem()

The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered .com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft Project, or
a Microsoft Access file that can be used to complete the exercises.

www.pearsonhighered.com/kendall

This page intentionally left blank

329

C H A P T E R 1 1

Designing Effective Output

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Understand the objectives for effective output design.

2. Relate output content to output methods inside and outside the organization.

3. Realize how output bias affects users.

4. Design display output.

5. Design dashboards, widgets, and gadgets.

6. Design a Web site for ecommerce.

Output is information delivered to users through the information system
by way of intranets, extranets, or the World Wide Web. Some data require
extensive processing before they become suitable output; other data are
stored, and when they are retrieved, they are considered output with little
or no processing. Output can take many forms: the traditional hard copy of

printed reports and soft copy such as display screens, microforms, and video and audio output.
Users rely on output to accomplish their tasks, and they often judge the merit of the system
solely by its output.To create the most useful output possible, the systems analyst works closely
with the user through an interactive process until the result is considered to be satisfactory.

OUTPUT DESIGN OBJECTIVES
Because useful output is essential to ensuring the use and acceptance of the information system,
there are six objectives that the systems analyst tries to attain when designing output:

1. Designing output to serve the intended purpose.
2. Designing output to fit the user.
3. Delivering the appropriate quantity of output.
4. Making sure the output is where it is needed.
5. Providing the output on time.
6. Choosing the right output method.

Designing Output to Serve the Intended Purpose
All output should have a purpose. During the information requirements determination phase of
analysis, the systems analyst finds out what user and organizational purposes exist. Output is then
designed based on those purposes.

You will have numerous opportunities to supply output simply because the application per-
mits you to do so. Remember the rule of purposiveness, however. If the output is not functional,

PART IV
The Essentials

of Design

330 PART IV • THE ESSENTIALS OF DESIGN

it should not be created, because there are costs of time and materials associated with all output
from the system.

Designing Output to Fit the User
With a large information system serving many users for many different purposes, it is often dif-
ficult to personalize output. On the basis of interviews, observations, cost considerations, and per-
haps prototypes, it will be possible to design output that addresses what many, if not all, users
need and prefer.

Generally speaking, it is more practical to create user-specific or user-customizable output
when designing for a decision support system or other highly interactive applications such as
those using the Web as a platform. It is still possible, however, to design output to fit a user’s tasks
and function in the organization, which leads us to the next objective.

Delivering the Appropriate Quantity of Output
Part of the task of designing output is deciding what quantity of output is correct for users. A use-
ful heuristic is that the system must provide what each person needs to complete his or her work.
This answer is still far from a total solution, because it may be appropriate to display a subset of
that information at first and then provide a way for the user to access additional information easily.

The problem of information overload is so prevalent that it is a cliché, but it remains a valid
concern. No one is served if excess information is given only to flaunt the capabilities of the sys-
tem. Always keep the decision makers in mind. Often they will not need great amounts of output,
especially if there is an easy way to access more via a hyperlink or drill-down capability.

Making Sure the Output Is Where It Is Needed
Output is often produced at one location and then distributed to the user. The increase in online,
screen-displayed output that is personally accessible has cut down somewhat on the problem of
distribution, but appropriate distribution is still an important objective for the systems analyst. To
be used and useful, output must be presented to the right user. No matter how well designed re-
ports are, if they are not seen by the pertinent decision makers, they have no value.

Providing the Output on Time
One of the most common complaints of users is that they do not receive information in time to
make necessary decisions. Although timing isn’t everything, it does play a large part in how use-
ful output will be. Many reports are required on a daily basis, some only monthly, others annu-
ally, and others only by exception. Using well-publicized, Web-based output can alleviate some
problems with the timing of output distribution as well. Accurate timing of output can be critical
to business operations.

Choosing the Right Output Method
Choosing the right output method for each user is another objective in designing output. Much
output now appears on display screens, and users have the option of printing it out with their own
printer. The analyst needs to recognize the trade-offs involved in choosing an output method.
Costs differ; for the user, there are also differences in the accessibility, flexibility, durability, dis-
tribution, storage and retrieval possibilities, transportability, and overall impact of the data. The
choice of output methods is not trivial, nor is it usually a foregone conclusion.

RELATING OUTPUT CONTENT TO OUTPUT METHOD
The content of output from information systems must be considered as interrelated to the output
method. Whenever you design output, you need to think of how function influences form and how
the intended purpose will influence the output method that you choose.

Output should be thought of in a general way so that any information put out by the com-
puter system that is useful to people in some way can be considered output. It is possible to con-
ceptualize output as either external (going outside the business), such as information that appears
to the public on the Web, or internal (staying within the business), such as material available on
an intranet.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 331

Check here if
and write your new address below.

1000 N St.
Lincoln, NE 68501 Account Number

640-056-175

Please IndicateAmount Paid

Eckert Caryn S
123 Oak Street
Lincoln, NE 68501

Amount Due

$17.38

Service Address Account Number
640-056-175

Previous Reading
1517

Billing Date
7/8/2009

Meter Reading
1547

Payment must be
received by this
date to be creditedon your next bill
Aug 5, 2009

The customer
writes the
amount of the
payment in
this area.

The corporate
logo and nameare preprinted

on the billing
statement.

An area is
provided for
customers to
enter a changeof address.

Information aboutthe account is
printed by a
computer.

FIGURE 11.1
A turnaround document for
Minigasco’s data processing.

External output is familiar to you through utility bills, advertisements, paychecks, annual re-
ports, and myriad other communications that organizations have with their customers, vendors,
suppliers, industry, and competitors. Some of this output, such as utility bills, is designed by the
systems analyst to serve double duty as a turnaround document. Figure 11.1 is a gas bill that is a
turnaround document for a gas company’s data processing. The output for one stage of process-
ing becomes the input for the next. When the customer returns the designated portion of the doc-
ument, it is optically scanned and used as computer input.

External output differs from internal output in its distribution, design, and appearance. Many
external documents must include instructions to the recipient if they are to be used correctly.
Many external outputs are placed on preprinted forms or Web sites bearing the company logo and
corporate colors.

Internal outputs include various reports to decision makers. They range from short summary
reports to lengthy, detailed reports. An example of a summary report is a report summarizing
monthly sales totals. A detailed report might give weekly sales by salesperson.

Other kinds of internal reports include historical reports and exception reports that are out-
put only at the time an exception occurs. Examples of exception reports are a listing of all em-
ployees with no absences for the year, a listing of all salespeople who did not meet their monthly
sales quota, or a report on consumer complaints made in the last six months.

Output Technologies
Producing different types of output requires different technologies. For printed output, the options
include a variety of printers. For screen output, the options include attached or stand-alone dis-
plays. Audio output can be amplified over a loudspeaker or listened to on a variety of speakers,
ranging from small to surround sound–capable on a PC. Audio output may also be designed for
mobile phones. Electronic output is created with special software tools. As you can see, the
choices are numerous. Figure 11.2 is a comparison of output methods.

PRINTERS. Because printed reports are such a common kind of output, it is logical to assume that
in any large organization printers are ubiquitous. Although other types of output are gaining
popularity, it is likely that businesses will still desire printed output, or will want to design output
that will look good if customers, suppliers, or vendors print it out using their own software and
hardware.

332 PART IV • THE ESSENTIALS OF DESIGN

Display screen • Interactive • May require cabling and setup space
• Online, real-time transmission • Still may require printed documentation
• Quiet
• Takes advantage of computer capabilities for

movement within databases and files
• Good for frequently accessed, ephemeral

messages

Audio output
and podcasts

• Good for individual user
• Good for transient messages

• Needs earbuds where output will not

• Good where worker needs hands free
interfere with other tasks

• Good if output needs to be
widely distributed

• Has limited application

DVD, CD-ROM,
and CD-RW

• Has large capacity • Requires a computer and display for
reading data• Allows multimedia output

Electronic output • Reduces paper
(email, Web sites, blogs,
and RSS feeds)

• Can be updated very easily
• Is not conducive to formatting (email)
• Is difficult to convey context of messages (email)

•
•

Can be “broadcast” • Web sites need diligent maintenance
Can be made interactive

Output Method Advantages Disadvantages

Printer • Affordable for most organizations • Still requires some operator intervention
• Flexible in types of output, location, and • Compatibility problems with computer software

capabilities • May require special, expensive supplies
• Handles large volumes of output • Depending on model, may be slow

• Environmentally unfriendly• Highly reliable with little down time

FIGURE 11.2
A comparison of output methods. The trend in printers is toward increased flexibility. This trend translates into expanding the

options for the location of the printing site itself, accommodating different numbers of characters
per page, including numerous type styles and type fonts, changing the position of print on the
page, including more graphics capability and color, producing quieter printing, protecting the en-
vironment, reducing the number of preprinted forms in inventory, simplifying operator tasks, and
reducing the amount of overall operator intervention.

Together with users, the systems analyst must determine the purpose for the printer. Once
that is established, three key factors of printers to keep in mind are:

1. Reliability.
2. Compatibility with software and hardware.
3. Manufacturer support.

DISPLAYS AS OUTPUT. Display screens are an increasingly popular output technology. Once used
mostly for data entry, screens are also becoming a feasible technology for many other uses as their
size and price decrease and as their compatibility with other system components increases.

Screens have distinct advantages over printers because of their quietness and potential for in-
teractive user participation. Screen output can afford flexibility in allowing the user to change out-
put information in real time either through deletion, addition, or modification. Screens also permit
review of stored output through access to and the display of items from a relevant database, per-
mitting individual decision makers to stop storing redundant printouts.

Display screens as output result in cost savings. If users can complete their tasks by interact-
ing with a screen, they may not need paper, thereby eliminating the cost of printing, filing, and
physical storage. If a report was previously sent out by post, convincing users to view the docu-
ments on screen can save mailing, as well as printing, costs. Stockbrokers, phone companies, util-
ities, and banks are all offering electronic delivery of output to their customers.

Electronic display may also be desirable from the user’s standpoint. A user may want just to
glance briefly at a monthly statement to verify its accuracy. The user needs, however, to file the
statement away for tax reasons. If the statement is delivered via email, the electronic copy may
be all that the user wants. This will help record keeping and consequently encourage the user to

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 333

prefer the electronic statement to the paper statement. Another reason for preferring display out-
put to paper output is that it is easier to keep the electronic version up-to-date.

One potential drawback is showing output on a variety of display screens using different
screen resolutions. If the screen displayed is from a Web page, the Web page programmer needs
a plan for checking images at each resolution (for example, 800 � 600, 1600 � 1200, and so on),
using different browsers, to make sure that the pages look similar. If users need access to smart-
phones or mobile phones to complete their work, special Web pages may need to be developed
as well.

If the output is a report other than a Web page, the analyst is faced with solving other prob-
lems. Users may not have the necessary fonts on their computers, and their Microsoft Word doc-
uments may be customized with unusual margins. If a Word document is sent by email, a
beautifully formatted document on a sender’s computer may end up looking poorly formatted on
a receiver’s display. One solution is to convert output to PDF files using Adobe Acrobat. This al-
lows unusual fonts to be embedded and all the margins to be set properly no matter what com-
puter or screen resolution the receiving party has.

VIDEO, AUDIO, AND ANIMATION. Many of the tools and application packages you will be working
with facilitate the inclusion of video in the output options. Video is a complex form of output, as it
combines the strength and potential emotional impact of audio (including sound effects, voice, and
music) with a visual channel. Some familiar applications are those that are Web-based. Examine
Figure 11.3 to see a Web page that provides a series of six brief video clips of an actual event, the
Decision Sciences Institute (DSI) Knowledge Bowl. Video output is useful here, because the event
was held to commemorate an important anniversary in the organization’s history.

There are many uses for including video output in your users’displays. Video clips make use-
ful output for:

1. Supplementing static, printed output.
2. Enabling distance collaboration that connects people who do not often get to see each

other. For example, this can be helpful for virtual project team members who must work
together, but who do not typically meet face to face.

3. Showing how to perform an action, such as demonstrating how a form should be filled out,
how software should be installed, or how a product should be assembled.

4. Providing brief training episodes that are job specific or task specific in order to emphasize
a new or unfamiliar skill.

5. Shifting the time of an actual event by recording it for later output.
6. Preserving an important occasion for addition to an organization’s archives.

FIGURE 11.3
Streaming video can be used
effectively for telling a story or
sharing an event. This Web page
chronicles an event called the DSI
Knowledge Bowl.

334 PART IV • THE ESSENTIALS OF DESIGN

In a way, audio output can be thought of as the opposite of printed output. Audio output is
transient, whereas the printed word is permanent. Audio output is usually output for the benefit
of one user, whereas printed output is often widely distributed. Audio output is interpreted by the
human ear as speech, although it is actually produced by discrete digital sounds that are then put
together in such a way as to be perceived as continuous words. Telephone companies were among
the first businesses to produce systems using audio output for customers.

Sound can also enhance a presentation. Public domain music and sound effects are readily
available. Presentation packages such as Microsoft PowerPoint allow users to insert sound, mu-
sic, and even videos. Sound files come in various formats, but some of the most common for PCs
are MP3, .WMP (Windows Media Player), .aac (iTunes and iPhones), and .WAV files.

Audio output is being used to “staff” catalog toll-free phone numbers 24 hours a day, seven
days a week. By using a digital phone, consumers can call the number and, in response to instruc-
tions via audio output, enter the item number, quantity, price, and their credit card number. Stores
are capturing sales that would otherwise be missed, because hiring actual employees might be too
expensive to justify offering a 24-hour phone number.

When using audio and telephone systems to enter data, be sure to provide proper user feed-
back, such as, “You have entered thirty three dollars. Press one if this is correct. Press two to
change.” Audio input must be scripted into a well-designed and clear sequence. Keep audio in-
structions brief so that people remember the beginning segments.

Podcasting is the technique of putting downloadable voice files on the Web. These voice files
may be used to inform customers about new products or the product of the week, to provide a
walking tour of a city or other tourist destination, to deliver a newscast, and many other applica-
tions. Capability to download audio and video files has been available for some time on the Web,
but podcasting uses a small RSS file (an XML file) to store the latest version of a podcast (if they
are updated frequently).

Animation is another form of output that can be used to enhance a Web site or presentation.
Animation is the presentation of different images in a series, one at a time. Animation images are
composed of several basic elements. Elemental symbols can be abstract objects or real photos,
and they can take on different colors, forms, and textures. Spatial orientation helps the user grasp
whether symbols are closely related to one another. Transition effects are either gradual or abrupt,
just as with PowerPoint slide transitions. Alteration effects include changing the color, size, or
texture, and can also include transforming the image through morphing.

If animation is used to support decision making, experiments have shown that the use of re-
alistic, rather than abstract, images results in better quality of decisions. Experimental subjects
who viewed gradual, rather than abrupt, animated transitions made better decisions. When using
animation on Web pages, use caution to keep sequences streamlined, and not busy.

CD-ROMS AND DVDS. With the demand for multimedia output growing, the display of material
on CD-ROMs has become widespread. CD-ROMs are less vulnerable to damage from human
handling than other output. CD-ROMs can include full-color text and graphics, as well as music
and full-motion video, so as an output medium they provide a designer maximum creativity. The
DVD (digital versatile disc) is also a useful output technology. Not only are DVDs used for
output, but they also are used for backup storage.

ELECTRONIC OUTPUT. Many of the new Web-based systems you design will have the capability
of sending electronic output in the form of email, faxes, and bulletin board messages that can be
sent from one computer to another without the need for hard copy.

Email can be set up and run internally in the organization through an intranet, or set up
through communication companies or online service providers. By designing email systems, you
can support communication throughout the organization. A useful and flexible email system can
form the basis of support for work groups.

Two newer groups of technologies that allow users to pull information from the Web and also
allow organizations to send information to them periodically are being designed for organiza-
tions. These output technologies are called pull and push technologies, reflecting the way users
and organizations look for information on the Web and either “pull” it in downloads or have it
sent, or “pushed,” to them.

RSS (really simple syndication) feeds are XML documents that users can obtain from links on
Web pages or to which they can subscribe. They contain a title, usually the same name as the Web

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 335

C O N S U L T I N G O P P O R T U N I T Y 1 1 . 1

Your Cage or Mine?

“Why can’t they get this right? It’s driving me to distraction.
The zoo in Colombia is writing to me about a tiger that has been on
loan from our place since 2002. They should be writing to Tulsa,”
trumpets Ella Fant, waving a letter in the air. Ella is general curator
in charge of the animal breeding program at the Gotham Zoo.

She is talking with members of the zoo’s five-person commit-
tee about the proposals before them. The committee meets every
month to decide which animals to loan to other zoos and which an-
imals to get on loan so as to breed them. The committee is com-
posed of Ella Fant, the general curator; Ty Garr, the zoo’s director;
two zoo employees, Annie Malle and Mona Key; and a layperson,
Rex Lyon, who is in business in the community.

Ty paces in front of the group and continues the meeting, say-
ing, “We have the possibility of loaning out two of our golden
tamarins, and we have the opportunity to play matchmaker for two
lesser pandas. Because three of you are new to the committee, I’ll
briefly discuss your responsibilities. As you know, Ella and I
would pounce on any chance to lure animals in for the breeding
program. Your duties are to assess the zoo’s financial resources and
to look at our zoo’s immediate demands. You also must consider
the season and our shipping capability, as well as that of the zoos
we’re considering. The other zoos charge us nothing for the loan of
their animals for the breeding program. We pay the shipping for
any animal being loaned to us and then maintain them, and that
gets expensive.”

“We are linked, via the Internet, to a database of selected
species with 164 other zoos,” says Ella as she picks up the story
from Ty. “My office has a computer equipped with a display. I can
access the records of all captive animals in the system, including
those from the two zoos we are negotiating with right now.”

As the committee members work, they begin asking questions.
“I need to read some information, get some meat to sink my teeth
into, before I’m ready to decide whether the loan of the lesser pan-

das is a good idea. Where are the data on the animals we’re consid-
ering?” growls Rex.

Annie replies, “We have to go to Ella’s office to get to it. Mostly,
the other employees who need to know just use her computer.”

Mona gets into the swing of the discussion and says, “Some in-
formation on the current state of the budget would be divine, too.
I’ll go bananas with new expenditures until we at least have a sum-
mary of what we’re spending. I bet it’s a bunch.”

Ty answers, “We don’t mean to monkey around, but frankly
we feel trapped. Costs of reproducing all the financial data seem
high to us. We’d rather put our money into reproducing rare and en-
dangered species! Paperwork multiplies on its own.”

The group laughs nervously together, but there is an air of ex-
pectancy in the room. The consensus is that the committee members
need more internal information about the zoo’s financial status and
the prospective loan animals.

Ella, aware that the group cannot be tamed in the way the pre-
vious one was, says, “The old committee preferred to get their in-
formation informally, through chatting with us. Let’s spend this first
meeting discovering what kinds of documents you think you need
to do your work as a committee. Financial data are on a stand-alone
PC that our financial director uses. It’s his baby, of course.”

What are some of the problems related to output that the com-
mittee is experiencing? What suggestions do you have for improv-
ing output to the committee? How can the budget constraints of the
zoo be met while still allowing the committee to receive the output
it needs to function? Comment on the adequacy of the output tech-
nology that is currently in use at the zoo. Suggest alternatives or
modifications to output and output technology that would enhance
what is being done. (Hint: Consider ways in which the committee
can leverage its use of the Internet—say, more use of the Web—to
get the output that it needs and that it needs to share.) Analyze both
internal and external output requirements.

site of the RSS feed; a link, often the same link as the Web page; a short description; copyright; the
language the text is written in, using a standard code such as en-us (for English—United States);
pubDate (the published date); lastBuildDate (the date that the RSS feed was last modified); im-
ages; text; and other information. RSS feeds are usually marked on a Web page by white XML or
RSS text on an orange button. Recently an orange square with three white lines depicting radio
waves was introduced in Firefox as a secondary button symbol, and it is gaining in popularity.

RSS is supposed to be really simple. It is made up of a feed (also known as a channel), which
has a title, link, and description, followed by a number of news items, each with its own title, link,
and description. Although it is supposed to be simple, you should realize that there are over a half
a dozen different versions of RSS and a similar syndication format called Atom. Developers can
provide RSS feeds on their company’s Web site or develop them for clients.

The RSS feed is read using RSS reader software, often a free program. These readers, some-
times called news aggregators, are programs that track updates, download, categorize, and display
RSS feeds. RSS is a way of gathering and distributing news and other content from multiple sources.
RSS news readers can either stand alone or be integrated with your browser as plug-ins. At the time
this book is being written, popular news readers are Bloglines, BottomFeeder, FeedDEMON, MY

336 PART IV • THE ESSENTIALS OF DESIGN

MSN, My Yahoo!, NewsIsFree, NEWSMONSTER, Pluck, RSSBANDIT, SHARPREADER, and
Wizz RSS (for Firefox browsers). Soon the market for RSS readers will shake out and only a few
RSS readers will survive.

RSS has the advantage of efficiently organizing news and other information from a variety
of sources chosen by the user. It is also timely, with the latest news displayed first. RSS is not lim-
ited to news but can be used to keep track of the latest revision of a book or manuscript, check
new movie or theatre reviews, or gain early knowledge of new software for your mobile phone.

PULL TECHNOLOGY. An important output technology made possible by the Web is pull
technology. If you have tried to pull information from the Web by clicking on links, you have used
the most basic type of pull technology.

In the future, evolutionary agents (programmed using intelligent agent software) may be used
to help organizational members find what they need on the Web. These agents will relieve some
of the users’ typical burden of searching the Web, because the agents will observe and understand
users’ behavior as they interact with a variety of material on the Web, and then can be pro-
grammed to seek out the information users want. In this way, Web searches will be more efficient
and more effective for users.

PUSH TECHNOLOGY. Another type of output analysts design is Web and wireless content
delivered via push technology. Push technology can be used for external communication to push
(electronically send) solicited or unsolicited information to a customer or client. It can also be
used within the organization to focus the immediate attention of an employee or a decision maker
who is facing a critical deadline to critical items. The term push technology can be described as
any content sent to users at specified times, from basic Webcasting to selective content delivery
using sophisticated evolutionary filtering agents.

Many traditional as well as Internet-based businesses are experimenting with push technol-
ogy. Push technology can get the information to the person who needs it. Broadcasting informa-
tion to all employees is less expensive than printing out information and then distributing it to a
select few. However, the analyst needs to guard against flooding employees with meaningless
pushed information.

Push technologies are highly flexible. For example, when output is delivered over an intranet
to a PC, the user is able to take it and customize it in many ways. An employee may decide to
look at a single product or may want to generate a graph of sales over time.

Factors to Consider When Choosing Output Technology
There are several factors to consider when choosing output technology. Although the technology
changes rapidly, certain usage factors remain fairly constant in relation to technological break-
throughs. These factors, some of which present trade-offs, must be considered. They include the
following:

1. Who will use (see) the output (requisite quality)?
2. How many people need the output?
3. Where is the output needed (distribution, logistics)?
4. What is the purpose of the output? What user and organizational tasks are supported?
5. What is the speed with which output is needed?
6. How frequently will the output be accessed?
7. How long will (or must) the output be stored?
8. Under what special regulations is the output produced, stored, and distributed?
9. What are the initial and ongoing costs of maintenance and supplies?

10. What are the human and environmental requirements (accessibility, noise absorption,
controlled temperature, space for equipment, cabling, and proximity to Wi-Fi transmitters
or access points—i.e., hot spots) for output technologies?

Examining each factor separately will allow you to see the interrelationships and how they may
be traded off for one another in a particular system.

WHO WILL USE (SEE) THE OUTPUT? Discovering who will use the output is important because job
requirements help dictate what output method is appropriate. For example, when district
managers must be away from their desks for extended periods, they need printed output that can

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 337

travel with them or technology that can access appropriate Web sites and databases as they visit
the managers in their region. Screen output or interactive Web documents are excellent for people
such as truck dispatchers who are deskbound for long periods.

External recipients of output (clients and customers, vendors and suppliers, shareholders, and
regulatory agencies) and users within the business will require different output. Clients, vendors,
and suppliers can be part of several extranets, which are networks of computers built by the or-
ganization, providing applications, processing, and information to users on the network.

Examine the Web site shown in Figure 11.4 for an ecommerce company called Merchants
Bay. The Web designer is attuned to the intended users of the wholesale gift site. The ecommerce
company’s Web site is powered by a patented negotiating algorithm in which users submit bids
(for 1 item or 400) on an array of merchandise. The company’s strategy is based on the president’s
personal experience with flea markets and the observation that people are powerfully attracted to
bargaining for a deal.

The Web site intentionally invokes a cluttered feel, similar to what one gets walking
through a flea market. The site is intended for customers who would frequent flea markets in
person: They are known to be collectors, gregarious and curious by nature. The Web site is a
profusion of colors, includes a variety of sale signs in a mixture of lettering, and even incorpo-
rates a video that provides new layers of color and action. Colloquial language is used through-
out the site.

Notice that the company’s catchphrase is “purveyor of good stuff.” The Web designer has
carried out a nautical metaphor throughout the site. The user is invited to “search the Bay” for
merchandise. In addition, the company’s logo includes a wave and a sun on the horizon, and an
icon of a ship’s steering wheel is placed above a column that invites the user to “navigate” for
products, services, and customer service.

To complete a transaction on the site, a customer has an opportunity to accept the “Captain’s
price” as posted or to submit a bid. If the bid submitted is too low according to the stored nego-
tiation algorithm, a natural language response is returned in a pop-up window stating: “Thanks
for your offer, mate. You don’t like to part with your money if you don’t have to, heh? Yet hey, I
like ya, mate. Please try again by offering a better price or by ordering a larger quantity.” In this
way, the bid is rejected in a friendly, humorous way, and bidders are even given two hints on how
to improve the chances that their next bids will be successful. The Web designer clearly had a
solid profile of the intended customer in mind when designing the site.

HOW MANY PEOPLE NEED THE OUTPUT? Choice of output technology is also influenced by how
many users need the output. If many people need output, Web-based documents with a print
option or printed copies are probably justified. Some external customers may want a printed copy

FIGURE 11.4
When designing a Web site, it is
important to choose a metaphor
that can be used throughout the
site. This example from Merchants
Bay (www.merchantsbay.com)
employs a nautical theme.

www.merchantsbay.com

338 PART IV • THE ESSENTIALS OF DESIGN

of specific documents, such as a stockholder report or a monthly billing statement, but others may
prefer Web-based documents with an email notification. If only one user needs the output, a
screen or audio may be more suitable.

If many users in the business need different output at different times for short periods and
they need it quickly, Web documents or screens connected to online terminals that are able to ac-
cess database contents are a viable option.

WHERE IS THE OUTPUT NEEDED (DISTRIBUTION, LOGISTICS)? The choice of output technology is
also influenced by the physical destination of the output. Information that will remain close to its
point of origin, that will be used by only a few users in the business, and that may be stored or
referred to frequently can safely be printed or mounted on an intranet. An abundance of
information that must be transmitted to users at great distances in branch operations may be better
distributed electronically, via the Web or extranets, with the recipient customizing it.

Sometimes federal or state regulations dictate that a printed form remain on file at a particu-
lar location for a specified period of time. In those instances, it is the responsibility of the systems
analyst to see that the regulation is observed for any output that is designed.

WHAT IS THE PURPOSE OF THE OUTPUT? What user and organizational tasks are supported?
Consider the purpose of the output when choosing output technology. If it is intended to be a report
created to attract shareholders to the business by allowing them to peruse corporate finances at their
leisure, well-designed, printed output such as an annual report is desirable. A variety of media may
also be used so that the annual report is available on the Web as well as in printed form.

If the purpose of the output is to provide instant updates on stock market quotes, and if the
material is highly encoded and changeable, screen crawls, Web pages, or audio presentations are
preferable. Output must support user tasks, such as performing analysis, or determining ratios, so
software tools, including calculators and embedded formulae, could be part of output. It must also
support organizational tasks such as tracking, scheduling, and monitoring.

WHAT IS THE SPEED WITH WHICH OUTPUT IS NEEDED? As we go through the three levels of
strategic, middle, and operations management in the organization, we find that decision makers
at the lowest level of operations management need output rapidly so that they can quickly adjust
to events, such as a stopped assembly line, raw materials that have not arrived on time, or a worker
who is absent unexpectedly. Online screen output may be useful here.

As we ascend the management levels, we observe that strategic managers are more in need
of output for a specific time period, which helps in forecasting business cycles and trends.

HOW FREQUENTLY WILL THE OUTPUT BE ACCESSED? The more frequently output is accessed, the
more important is the capability to view it on a display connected to local area networks or the Web.
Infrequently accessed output that is needed by only a few users is well suited to a CD-ROM archive.

Output that is accessed frequently is a good candidate for incorporation into Web-based or
other online systems or networks with displays. Adopting this type of technology allows users
easy access and alleviates physical wear and tear that cause frequently handled printed output to
deteriorate.

HOW LONG WILL (OR MUST) THE OUTPUT BE STORED? Output printed on paper deteriorates
rapidly with age. Output preserved on microforms or digitized in archives is not as prone to
succumb to environmental disturbances such as light, humidity, and human handling. However,
if hardware to access the archived material becomes hard to acquire or obsolete, this output
method can become problematic.

A business may be subject to governmental regulations on local, state, or federal levels that
dictate how long output must be kept. As long as the corporation is willing to maintain it and it is
nonproprietary, archival information, it can be maintained in Web documents as part of the orga-
nization’s Web site. Organizations can enact their own internal policies about how long output
must be retained.

UNDER WHAT SPECIAL REGULATIONS IS THE OUTPUT PRODUCED, STORED, AND DISTRIBUTED?
The appropriate format for some output is actually regulated by the government. For example, in
the United States, the statement of an employee’s wages and tax withholding, called a W-2 form,
must be printed; its final form cannot be a screen or microform output. Each business in each
country exists within a different complex of regulations under which it produces output. To that
extent, appropriate technology for some functions may be dictated by law.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 339

Much of this regulation, however, is industry-dependent. For example, in the United States
a regional blood system is required by federal law to keep a medical history of a blood donor—
as well as his or her name—on file. The exact output form is not specified, but the content is
strictly spelled out.

WHAT ARE THE INITIAL AND ONGOING COSTS OF MAINTENANCE AND SUPPLIES? The initial
costs of purchasing or leasing equipment must be considered as yet another factor that enters into
the choice of output technology. Most vendors will help you estimate the initial purchase or lease
costs of computer hardware, including the cost of printers and displays, the cost of access to
online service providers (Internet access), or the costs of building intranets and extranets. Many
vendors, however, do not provide information about how much it costs to keep a printer or other
technologies working. Therefore, it falls to the analyst to research the costs of operating different
output technologies or of maintaining a corporate Web site over time.

WHAT ARE THE HUMAN ENVIRONMENTAL REQUIREMENTS FOR OUTPUT TECHNOLOGIES? Analysts
need to factor into their output decisions accessibility, noise absorption, controlled temperature, space
for equipment, cabling, and proximity to Wi-Fi transmitters or access points called “hot spots.” When
humans interact with technologies, specific environments help systems run more effectively and
efficiently. Users need accessibility and support in accessing Web pages as well as other output.

C O N S U L T I N G O P P O R T U N I T Y 1 1 . 2

A Right Way, a Wrong Way, and a Subway

“So far so good. Sure, there have been some complaints, but any
new subway will have those. The ‘free ride’ gimmick has helped at-
tract some people who never would have ridden otherwise. I think
there are more people than ever before interested in riding the sub-
way,” says Bart Rayl. “What we need is an accurate fix on what rid-
ership has been so far so we can make some adjustments on our fare
decisions and scheduling of trains.”

Rayl is an operations manager for S.W.I.F.T., the newly built
subway for Western Ipswich and Fremont Transport that serves a
major northeastern city in the United States. He is speaking with
Benton Turnstile, who reports to him as operations supervisor of
S.W.I.F.T. The subway system is in its first month of operation, of-
fering limited lines. Marketing people have been giving away free
rides on the subway to increase public awareness of S.W.I.F.T.

“I think that’s a good idea,” says Turnstile. “It’s not just a to-
ken effort. We’ll show them we’re really on the right track. I’ll get
back to you with ridership information soon,” he says.

A month later, Rayl and Turnstile meet to compare the pro-
jected ridership with the new data. Turnstile proudly presents a two-
inch-high stack of computer printouts to Rayl. Rayl looks a little
surprised but proceeds to go through it with Turnstile. “What all is
in here?” Rayl asks, fingering the top page of the stack hesitantly.

“Well,” says Turnstile, training his eyes on the printout, “it’s a
list of all the tickets that were sold from the computerized machines.
It tells us how many tickets were bought and what kinds of tickets
were bought. The guys from Systems That Think, Inc., told me this
report would be the most helpful for us, just like it was for the op-
erations people in Buffalo and Pittsburgh,” says Turnstile, turning
quickly to the next page.

“Maybe, but remember those subway systems began with really
limited service. We’re bigger. And what about the sales from the three
manned ticket booths in the Main Street Terminal?” asks Rayl.

“The clerks in the booth can get information summarizing
ticket sales onscreen any time they want it, but it’s not included
here. Remember that we projected that only 10 percent of our sales
would be from the booths anyway. Let’s go with our original idea
and add that to the printout,” suggests Turnstile.

Rayl replies, “But I’ve been observing riders. Half of them
seem to be afraid of the automated ticket machines. Others start us-
ing them, get frustrated reading the directions, or don’t know what
to do with the ticket that comes out, and they wind up at the ticket
booth blowing off steam. Furthermore, they can’t understand the
routine information posted on the kiosks, which is all in graphics.
They wind up asking clerks what train goes where.” Rayl pushes the
printout holding the ticket sales to one side of the conference table
and says, “I don’t have much confidence in this report. I feel as if
we’re sitting here trying to operate the most sophisticated subway
system in the United States by peering down a tunnel instead of at
the information, like we should be. I think we need to think seri-
ously about capturing journey information on magnetically stripped
cards like the New York Transit Authority is doing. Every time you
insert the card to take a ride, the information is stored.”

What are some of the specific problems with the output that the
systems consultants and Benton Turnstile gave to Bart Rayl? Eval-
uate the media that are being used for output as well as the timing
of its distribution. Comment on the external output that users of the
automated ticket machines are apparently receiving. Suggest some
changes in output to help Rayl get the information he needs to make
decisions on fares and scheduling of trains, and to help users of the
subway system get the information they need. What are some deci-
sions facing organizations like the New York Transit Authority if
they collect and store input concerning an individual’s destinations
each time a trip is taken? What changes would S.W.I.F.T. have to
make to its output and its tickets if it adopted this technology?

Printers require a dry, cool environment to operate properly. Displays require space for setup
and viewing. Audio and video output require a quiet environment if they are to be heard, and they
should be audible only to employees (or customers) who are using them. Thus, the analyst should
not specify audio output for a work situation in which many employees or customers are engaged
in a variety of tasks unrelated to the output.

In order to set up wireless local area networks so users can access the Web wirelessly, Wi-Fi
access points need to be made available. These work when PCs are within a few hundred feet of
transmitters, but can be subject to interference by other devices.

Some output technologies are prized for their unobtrusiveness. Libraries, which emphasize
silence in the workplace, make extensive use of displays for Web documents and other networked
database information, but printers might be scarce.

REALIZING HOW OUTPUT BIAS AFFECTS USERS
Output is not just a neutral product that is subsequently analyzed and acted on by decision mak-
ers. Output affects users in many different ways. Systems analysts must put great thought and care
into designing the output so as to avoid biasing it.

Recognizing Bias in the Way Output Is Used
It is a common error to assume that once the systems analyst has signed off on a system project,
his or her impact is ended. Actually, the analyst’s influence is long-lasting. Much of the informa-
tion on which organizational members base their decisions is determined by what analysts per-
ceive is important to the business.

Bias is present in everything that humans create. This statement is not to judge bias as bad,
but to make the point that it is inseparable from what we (and consequently our systems) produce.
The concerns of systems analysts are to avoid unnecessarily biasing output and to make users
aware of the possible biases in the output they receive.

Presentations of output are unintentionally biased in three main ways:

1. How information is sorted.
2. Setting of acceptable limits.
3. Choice of graphics.

INTRODUCING BIAS WHEN INFORMATION IS SORTED. Bias is introduced to output when the
analyst and users make choices about how information is sorted for a report. Common sorts
include alphabetical, chronological, and cost.

Information presented alphabetically may overemphasize the items that begin with the let-
ters A and B, because users tend to pay more attention to information presented first. For exam-
ple, if past suppliers are listed alphabetically, companies such as Aardvark Printers, Advent
Supplies, and Barkley Office Equipment are shown to the purchasing manager first. When cer-
tain airlines created the SABRE and APOLLO reservations systems, they listed their own flights
first, until the other airlines complained that this type of sorting was biased.

INTRODUCING BIAS BY SETTING LIMITS. A second major source of bias in output is the
predefinition of limits for particular values being reported. Many reports are generated on an
exception basis only, which means that when limits on values are set beforehand, only exceptions
to those values will be output. Exception reports make the decision maker aware of deviations
from satisfactory values.

For example, limits that are set too low for exception reports can bias the user’s perception.
An insurance company that generates exception reports on all accounts one week overdue has set
too low a limit on overdue payments. The decision maker receiving the output will be over-
whelmed with “exceptions” that are not really cause for concern. The one-week overdue excep-
tion report leads to the user’s misperception that there are a great many overdue accounts. A more
appropriate limit for generating an exception report would be accounts 30 days or more overdue.

INTRODUCING BIAS THROUGH GRAPHICS. Output is subject to a third type of presentation bias,
which is brought about by the analyst’s (or users’) choice of graphics for output display. Bias can
occur in the selection of the graph size, its color, the scale used, and even the type of graphic.

Graph size must be proportional so that the user is not biased as to the importance of the vari-
ables that are presented. For example, Figure 11.5 shows a column chart comparing the number

340 PART IV • THE ESSENTIALS OF DESIGN

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 341

This diagram

doesn’t give

the true
picture.

Number of
No-Shows

400

410

420

430

440

450

2008 2009

FIGURE 11.5
A misleading graph will most
likely bias the user.

of no-shows for hotel bookings in 2008 with no-shows for hotel bookings in 2009. Notice that the
vertical axis is broken, and it appears that the number of no-shows for 2008 is twice as much as
the number of no-shows in 2009, although the number of no-shows has actually gone up only
slightly.

Avoiding Bias in the Design of Output
Systems analysts can use specific strategies to avoid biasing the output they and others design:

1. Be aware of the sources of bias.
2. Create an interactive design of output during prototyping that includes users and a variety

of differently configured systems when testing the appearance of Web documents.
3. Work with users so that they are informed of the output’s biases and can recognize the

implications of customizing their displays.
4. Create output that is flexible and that allows users to modify limits and ranges.
5. Train users to rely on multiple outputs for conducting “reality tests” on system output.

All these strategies (except the first) focus on the relationship between the systems analyst and
the user as it involves output. Systems analysts first need to recognize the potential impact of out-
put and be aware of the possible ways in which output is unintentionally biased. They then need
to be proactive in helping users design output with minimal, but identifiable, biases.

Designing Printed Output
The source of information to be included in reports is the data dictionary, the compilation of
which was covered in Chapter 8. Recall that the data dictionary includes names of data elements
as well as the required field length of each entry.

Reports fall into three categories: detailed, exception, and summary. Detailed reports print a re-
port line for every record on the master file. They are used for mailing to customers, sending stu-
dent grade reports, printing catalogs, and so on. Inquiry screens have replaced many detailed reports.

Exception reports print a line for all records that match a set of conditions, such as which hol-
iday decorations will be discounted the day after the holiday or which students are on the dean’s
list. They are usually used to help operational managers and clerical staff run a business. Sum-
mary reports print one line for a group of records and are used to make decisions, such as which
items are not selling and which are hot selling.

Guidelines for Printed Report Design
Figure 11.6 is an output report that is intended for divisional managers of a food wholesaler that sup-
plies a number of franchise grocery stores. We will focus on different aspects of the report as we
cover the tools, conventions, and functional and stylistic design attributes of printed output reports.

REPORT DESIGN CONVENTIONS. Conventions to follow when designing a form include the type
of data (alphabetic, special, or numeric) that will appear in each position, showing the size of the
form being prepared, and showing the way to indicate a continuation of data on consecutive
layout forms. Most form design software that analysts now use features standard conventions for
designing forms onscreen. In addition, it features familiar drag-and-drop interfaces that allow you
to select attributes such as an address block with a mouse click and then drop it on the screen

342 PART IV • THE ESSENTIALS OF DESIGN

C O N S U L T I N G O P P O R T U N I T Y 1 1 . 3

Should This Chart Be Barred?

“Gee, I’m glad they hired you guys. I know the Redwings will
be better next season because of you. My job’ll be a lot easier, too,”
says Andy Skors, ticket manager for the Kitchener, Ontario, hockey
team, the Kitchener Redwings. Andy has been working with your
systems analysis team on analyzing the systems requirements for
computerizing ticket sales.

Recall that when we last heard from the systems analysis team,
consisting of Hy Sticking (your leader), Rip Shinpadd, Fiona
Wrink, and you, you were wrestling with whether to expedite the
project and set team productivity goals (in “Goal Tending,” Con-
sulting Opportunity 3.5).

Andy is talking with the team about what to include in the sys-
tems proposal to make it as persuasive as possible to the Redwings’
management. “I know they’re going to like this chart,” Andy con-
tinues. “It’s a little something I drew up after you asked me all those
questions on past ticket sales, Rip.”

Andy hands the bar chart to Rip, who looks at it and suppresses
a slight smile. “As long as we have you here, Andy, why don’t you
explain it to us?”

Like a player fresh out of the penalty box, Andy skates
smoothly into his narrative of the graph. “Well, our ticket sales

reached an all-time high in 2007. We were real crowd pleasers that
year. Could’ve sold seats on the scoreboard if they let me. Unfortu-
nately, ticket sales were at an all-time low in 2009. I mean, we’re
talking about a disaster. Tickets moved slower than a glacier. I had
to convince the players to give tickets away when they made appear-
ances at the shopping mall. Why, just look at this table, it’s terrible.

“I think computerizing the ticket sales will help us pick out
who our season supporters are. We’ve got to figure out who they are
and get them back. Get them to stick with us. That would be a good
goal to shoot for,” Andy concludes.

As Andy’s presentation finally winds down, Hy looks as if he
thought the 20-minute period would never end. Picking up on his
signal, Fiona says, “Thanks for the data, Andy. We’ll work on get-
ting them into the report somehow.”

As Fiona and Rip head out of the room with Andy, Hy realizes
the bench has emptied, so he asks you, the fourth team member, to
coach Andy on his bar chart by making a list of the problems you
see in it. Hy would also like you to sketch some alternative ways to
graph the data on ticket sales so that a correct and persuasive graph
of ticket sales can be included in the systems proposal. Draw two
alternatives.

2009

2008

2005

2006

2007

11,000 12,000 13,000 14,000 15,000

5,000 6,000 7,000 8,000 9,000 10,000

What is wrong

with this
chart?
 -Hy

2007
2006
2005
2008
2009

Best year

Worst year

15,643
14,880
14,100
13,254
12,690

7,505
6,808
7,089
6,735
6,351

Status Year

Average
tickets sold
per game

Season
tickets sold
per season

FIGURE 11.C1
An incorrectly drawn graph.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 343

C 5 1 1 2 F r o n t R o y a l , V A
2 0 2 3 5 1 1 2 6 5 3 . 9 3 2 1 . 8 5 4 . 0 2 , 1 4 4 1 . 7

S 4 3 1 1 R o c k v i l l e , M D
4 0 4 1 5 2 1 4 4 6 4 . 2 7 0 0 . 3 4 3 . 1 2 , 0 6 2 1 . 4

R 3 0 2 1 M i d d l e b u r g , V A
2 0 2 2 5 3 9 5 4 4 . 2 9 2 1 . 9 4 4 . 0 2 , 0 5 7 2 . 2

S 5 0 2 1 C u l p e p e r , V A
2 0 2 6 5 4 2 1 9 8 3 . 7 8 3 1 . 5 1 0 4 . 4 2 , 0 0 5 0 . 9

R 2 8 2 0 W a l d o r f , M D
4 0 4 2 5 5 7 2 3 4 . 6 9 1 1 . 2 2 3 . 3 1 , 9 0 3 2 . 6

C 4 4 2 4 F a i r f a x - L e e H g w y 2 0 2 2 5 6 1 3 1 5 4 . 1 6 2 1 . 3 5 4 . 0 1 , 8 6 9 1 . 4

C 4 4 2 3 B a i l e y s X - R o a d s
2 0 2 2 5 7 9 8 5 4 . 7 0 2 1 . 7 5 4 . 6 1 , 7 2 7 1 . 8

S 3 8 2 1 H e r n d o n , V A
2 0 2 3 5 8 2 2 1 7 3 . 3 5 4 1 . 7 9 4 . 2 1 , 7 0 3 0 . 8

C 7 1 2 6 F r e d e r i c k , M D
3 0 3 2 5 9 1 2 5 5 4 . 0 4 2 1 . 6 5 4 . 3 1 , 6 1 5 1 . 3

S 8 0 2 9 C e n t r e v i l l e , V A
2 0 2 7 6 0 1 7 5 7 3 . 7 3 3 1 . 9 8 4 . 7 1 , 5 9 3 0 . 9

R 5 0 2 9 M i n n i e v i l l e , V A
2 0 3 4 6 1 3 4 2 5 . 2 8 1 3 . 3 1 4 . 0 1 , 5 7 2 4 . 7

S 7 5 2 0 M o u n t V e r n o n
2 0 2 4 6 2 9 0 5 5 . 2 2 2 1 . 7 5 5 . 2 1 , 5 5 8 1 . 7

C 4 7 1 2 D . C . M S t r e e t
4 0 4 4 6 3 2 3 5 1 0 4 . 3 5 4 1 . 8 1 3 5 . 5 1 , 4 8 9 0 . 6

S 4 7 1 6 A n n a n d a l e
2 0 2 5 6 4 1 2 6 6 4 . 5 2 0 0 . 1 4 3 . 5 1 , 4 5 7 1 . 2

S 7 9 2 2 V i e n n a , V A
2 0 2 5 6 5 1 7 7 9 4 . 8 6 2 1 . 2 9 5 . 3 1 , 4 4 7 0 . 8

R 4 4 9 1 G r e a t F a l l s
2 0 2 4 6 6 8 6 4 4 . 3 9 2 1 . 9 4 4 . 7 1 , 3 6 4 1 . 6

R 3 9 2 6 H a r p e r ’ s F e r r y
3 0 3 3 6 7 6 8 3 4 . 8 0 0 0 . 3 2 3 . 1 1 , 3 2 5 1 . 9

C 2 4 2 2 F a l l s C h u r c h
2 0 2 7 6 8 1 4 4 6 4 . 0 6 2 1 . 4 7 4 . 6 1 , 3 2 2 . 9

R 3 0 2 4 C l i f t o n , V A
2 0 2 3 6 9 5 3 3 5 . 1 7 1 1 . 6 2 4 . 3 1 , 2 7 3 2 . 4

C 4 5 1 1 S i l v e r S p r i n g , M D 2 0 4 2 7 0 1 2 1 5 4 . 0 6 1 1 . 2 5 4 . 3 1 , 2 3 7 1 . 0

R 5 1 2 0 O l n e y , M D
3 0 3 1 7 1 4 3 2 4 . 6 0 1 . 2 . 2 4 . 0 1 , 2 1 7 2 . 8

C 4 5 2 7 D . C C o n n e c t i c u t A v e 4 0 4 5 7 2 1 1 0 5 4 . 2 8 0 0 . 2 4 3 . 4 1 , 2 0 0 1 . 1

C 4 5 2 6 P e n n s y l v a n i a A v e 4 0 4 2 7 3 1 3 4 6 4 . 5 5 0 0 . 2 5 4 . 0 1 , 0 7 3 0 . 8

S 2 9 2 3 M a n a s s a s
2 0 2 5 7 4 1 9 8 7 3 . 5 4 0 0 . 1 6 3 . 1 1 , 0 5 7 0 . 5

C i t y S t o r e s

6 , 0 2 5 2 5 5 4 . 2 3 6 7 1 . 1 1 9 0 3 . 2 6 9 , 9 8 7 1 . 2

S u b u r b a n S t o r e s

3 , 4 0 2 1 7 1 5 . 0 3 5 4 1 . 6 1 3 3 3 . 9 3 5 , 0 2 0 1 . 0

R u r a l S t o r e s

2 , 0 1 8 9 2 4 . 5 6 2 7 1 . 3 4 7 2 . 3 4 3 , 2 2 3 2 . 1

T o t a l (A l l S t o r e s i n R e g i o n)
1 1 , 4 4 5 5 1 8 4 . 5 2 1 4 8 1 . 3 3 7 0 3 . 2 1 4 8 , 2 3 0 1 . 3

F r a n c h i s e S t o r e I n f o r m a t i o nR a n k e d b y E a r n i n g s i n D o l l a r sF o r t h e M o n t h E n d i n g M M / D D / Y Y Y Y
D

S a l e s G r o s s
O t h e r

A l l o c a t e d

I
D o l l a sr P r o f i t I n c o m e E x p e n s e s

E a r n i n g s

F N O S t o r e N a m e s
V D i s t R a n k 1 , 0 0 0 ’ s 1 , 0 0 0 ’ s % 1 , 0 0 0 ’ s % 1 , 0 0 0 ’ s % D o l l a r s %

P a g e 2

FIGURE 11.6
A printed output report for
divisional managers of a food
wholesaler.

where you want to position it on your form. You will be using WYSIWYG (what you see is what
you get) so it makes the design of forms a very visual exercise.

Constant information is information that remains the same whenever the report is printed. The
title of the report and all the column headings are written as constant information. Variable infor-
mation is information that can vary each time the report is printed out. In our example, the sales fig-
ures in thousands of dollars will change; hence, they are indicated as variable information.

PAPER QUALITY, TYPE, AND SIZE. Output can be printed on innumerable kinds of paper. The
overriding constraint is usually cost. One example is the use of security paper for checks and
check envelopes, as well as for documents that must bear official, inalterable seals or holograms,
such as passports.

Preprinted forms can easily convey a distinctive corporate image through the use of corpo-
rate colors, logos, and other design elements. Using innovative shapes, colors, and layouts is also
a dramatic way of drawing users’ attention to the report contained on the preprinted form.

DESIGN CONSIDERATIONS. In designing the printed report, the systems analyst works with users
to incorporate both functional and stylistic or aesthetic considerations so that the report supplies
the user with necessary information in a readable and pleasing format. Because function and form
reinforce each other, one should not be emphasized at the expense of the other.

Functional Attributes The functional attributes of a printed report include (1) the heading or title
of the report, (2) the page number, (3) the date of preparation, (4) the column headings, (5) the
grouping of related data items together, and (6) the use of control breaks. Each of these serves a
distinctive purpose for the user.

There are several stylistic or aesthetic considerations for the systems analyst to observe when
designing a printed report. If printed output is unappealing and difficult to read, it will not be used
effectively or may not be used at all. The upshot is uninformed decision makers and a waste of
organizational resources.

344 PART IV • THE ESSENTIALS OF DESIGN

Printed reports should be well organized, reflecting the way that the eye sees. In this culture,
that means that the report should read from top to bottom and left to right. Related data items
should be grouped together. The aesthetics of Web site and Web page design are covered in an up-
coming section of this chapter.

DESIGNING OUTPUT FOR DISPLAYS
Chapter 12 covers designing displays for human or computer input, and the same guidelines also
apply here for designing output, although the contents will change. Notice that output for displays
differs from printed output in a number of ways. It is ephemeral (that is, a display is not perma-
nent in the same way that printouts are), it can be more specifically targeted to the user, it is avail-
able on a more flexible schedule, it is not portable in the same way, and sometimes it can be
changed through direct interaction.

In addition, users must be instructed on which keys to press, links to click, or how to scroll
when they want to continue reading additional displays, when they want to know how to end the
display, and when they want to know how to interact with the display (if possible). User access
to displays may be controlled through a password, whereas distribution of printed output is con-
trolled by other means.

Guidelines for Display Design
Four guidelines facilitate the design of displays:

1. Keep the display simple.
2. Keep the presentation consistent.
3. Facilitate user movement among displayed output.
4. Create an attractive and pleasing display.

Just as with printed output, good displays are not created in isolation. Systems analysts need the
feedback of users to design worthwhile displays. Once approved by users after successive proto-
types and refinements, the display layout can be finalized.

The output produced from the design display is pictured in Figure 11.7. Notice that it is un-
cluttered, but it still gives a basic summary of the shipping status. The display orients users as to
what they are looking at with the use of a heading. Instructions at the bottom of the display pro-

Retailer Order # Order Date Order Status
Animals Unlimited 933401 09/05/2009 Shipped On 09/29

934567 09/11/2009 Shipped On 09/21
934613 09/13/2009 Shipped On 09/21
934691 09/14/2009 Shipped On 09/21

Bear Bizarre 933603 09/02/2009 Partially Shipped
933668 09/08/2009 Scheduled For 10/03
934552 09/18/2009 Scheduled For 10/03
934683 09/18/2009 Shipped On 09/28

Cuddles Co. 933414 09/12/2009 Shipped On 09/18
933422 09/14/2009 Shipped On 09/21
934339 09/16/2009 Shipped On 09/26
934387 09/18/2009 Shipped On 09/21
934476 09/25/2009 Backordered

Stuffed Stuff 934341 09/14/2009 Shipped On 09/26
934591 09/18/2009 Partially Shipped
934633 09/26/2009 Backordered
934664 09/29/2009 Partially Shipped

New Zoo Order Status

Press any key to see the rest of the list; ESC to end; ? for help
For more detail place cursor over the order number and hit the Enter key.

FIGURE 11.7
The New Zoo output display
screen is uncluttered and orients
users well.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 345

Order # Retailer Order Date Order Status
933603 Bear Bizarre 09/02/2008 Partially Shipped

1001 Karhu Lane
Bern, Virginia 22024

Press any key to see the rest of the list; ESC to end; ? for help

Units Pkg Description Price Amount Detailed Status
12 Each Floppy Bears 20.00 240.00 Backordered Due 10/15
6 Each Growlers 25.00 150.00 Backordered Due 10/15
2 Each Special Edition 70.00 140.00 Shipped 09/02
1 Box Celebrity Mix 150.00 150.00 Shipped 09/02

12 Each Santa Bears 10.00 120.00 Backordered Due 10/30
800.00

Contact Account Balance Credit Rating Last Order Shipped
Ms. Ursula Major 0.00 Excellent 08/21/2008 On Time
703-484-2327

FIGURE 11.8
If users want more details
regarding the shipping status, they
can call up a separate screen.

vide users with several options, including continuing the present display, ending the display, get-
ting help, or getting more detail. This display provides context for users attempting to complete
a task such as checking on the status of an order.

Output displays in an application should show information consistently from page to page.
Figure 11.8 shows the display that results when the user positions the cursor over the order num-
ber for a particular retailer. The new display presents more details on Bear Bizarre. In the body
of the display, the user can see the retailer’s order number, complete address, the order date, and
the status. In addition, a detailed breakdown of the shipment and a detailed status of each part of
the shipment are given. A contact name and phone number are supplied, along with the account
balance, credit rating, and shipment history. Notice that the bottom portion of the display advises
the user of options, including more details, ending the display, or getting help. Users are provided
control over what they might do next while viewing the display.

Rather than crowding all retailer information onto one page, the analyst has made it possible
for the user to bring up a particular retailer if a problem or question arises. If, for example, the
summary indicates that an order was only partially shipped, the user can check further on the or-
der by calling up a detailed retailer display and then following up with appropriate action.

Using Graphical Output in Screen Design
Graphical output can be powerful. It is much easier to identify a trend or notice a pattern when
the right graph is displayed. Most people notice differences in graphs more easily than they no-
tice differences in tables. It is important to collaborate with users in choosing the correct style of
graph to communicate your meaning.

As with the presentation of tabular output, graphical output needs to be accurate and easy to
understand and use if it is to be effective in communicating information to users. Decision mak-
ers using the graphs need to know the assumptions (biases) under which the graphs are being con-
structed so that they can adjust to or compensate for them.

In designing graphical output, the systems analyst and any users involved in design prototyp-
ing must determine (1) the purpose of the graph, (2) the kind of data that need to be displayed, (3)
its audience, and (4) the effects on the audience of different kinds of graphical output. In the instance
of a decision support system, the purposes of graphical displays are to support any of the three
phases of problem solving a user experiences: intelligence, design, or choice. An example from the
Nebraska State Patrol workforce planning DSS is shown in Figure 11.9. Here, current response
times, forecasted response times, and minimum requirements are graphed as differently shaded bars.

Dashboards
Decision makers need output that helps them make decisions effectively and quickly. It helps ex-
ecutives and other decision makers if all the information they need to make decisions is displayed
in front of them. When given a written report, a decision maker would prefer all the information
to be contained in that one report rather than searching for information in other places. The same
principle applies to screen design.

A dashboard, similar to the dashboard in a car, has many different gauges. Each gauge can
display a graph (similar to the speed in miles or kilometers per hour), a problem light (similar to
a light showing that the automatic braking system is not functioning), or even text (like an odome-
ter that simply counts the miles traveled).

An executive can find a dashboard to be extremely useful in making decisions, but only if
the dashboard is designed properly. The dashboard in Figure 11.10 shows that a considerable
amount of information can be included on a single screen.

346 PART IV • THE ESSENTIALS OF DESIGN

FIGURE 11.10
This dashboard has a variety of
displays depicting performance
measurements to help make
decisions.

50

Current

Time (in
minutes)

Average Response Time per Troop Area
Nebraska State Patrol

HQ A B C D E State

MinimumForecasted

Troop Area Workforce

45

40

35

30

25

20

15

10

5

0

FIGURE 11.9
A bar chart display for onscreen
inspection of troop time response.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 347

Dashboards are all about communicating measurements to the user. An executive uses a
dashboard to review performance measures and to take action if the information on the screen
calls for it. Here are some rules of thumb that can be used to make the dashboard you design more
attractive and more effective:

1. Make sure the data have context. If you design a screen stating that sales last month were
$851,235, what does that mean? Are sales above or below average?

2. Display the proper amount of summarization and precision. It will clutter the screen if you
display last month’s sales as $851,235.32 instead of $851,235 or even $851K.

3. Choose appropriate performance measures for display. For example, plotting the difference
in actual versus expected sales in a deviation chart is much more meaningful than using a
line chart to plot actual and expected sales.

4. Present data fairly. If you introduce bias into the dashboard, it will hinder rather than
support good decisions.

5. Choose the correct style of graph or chart for display. Using the correct chart is important.
While a pie chart may be an excellent graph to persuade someone, it may not be a good
way for an executive to monitor the performance of regional offices, for example.

6. Use well-designed display media. Even if you choose the very best type of graph, you still
need to draw, size, color, and label the graph in a meaningful and pleasing way.

7. Limit the variety of item types. Keep the number of graph, chart, and table styles to a
minimum so that the information can be communicated quickly and accurately.

8. Highlight important data. Use bright colors and bold fonts only for important data. You can
highlight key performance measures or important exceptions that are occurring but not
both. Choose what to emphasize.

9. Arrange the data in meaningful groups. Performance measures are almost always
associated with other performance measures because of the data displayed or the type of
graph. Learn how to group associated items together.

10. Keep the screen uncluttered. Avoid photographs, ornate logos, or themes that can distract
users from the data.

11. Keep the entire dashboard on a single screen. All the performance measures are meant to
be on the same screen. If forced to switch screens, a user will not see two relevant
measures at the same time.

12. Allow flexibility. If an executive wants a different graph or chart, consider replacing it.
Prototyping the dashboard and refining it based on the user’s feedback makes sense.
Decision makers often know best when it comes to getting the right information in the
most appropriate form for their decision style.

Widgets and Gadgets—Changing the Desktop Metaphor
Related to dashboards are new, user-designed desktops. Systems designers who develop software
for personal computers should be aware of a trend to encourage users to personalize their desk-
tops with widgets and gadgets. These items are small programs, usually written in JavaScript and
VBScript, that reside either in a sidebar attached to a browser or program or even reside in a spe-
cial layer on the desktop itself.

Widgets (as they are called by Yahoo!), Dashboard Widgets (as they are called by Apple),
and Gadgets (as they are called by Google and Microsoft) can be any type of program that may
be useful to anyone interacting with a computer. Clocks, calculators, bookmark helpers, transla-
tors, search engines, easy access to utilities, quick launch panels, and sticky notes are popular pro-
ductivity widgets.

Stock tickers, weather reports, and RSS feeds are also useful widgets. Gadgets allow
users to track packages and check schedules. The user can put amusements like games, music
podcasts, and hobbies on their desktop as well. Widgets and gadgets possess dual, almost par-
adoxical natures. They can empower users to take part in the design of their own desktop, and
designers who are observant can learn a lot about what users prefer when they study user-
designed desktops. But widgets and gadgets can also distract people from system-supported
tasks. Designers need to work with users to support them in achieving a balance. One possi-
bility is to add user-specific performance measures as widgets and gadgets that are helpful to
decision makers.

348 PART IV • THE ESSENTIALS OF DESIGN

DESIGNING A WEB SITE
You can borrow some of the design principles from designing displays when you design a Web
site. Remember, though, that the key word here is site. The first documents displayed on the In-
ternet using the http protocol were called home pages, but it became apparent very quickly that
companies, universities, governments, and people were not going to be displaying just one
page. The term Web site replaced home page, indicating that the array of pages would have to
be organized, coordinated, designed, developed, and maintained in an orderly process.

Printing is a highly controlled medium, and the analyst has a very good idea of what the out-
put will look like. GUI and character-based (CHUI, character-based user interface) screens are
also highly controlled. The Web, however, is a very uncontrolled environment for output.

Different browsers display images differently, and screen resolution has a large impact on
the look and feel of a Web site. The standard resolutions are 1024 � 768 pixels or 1600 � 1200
pixels. The issue is further complicated by the use of handheld devices, such as mobile phones,
that are used to browse the Web. The complexity deepens when you realize that each person
may set a browser to use different fonts and may disable the use of JavaScript, cookies, and
other Web programming elements. Analysts and users face many decisions when designing a
Web site.

In addition to the general design elements discussed earlier in this chapter, there are specific
guidelines appropriate for the design of professional-quality Web sites. Web terms are defined in
Figure 11.11.

General Guidelines for Designing Web Sites
There are many tools as well as examples that can guide you in designing Web sites.

USE PROFESSIONAL TOOLS. Use software called a Web editor such as Adobe Dreamweaver or
Microsoft Expression Web. These tools are definitely worth the price. You will be more creative
and you’ll get the Web site finished much faster than working directly with HTML (hypertext
markup language).

C O N S U L T I N G O P P O R T U N I T Y 1 1 . 4

Is Your Work a Grind?

“Iwant everything I can get my hands on, and the tighter the in-
formation is packed, the better. Forget that stuff you hear about in-
formation overload. It’s not in my vocabulary. I want it all, and not
in a bunch of pretty-looking, half-page reports either. I want it all
together, packed on one sheet that I can take into a meeting in case
I need to look something up. And I need it every week,” proclaims
Stephen Links, vice president of a large, family-owned sausage
company.

During an interview, Links has been grilling Paul Plishka, who
is part of the systems analysis team that is busy designing an infor-
mation system for Links Meats. Although Paul is hesitant about
what Links has told him, he proceeds to design a printed report that
includes all the important items the team has settled on during the
analysis phase.

When a prototype of the new report, designed to his specifica-
tions, is handed to Stephen, however, there appears to be a change
of heart. Links says in no uncertain terms that he can’t find what he
needs.

“This stuff looks terrible. It looks like scraps. My kindergart-
ner makes better reports in crayon. Look at it. It’s all ground up to-
gether. I can’t find anything. Where’s the summary of the number
of beef items sold in each outlet? Where is the total volume of items
sold for all outlets? How about the information on our own shop
downtown?” says Links, slicing at the report.

The report clearly needs to be redesigned. Design a report (or
reports) that better suits Stephen Links. What approach can the an-
alyst take in suggesting more reports with a less-crowded format?
Comment on the difficulty of implementing user suggestions that
go against your design training. What are the trade-offs involved (as
far as information overload goes) in generating numerous reports as
opposed to generating one large report containing all the informa-
tion Stephen wants? Devise a heuristic concerning the display of re-
port information on one report in contrast to the generation of
numerous reports. Consider advocating a Web-based or dashboard
solution that would permit hyperlinks to all the information Stephen
desires. How feasible is that?

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 349

Web Term Meaning

Ajax

CSS

DHTML

GIF

Java

JPEG

HTML

http://

plug-ins

URL

VB .NET

Webmaster

WMP

A method using JavaScript and XML to dynamically change Web pages without displaying a new
page by obtaining small amounts of data from the server.

Cascading style sheets, a set of styles that control the formatting of a Web page. CSS may be stored
in a file and used to format a number of Web pages, or may be defined within a Web page.

Dynamic HTML, a way of combining JavaScript and perhaps cascading style sheets to have the
Web page change with user actions.

Graphic interchange format, a popular compressed image format best suited for artwork.

An object-oriented language that allows dynamic applications to be run on the Internet.
Nonprogrammers can use software packages such as Symantec’s Visual Café for Java.

Joint Photographic Expert Group, the acronym for a popular compressed image format best suited
for photographs, whose quality can be adjusted by the designer.

Hypertext markup language, the language behind the appearance of documents on the Web.
It is actually a set of conventions that mark the portions of a document, telling a browser what
distinctive format should appear on each portion of a page.

Hypertext transfer protocol, used to move Web pages between computers, such as from a
Web site on a computer in another country to your personal computer.

PHP An open source programming language, often used with MySQL, a database management system.

Additional software (often developed by a third party) that can be used with another program; for
example, RealNetworks’ Real Player or Macromedia Flash are used as plug-ins in Web browsers
to play streaming audio or video and view vector-based animation.

Uniform resource locator, the address of a document or program on the Internet. Familiar
extensions are .com for commercial, .edu for educational institution, .gov for government,
.org for organization, and so on.

Visual Basic .NET, a Microsoft programming environment.

The person responsible for maintaining the Web site.

Windows media photo, a Microsoft-developed alternative to JPEG.

FAQ Frequently Asked Questions. Web sites often have a page devoted to these so that the company
sales force or tech support is not inundated with the same questions over and over again
and users can have 24-hour access to answers.

FTP File transfer protocol, currently the most common way to move files between computer systems.

FIGURE 11.11
Web vocabulary terms.STUDY OTHER WEB SITES. Look at Web sites you and other users think are engaging. Analyze

what design elements are being used and see how they are functioning, then try to emulate what
you see by creating prototype pages. (It is not ethical or legal to cut and paste pictures or code,
but you still can learn from the other sites.)

Firefox, which is part of the open source software movement, is a useful browser for study-
ing other Web sites. It has a number of extensions created by third-party developers that are avail-
able as free downloads. Run Firefox and click “Tools/Extensions” and “Get More Extensions.”
There are pages of extensions, but one called Web Developer is very useful to designers and Web-
masters. It allows the analyst to outline tables and styles and to view JavaScript and cookies; it
provides form information as well as a wealth of other useful items from which to choose. Palette
Grabber is another extension that allows Web developers to see a display of color codes just by
picking any color on a Web site. There are also tools for working with XML. Figure 11.12 is an
example of the Web Developer toolbar used to highlight table cells. Notice the red border around
each individual cell.

350 PART IV • THE ESSENTIALS OF DESIGN

USE THE RESOURCES THAT THE WEB HAS TO OFFER. Look at Web sites that give hints on design.
One such site is useit.com.

EXAMINE THE WEB SITES OF PROFESSIONAL DESIGNERS. As you look at professionally designed
pages, ask yourself, “What works? What doesn’t work? In what ways can users interact with the
site?” For example, does the site have hot links to email addresses, interactive forms to fill in,
consumer surveys, games, quizzes, chat rooms, and so on? What about color schemes and
pervasive metaphors?

USE THE TOOLS YOU’VE LEARNED. Figure 11.13 provides a form that has been used successfully
by Web designers to evaluate Web pages systematically. You might want to use copies of the form

FIGURE 11.12
A Web developer can outline table
cells when designing a Web page,
as shown in this example.

Web Site Critique

Analyst’s Name

URL Visited

Time Visited:

Date Visited:

DESIGN Needs
Improvement

Excellent
Overall Appearance
Use of Graphics
Use of Color
Use of Sound/Video (Multimedia)Use of New Technology and Products

Content
Navigability
Site Management and Communications

COMMENTS:

CONTENT & INTERACTIVITY

SCORE

1
1
1
1
1

1
1
1

5
5
5
5
5

4
4
4
4
4

3
3
3
3
3

2
2
2
2
2

5
5
5

4
4
4

3
3
3

2
2
2

/40

FIGURE 11.13
A Web site evaluation form.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 351

to help you compare and contrast the many Web sites you will visit as you go about learning Web
page design.

CONSULT THE BOOKS. Something that can add to your expertise in this new field is to read about
Web design. Some books on Web site design are:

Eckerson, W. W. Performance Dashboards: Measuring, Monitoring, and Managing Your Busi-
ness. New York: John Wiley & Sons, Inc., 2005.

Few, S. Information Dashboard Design: The Effective Visual Communication of Data.
Sebastopol, CA: O’Reilly Media, Incorporated, 2006.

Flanders, V., and D. Peters. Son of Web Pages That Suck: Learn Good Design by Looking at Bad
Design. Alameda, CA: Sybex, 2002.

McNeil, P. The Web Designer’s Idea Book: The Ultimate Guide to Themes, Trends & Styles in
Website Design. New York: F�W Media, 2008.

M A C A P P E A L

There are many different approaches to creating Web sites. Coders want as much control over the
HTML code as possible, but many designers aren’t really that interested in tweaking the code. Good
designers want to be able to include many different items in both graphics and text, rotate and enhance
images, format them in carefully thought-out designs, and make them appear just right in any browser
and in any resolution. There are many WYSIWYG packages available that allow designers to do this,
both on a Mac and a PC. Some of these packages work well, but others don’t.

Softpress Systems, the developers of Freeway Pro, have created Web design software that has a
different approach. Unlike other software, Freeway Pro does not create code while a designer works.
Once a designer is pleased with their design, then Freeway Pro generates the code. In this way, the
code is extremely efficient. This is also a highly useful tool for prototyping. Freeway Pro assumes that
when standards change, updates to the software will allow Web designers to simply republish the en-
tire site using the updated standard.

FIGURE 11.MAC
Freeway Pro, from Softpress Systems, uses a unique approach for Web site designers.

352 PART IV • THE ESSENTIALS OF DESIGN

LOOK AT SOME POOR EXAMPLES OF WEB PAGES, TOO. Critique poor Web pages and remember
to avoid those mistakes. Examine the Web site found at www.webpagesthatsuck.com. Despite its
“counterculture” name, this is a wonderful site that provides links to many poorly designed sites,
and points out the errors that designers have made on them.

CREATE TEMPLATES OF YOUR OWN. If you adopt a standard-looking page for most of the pages
you create, you’ll get the Web site up and running quickly and it will consistently look good. Web
sites may be made using cascading style sheets (CSS) that allow the designer to specify the color,
font size, font type, and many other attributes only once. These attributes are stored in a style sheet
file and then are applied to many Web pages. If a designer changes a specification in the style
sheet file, all the Web pages using that style sheet will be updated to reflect the new style.

USE PLUG-INS, AUDIO, AND VIDEO VERY SPARINGLY. It is wonderful to have features that the
professional pages have, but remember that everyone looking at your site doesn’t have every new
plug-in. Don’t discourage visitors to your page.

PLAN AHEAD. Good Web sites are well thought out. Pay attention to the following:

1. Structure.
2. Content.
3. Text.
4. Graphics.
5. Presentation style.
6. Navigation.
7. Promotion.

Structure Planning the structure of a Web site is one of the most important steps in developing a
professional Web site. Think about your goals and objectives. Each page in the overall Web
structure should have a distinct message or other related information. Sometimes it is useful to
examine professional sites to analyze them for content and features. Figure 11.14 is a screen

Web site logo Feature storyjpeg image

Video
subscription

Quick links Main
stories

Chat roomsAdvertisements Email contact link

RSS feeds

Banner ads

Links to
sub-Webs

Search engine

FIGURE 11.14
The DinoTech Web site makes the
most of links, RSS feeds, video
subscriptions, and banner ads.

www.webpagesthatsuck.com

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 353

FIGURE 11.15
A Web site can be evaluated for
broken links by using a package
such as Microsoft Visio.

capture from the DinoTech Web site. The purpose for the site and the Web medium work well
together. Notice that there is great attention to supporting users on the site. There are words,
graphics, JPEG images, and icons. In addition, there are many kinds of links: to RSS feeds, video,
sub-Webs, chat rooms, a search engine, and many other features.

To help plan and maintain a solid structure, a Webmaster can benefit from using one of the
many Web site diagramming and mapping tools available. Many software packages, including
Microsoft Visio, have Web charting options built into the software. Although helpful for devel-
opment, these tools become even more important when maintaining a Web site. Given the dy-
namic nature of the Web, sites that are linked to your site may move at any time, requiring you or
your Webmaster to update the links.

In Figure 11.15, a map of a section of the authors’ Web site is shown in the Microsoft Visio
window. In this example, we explore the Web site down to all the existing levels. Notice the links
to HTML pages, documents, images (GIF or JPEG files), and mail-tos (a way to send email to a
designated person). The links can be either internal or external. If a link is broken, a red X ap-
pears and the analyst can investigate further. This Visio file can be printed out in sections and
posted on the wall to get an overall picture of the Web site.

Content Provide something important to Web site users. Exciting animation, movies, and sounds
are fun, but you have to include appropriate content to keep the user interested. Supply some
timely advice, important information, a free offer, or any activity that you can provide that is
interactive and moves users away from a browsing mode and into an interactive one.

“Stickiness” is a quality a Web site can possess. If a user stays at your site for a long period
of time, your site has a high degree of stickiness. That is why a merchant includes many items of
interest on a site. A wine merchant, for example, may put lessons on how to uncork a bottle, taste
the wine, or choose a proper glass.

Use a metaphor or images that provide a metaphor for your site. You can use a theme, such
as a storefront, with additional pages having various metaphors related to the storefront, such as
a deli. Avoid the overuse of cartoons, and don’t be repetitive.

Every Web site should include an FAQ (Frequently Asked Questions) page. Often these are
created based on the experiences of users and technical support people who identify the topics of
continuing concern. Eighty percent of the questions will fall into the FAQ category. By having
answers readily available, 24 hours a day, you will save valuable employee time and also save
user time. FAQ pages also demonstrate to users of your site that you are in concert with them and
have a good idea of what they would like to know.

354 PART IV • THE ESSENTIALS OF DESIGN

On the Web, COTS software takes on another meaning. A Web site may take advantage of
prewritten software. Examples include search engines (such as Google), mapping software
(such as MapQuest), weather information, and news and stock tickers. Web site designers value
these packages because they can increase the functionality of the site, and the additional fea-
tures encourage users to bookmark their clients’Web sites because they provide valuable bonus
content.

Text Remember that text is important, too. Each Web page should have a title. Place meaningful
words in the first sentence appearing on your Web page. Let people know that they have indeed
navigated to the right Web site. Clear writing is especially important.

Graphics The following list provides details about creating effective graphics for Web sites:

1. Use one of the most commonly used image formats, JPEG or GIF. JPEGs are best for
photographs, and GIFs are best for artwork images. GIFs are limited to 256 colors but may
include a transparent background, pixels that allow the background to show through the
GIF image. GIF images may also be interlaced, meaning that the Web browser will show
the image in successive stages, presenting a clearer image with each stage.

2. Keep the background simple and make sure users can read the text clearly. When using a
background pattern, make sure that you can see the text clearly on top of it.

3. Create a few professional-looking graphics for use on your pages.
4. Keep graphic images small, and reuse bullet or navigational buttons such as BACK, TOP,

EMAIL, and NEXT. These images are stored in a cache, an area on the browsing
computer’s hard drive. Once an image has been received, it will be taken from the cache
whenever it is used again. Using cached images improves the speed with which a browser
can load a Web page.

5. Include text in what is called a title attribute for images and image hot spots. The text
displays when the user moves the mouse over the image. An alt attribute provides text for
screen readers and is essential to support Web accessibility for visually impaired site visitors.

6. Examine your Web site on a variety of displays and screen resolutions. Scenes and text that
look great on a high-end video display may not look good to others with poorer-quality
equipment.

Presentation Style The following list gives added details about how to design engaging entry
displays for Web sites:

1. Provide an entry display (also called a home page) that introduces the visitor to the Web
site. The page must be designed to load quickly. A useful rule of thumb is to design a page
that will load in 14 seconds. (Although you may be designing the page on a workstation at
the university, a visitor to your Web site may be accessing it from home.) This entry
display should be 100 kilobytes or less, including all graphics.

The entry page should contain a number of choices, much like a menu. An easy way to
accomplish that is to design a set of links or buttons and position them on the left side or
the top of the screen. These links can be linked to other pages on the same Web site or
linked to different Web sites. A specialized text menu may be included in a smaller font at
the top or bottom of the page. An example of this is shown in Figure 11.16, an entry page
that contains a large image and some content but that directs the visitor to journey
elsewhere in the site. This page was constructed with software that allows designers to see
HTML code (at the bottom of the screen) at the same time they see what the page would
look like in a browser.

2. Keep the number of graphics to a reasonable minimum. It takes additional download time
to transfer a graphics-intensive site.

3. Use large and colorful fonts for headings.
4. Use interesting images and buttons for links. A group of images combined into a single

image is called an image map, which contains various hot spots that act as links to other
pages.

5. Use cascading style sheets (CSS) to control the formatting and layout of the Web page.
CSS separates the content (the text and images) from how they look (the presentation).
Cascading style sheets are commonly stored in a file external to the Web page, and one

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 355

style sheet may control the formatting of many pages. An advantage of using external style
sheets is making a change in the style sheet; for example, changing the color of bold text
will change the formatting of all the Web pages that use the style sheet. Cascading style
sheets may also be used in a single Web page, and any duplicate styles will override an
external style sheet if one is used. This allows the designer to vary from the standard look
and feel of a Web site, perhaps for a “special sale” Web page or some other exception.
Styles may be added to individual items on a Web page, overriding any other style sheets.

6. Use divisions and cascading styles or tables to enhance a layout. Tables are easy to use and
provide adequate layout. However, tables are not well suited for visually impaired visitors.
Screen reading software reads across the page, not necessarily in a table column. Divisions
control the layout by providing blocks of text on the Web page. Each block may be defined
with a position from the top and left of the screen or a larger block, and it may have a
width and height, as well as border style and background color. Divisions eliminate the
need for tables within tables and simplify design; screen reading software will read all the
text in the division, making the site accessible for visually impaired viewers.

7. Use the same graphics image on several Web pages. Consistency will be improved, and the
pages will load more quickly because the computer stores the image in a cache and doesn’t
have to load it again.

8. Use JavaScript to enhance the Web page layout by having images that change when a
mouse is moved over them, having menus expand, and so on. JavaScript may be used to
reformat the Web page based on the height and width of the screen. If the Web site is
multinational, JavaScript can detect the language being used (a browser setting) and
redirect the viewer to a different Web page in a different language.

9. Avoid overusing animation, sound, and other elements.

Navigation Is it fun for you to follow links on the Web? The answer most likely is that it depends.
When you discover a Web site that loads easily, has meaningful links, and allows you to easily
return to the places you want to go back to, then chances are you think it is fun. Fun is not just
play; it can be an important part of work too. Recent research shows that fun can have a powerful
effect on making computer training effective.

If, on the other hand, you can’t decide which button or hot spot to push, and you are afraid
to choose the wrong one because you might get into the wrong page that takes a long time to load,
navigation is more painful than fun. An example is visiting a software company’s page to find in-
formation about the features of the latest version of a product. You have choices such as products,
download, FAQ, and tech support. Which button will lead to the answers you’re looking for?

FIGURE 11.16
Using a visual HTML editor (in
this example, Visual Page), a Web
site designer can see what a page
looks like in a browser and the
HTML Code (see bottom of
screen) at the same time.

356 PART IV • THE ESSENTIALS OF DESIGN

Most importantly, observe the three-clicks rule. Users should be able to move from the page
they are currently on to the page containing the information they want in three clicks of the mouse
button.

Promotion Promote your site. Don’t assume that search engines will find you right away. Submit
your site every few months to various search engines. Include keywords, called metatags, that
search engines will use to link search requests to your site. General information about metatags,
may be found at searchenginewatch.com/showPage.html?page=2167931. Free metatag
generating software may be downloaded at www.siteup.com/meta.html, and a metatag builder
may be found at vancouver-webpages.com/META/mk-metas.html. You can also purchase
software to make this process easier. If you try to use email to promote your site, others will
consider it junk email or spam.

Encourage your readers to bookmark your Web site. If you link to and suggest that they go
to affiliated Web sites that feature the “best movie review page in the world” or to the “get music
for free” Web site, don’t assume they’ll be coming back to your site in the near future. You will
encourage them to revisit if they bookmark your site (bookmarks are called “favorites” on Mi-
crosoft Internet Explorer). You may add a Click here to bookmark this page link to your Web
page to automate the process. You may also want to design a “favicon,” or favorite icon, so that
users can identify your site in their lists of favorites.

Maintaining Web Sites
As a Web developer, you may also be asked to maintain and update Web sites on an ongoing ba-
sis. This is a service you can provide, and the payment can be agreed upon during initial project
contract negotiations and project budgeting. By now you recognize that there are many features
on corporate Web sites that are stable, and thus require infrequent updating. However, the picture
is different on ecommerce sites, where content needs to be refreshed seasonally. Featured items
change, as do trends, discounts, and interactive features. Content management systems (CMS) are
powerful software tools that can enable the analyst to develop and maintain Web sites and other

C O N S U L T I N G O P P O R T U N I T Y 1 1 . 5

A Field Day

“The thing of it is, I get impatient,” says Seymour Fields, owner
of a chain of 15 highly successful florist shops/indoor floral mar-
kets called Fields that are located in three Midwestern cities. “See
this thing here?” He taps his PC display irritatedly. “We do all the
payroll and all the accounting with these things, but I don’t use it
like I should. I actually feel a little guilty about it. See?” he says, as
he makes a streak on the display with his finger. “It’s even got dust
on it. I’m a practical person, though. If it’s sitting here, taking up
space, I want to use it. Or smell it, or at least enjoy looking at it, like
flowers, right? Or weed it out, that’s what I say. The one time I tried
something with it, it was a real disaster. Well, look, I can show you
if I still remember how.” Seymour proceeds to try to run a program,
but can’t seem to get it working.

Clay Potts, a systems analyst, has been working on a sys-
tems project for the entire Fields chain. Part of the original pro-
posal was to provide Seymour and his vice presidents with a
group decision support system that would help them devise a
strategy to determine which European markets to visit to set up
purchase agreements for fresh flowers, which outlets to ship par-
ticular kinds of flowers to, and how much general merchandise,

such as planters, vases, note cards, and knickknacks, to stock in
each outlet.

Seymour continues, “I can tell you what we disliked about the
program I worked with. There were too many darn layers, too much
foliage, or whatever you call it, to go through. Even with a screen
in front of me, it was like paging through a thick report. What do
you call that?”

“Menus?” Potts suggests helpfully. “The main point is that you
didn’t like having to go through lots of information to get to the dis-
play you needed.”

Seymour Fields looks happily at Potts and says, “You’ve got
it. I want to see more fields on each screen.”

How should Potts design screen output so that Fields and his
group can get what they want on each screen while observing the
guidelines for good display design? Remember that the group mem-
bers are busy and that they are infrequent computer users. Design a
hyperlinked page that would work well in a DSS for the vice pres-
idents. What should be included in the first display, and what should
be stored in hyperlinks? List elements for each and explain in a
paragraph why you have decided on this strategy.

www.siteup.com/meta.html

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 357

online applications. An increasingly popular CMS is Joomla! which can be found at www.joomla
.org/about-joomla.html. It is based on PHP and MySQL. Unlike many proprietary CMS, which
are expensive and not widely available, Joomla! is an open source solution that is made freely
available to any developer.

Creating Blogs (Web Logs)
Blogs, also called Web logs, are being written by corporate users for both internal and external
communication. Blogs are informal and personal, and they often invite comments and feedback.
They are easy to create and update and are designed to change daily. Companies are using blogs
for advertising and to build social networks for consumers, clients, and vendors around their prod-
ucts, building trust and customer relationships.

Corporate blogs are monitored out of a sense of responsibility for the participants. Guide-
lines, policies, and laws that shape monitoring practices include shared cultural, ethical, and le-
gal values such as respecting other employees and customers; not publishing any sensitive or
secret corporate information or anything protected by copyright (without permission); and ex-
cluding anything that is hateful or profane or that violates anyone’s privacy.

Even with all of the preceding guidelines, you still need to ensure that blog posts are written
in a human voice, not immersed in legal language. The latest entry should be at the start of the
blog. It should contain the following elements:

1. The permalink, or permanent link, specific for the blog post. The permalink should never
change.

2. The headline or title of the post.
3. The primary link, which connects the reader to the subject under discussion.
4. An optional summary, often appearing after the link.
5. The blog text or commentary.
6. An optional image.
7. A block quote containing quotations or other material from other sources that contributes

to the discussion (often indented or in a different font to set it apart from the main text).
8. Links for comments by other people.
9. Other blog software features, such as a calendar, search form, and other universal features.

OUTPUT PRODUCTION AND XML
Output production varies depending on the platform used to produce it. There are many different
ways to create output, ranging from simple database software, such as Microsoft Access, to pro-
grams such as SAS, Crystal Reports, and Adobe Acrobat’s PDF files.

We discussed XML in Chapter 8. One of the advantages of using XML is that the XML doc-
ument may be transformed into different output media types. This is done using cascading style
sheets (CSSs) or extensible style language transformations (XSLTs). These methods reinforce the
idea that data should be defined once and used many times in different formats.

Cascading style sheets are an easy way to transform an XML document. The style sheet pro-
vides a series of styles, such as font family, size, color, border, and so on, that are linked to the el-
ements of the XML document. These styles may vary for different media, such as a screen, printed
output, or a handheld device. The transforming software detects the type of device and applies the
correct styles to control the output.

For example, a style used for a flat-panel display might use a rich palette of colors and a sans
serif font, which is easier to read on a screen. A different style using a serif font and black or gray
color may be used to define a printed report for the same data. A smaller font size might be used
for a handheld device or mobile phone.

The drawback of using cascading style sheets is that they do not allow the analyst to manip-
ulate the data, such as rearranging the order of the elements or sorting, and only a limited amount
of identifying text, such as captions, may be added. They are basically used for formatting.

Extensible style language transformations (XSLT) are a more powerful means of transform-
ing an XML document. They allow the analyst to select the elements and insert them into a Web
page or another output medium. Figure 11.17 illustrates the transformation process. XSLT is not a
programming language, but uses a series of statements to define which elements should be output,

www.joomla.org/about-joomla.html
www.joomla.org/about-joomla.html

the sort sequence, the selection of data, and so on. An example of an XML transformation is illus-
trated in Figure 11.18. The XML is shown on the left, and the result of the transformation is shown
on the right. Notice that only the data between the tags (the tags are the less than [�] and greater
than [�] symbols) are included in the output.

Ajax
Another technique, called Ajax, uses both JavaScript and XML to obtain small amounts of data,
either plain text or XML, from a server without leaving the Web page. This is a big advantage be-
cause it means that the entire Web page does not need to be reloaded. It works by allowing the
Web page to reformat itself based on choices that a user inputs. Since Ajax is also related to user
input, see additional details in Chapter 12.

Ajax is discussed here because the output implications are important as well. It is up to the
analyst and designer to determine when data should be added or changed on a Web page and to
identify the conditions that cause the change. The order in which the questions are asked plays
into this design as well.

An example of a Web page using Ajax is shown in Figure 11.19, which demonstrates that
Ajax makes it possible to display much less data on a page, thereby making the output less clut-
tered and less confusing. In this example, the user entered one of four ways to narrow down the
search to view a list of current customers. The options the user had available were (1) enter the
first three digits of a zip code (postal code), (2) enter a telephone area code, (3) select the state,
or (4) select a country. The user may not know the postal code or area code and may therefore
need to search by state or country, so the options are very useful.

After entering one of the location choices, in this case the first three digits of the postal code,
the user clicked on the Get Customers button. The value of the postal code is sent to the server
along with data indicating it was a postal code. The server then finds all customer records for the
selected location, creates an XML document, and sends it to the same Web page.

When designing output, the systems analyst has many different options regarding how to dis-
play this data on the Web page. In this case, the analyst specified that the XML document would
be used to create a drop-down list containing all current customers for the desired location. Once
a user selects a customer from the drop-down list, more information about the particular customer
is displayed, as shown in the example.

358 PART IV • THE ESSENTIALS OF DESIGN

<?xml version=“1.0”?> <customers>
 <name>
 <phone>
 <customers>

Paper Output

New XML Document

XML Document

XSLT
Software

Smartphone

Web Page

<?xml version=“1.0”?> <customers>
 <name>
 <phone>
 <customers>

FIGURE 11.17
Extensible style language
transformation (XSLT) software
can be used to make XML
documents and transform them
into many different formats for a
variety of platforms.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 359

<?xml version=“1.0” standalone=“no”?><?xml–stylesheet type=“text/xsl” href=“cust02.xsl” ?><customers>
 <title>Customer Information</title> <customer>
 <number>09288</number> <name>
 <lastname>Green</lastname> <firstname>George</firstname> <middle_initial>L</middle_initial> </name>

 <address>
 <street>123 Oak Street</street> <apartment>Suite 16</apartment> <city>Madison</city> <state>WI</state> <zip>53704</zip> <country>United States</country> </address>

 <current_balance>123.45</current_balance> </customer>
 <customer>
 <number>15008</number> <name>
 <lastname>Brown</lastname> <firstname>Sally</firstname> <middle_initial>S</middle_initial> </name>

 <address>
 <street>123 Elm Street</street> <apartment>Apt. 1</apartment> <city>Camden</city> <state>NJ</state> <zip>08102</zip> <country>United States</country> </address>

 <current_balance>9,876.54</current_balance> </customer>
</customers>

Customer Information
Number:
First Name:
Last Name:
Street:
Apartment:
City:
State:
Zip:
Country:
Current Balance:

09288
George
Green
123 Oak Street
Suite 16
Madison
WI
53704
United States
123.45

Number:
First Name:
Last Name:
Street:
Apartment:
City:
State:
Zip:
Country:
Current Balance:

15008
Sally
Brown
123 Elm Street
Apt. 1
Camden
NJ
08102
United States
9,876.54

FIGURE 11.18
An XML transformation, with
XML on the left and the result of
the transformation on the right.
Only data between the tags are
included in the output on the right.

FIGURE 11.19
A Web page using Ajax makes it
possible to display much less data
on a page, allowing an uncluttered
display.

360 PART IV • THE ESSENTIALS OF DESIGN

The advantage of using Ajax for displaying data is that the user does not have to wait for a
new Web page to display after making a selection. The Ajax philosophy is to display limited ques-
tions for the user to answer on an incremental basis. This eliminates screen clutter. Once the user
responds to an answer by making a choice, a new question may be generated.

SUMMARY
Output is any useful information or data delivered by the information system or decision support system to
the user. Output can take virtually any form, including print, display, audio, microforms, CD-ROMs or
DVDs, and Web-based documents.

H Y P E R C A S E ® E X P E R I E N C E 1 1

“I’d say the reception you received, or should I say your team
received, for your proposal presentation was quite warm. How did
you like meeting Mr. Hyatt? What? He didn’t come? Oh [laughing],
he’s his own man. Anyway, don’t worry about that too much. The
reports I got from Snowden were encouraging. In fact, now he
wants to see some preliminary designs from all of you. Can you
have something on his desk or send it as an attachment to his email
in two weeks? He’ll be in Singapore on business next week, but
then when he recovers from the jet lag, he’ll be looking for those
designs. Thanks.”

HYPERCASE Questions
1. Consider the reports from the Training Unit. What are

Snowden’s complaints about these reports? Explain in a
paragraph.

2. Using either a layout paper form, Microsoft Visio, or a CASE
tool, design a prototype output display based on the Training
Unit’s reports that will summarize the following information
for Snowden:
Number of accepted projects in the Training Unit.
Number of projects currently being reevaluated.
Training subject areas for which a consultant is being
requested.

3. Design an additional output display that you think will
support Snowden in the kind of decision making he does
frequently.

4. Show your designs to three classmates. Get written feedback
from them about how to improve the output displays you
have designed.

5. Redesign the displays to capture the improvements suggested
by your classmates. In a paragraph, explain how you have
addressed each of their concerns.

FIGURE 11.HC1
You have the ability to view and
critique output screens in
HyperCase.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 361

KEYWORDS AND PHRASES
Ajax
audio output
bookmark
browser
cascading style sheet (CSS)
CD-ROM
constant information
content management system (CMS)
dashboard
display screen
DVD
electronic bulletin board
electronic output
email
extensible style language transformation (XSLT)
external output
FAQ

hyperlink
hypertext
internal output
Java
output bias
output design
plug-in
podcasting
RSS feeds
stickiness
uniform resource locator (URL)
variable information
Web logs (blogs)
Webmaster
Web page
Web site

REVIEW QUESTIONS
1. List six objectives the analyst pursues in designing system output.
2. Contrast external outputs with internal outputs produced by the system. Remember to consider

differences in external and internal users.
3. What are three situations that point to printers as the best choice for output technology?
4. Give two instances that indicate that display output is the best solution for the choice of output

technology.
5. List potential electronic output methods for users.
6. What are the drawbacks of electronic and Web-based output?
7. List 10 factors that must be considered when choosing output technology.
8. What output type is best if frequent updates are a necessity?
9. What kind of output is desirable if many readers will be reading, storing, and reviewing output over a

period of years?
10. What are two of the drawbacks to audio output?
11. List three main ways in which presentations of output are unintentionally biased.
12. What are five ways the analyst can avoid biasing output?
13. What is the difference between constant and variable information presented on a report?
14. Why is it important to show users a prototype output report or display?
15. List six functional elements of printed reports.
16. List five stylistic or aesthetic elements of printed reports.

The systems analyst has six main objectives in designing output. They are to design output to serve the
intended human and organizational purpose, to fit the user, to deliver the right quantity of output, to deliver
it to the right place, to provide output on time, and to choose the right output method.

It is important that the analyst realize that output content is related to output method. Output of differ-
ent technologies affects users in different ways. Output technologies also differ in their speed, cost, porta-
bility, flexibility, accessibility, and storage and retrieval possibilities. All these factors must be considered
when deciding among print, display, audio, electronic, or Web-based output, or a combination of these.

The presentation of output can bias users in their interpretation of it. Analysts and users must be aware
of the sources of bias. Analysts should interact with users to design and customize output; inform users of
the possibilities of bias in output; create flexible and modifiable output; and train users to use multiple out-
puts to help verify the accuracy of any particular report.

Printed reports are designed with the use of computer-aided software design tools that feature form de-
sign templates and drag-and-drop interfaces. The data dictionary serves as the source for necessary data on
each report.

Designing output for user displays is important, especially for DSS and the Web. Aesthetics and use-
fulness are critical when creating well-designed output for displays. It is important to produce prototypes of
screens and Web documents that encourage users to interact with them and make changes where desired.

362 PART IV • THE ESSENTIALS OF DESIGN

17. In what ways do displays, printed output, and Web-based documents differ?
18. List four guidelines to facilitate the design of good display output.
19. What differentiates output for a DSS from that of a more traditional MIS?
20. What are the four primary considerations the analyst has when designing graphical output for

decision support systems?
21. Define stickiness.
22. List seven guidelines for creating good Web sites.
23. List five guidelines for using graphics in designing Web sites.
24. List seven ideas for improving the presentation of corporate Web sites that you design.
25. What is the “three-clicks” rule?
26. In what ways can you encourage companies to promote their Web sites that you have developed?
27. How does a cascading style sheet allow the analyst to produce output?
28. What are the advantages of using XSLT instead of a cascading style sheet?
29. What are RSS feeds?
30. How can the Web administrator use RSS feeds?
31. What are dashboards mainly used for?
32. What are widgets (or gadgets)?
33. Why should a systems designer be aware of the popularity of widgets (or gadgets)?
34. How does a cascading style sheet allow the analyst to produce output?
35. What are the advantages of using an extensible style language transformation instead of a cascading

style sheet?
36. How does Ajax help to build effective Web pages?

PROBLEMS
1. “I’m sure they won’t mind if we start sending them the report on these oversized computer sheets.

All this time we’ve been condensing it, retyping it, and sending it to our biggest accounts, but we just
can’t now. We’re so understaffed, we don’t have the time,” says Otto Breth. “I’ll just write a
comment here telling them how to respond to this report, and then we can send it out.”
a. What potential problems do you see in casually changing external output? List them.
b. Discuss in a paragraph how internal and external output can differ in appearance and function.

2. “I don’t need to see it very often, but when I do, I have to be able to get at it quickly. I think we
lost the last contract because the information I needed was buried in a stack of paper on someone’s
desk somewhere,” says Luke Alover, an architect describing the company’s problems to one of the
analysts assigned to the new systems project. “What I need is instant information about how much
a building of that square footage cost the last time we bid it; what the basic materials such as steel,
glass, and concrete now cost from our three top suppliers; who our likely competition on this type
of building might be; and who comprises the committee that will be making the final decision on
who gets the bid. Right now, though, it’s in a hundred reports somewhere. I have to look all over
for it.”
a. Given the limited details you have here, write a paragraph to suggest an output method for

Luke’s use that will solve some of his current problems. In a second paragraph, explain your
reasons for choosing the output method you did. (Hint: Be sure to relate output method to output
content in your answer.)

b. Luke’s current thinking is that no paper record of the output discussed need be kept. In a
paragraph, discuss what factors should be weighed before displayed output is used to the
exclusion of printed reports.

c. Make a list of five to seven questions concerning the output’s function in the organization that
you would ask Luke and others before deciding to do away with any printed reports currently
being used.

3. Here are several situations calling for decisions about output content, output methodology,
distribution, and so on. For each situation, note the appropriate output decision.
a. A large, well-regarded supplier of key raw materials to your company’s production process

requires a year-end summary report of totals purchased from it.
b. Internal brainstorming memos are circulated through the staff regarding plans for a company

picnic and fund-raiser.
c. A summary report of the company’s financial situation is needed by a key decision maker, who

will use it when presenting a proposal to potential external backers.
d. A listing of the current night’s hotel room reservations is needed for front desk personnel.
e. A listing of the current night’s hotel room reservations is needed by the local police.
f. A real-time count of people passing through the gates of Wallaby World (an Australian theme

park) will be used by parking lot patrols.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 363

Date Patient Visitors Relationship Activities

2/14 Clarke 2 Mother, father Walked about halls, attended chapel, meals
in cafeteria

Coffey 6 Coworkers Played games, party in room
Martine 0 — Meals in room
Laury 4 Husband and

friends
Games in sunroom, watched TV

Finney 2 Parents Conversation, meals in cafeteria
Cartwright 1 Sister Conversation, crafts room
Goldstein 2 Sister, brother Conversation, games out of room, whirlpool

g. An inventory system must register an item each time it has been scanned by a wand.
h. A summary report of merit pay increases allotted to each of 120 employees will be used by 22

supervisors during a joint supervisors’ meeting, and subsequently when explaining merit pay
increases to the supervisors’ own departmental employees.

i. Competitive information is needed by three strategic planners in the organization, but it is
industrially sensitive if widely distributed.

j. A casual style of conversation is needed to inform customers about powerful but seldom used
features of a product.

k. A historic district of a city wants to let visitors know about historical buildings and events.
l. Storm warnings must be delivered to subscribers in a large geographical area.

4. “I think I see now where that guy was coming from, but he had me going for a minute there,” says
Miss deLimit. She is discussing a prototype of display output, one designed by the systems analyst,
that she has just seen. “I mean, I never considered it a problem before if even as much as 20 percent
of the total class size couldn’t be fit into a class,” she says. “We know our classes are in demand, and
because we can’t hire more faculty to cover the areas we need, the adjustment has to come in the
student demand. He’s got it highlighted as a problem if only 5 percent of the students who want a
class can’t get in, but that’s okay. Now that I know what he means, I’ll just ignore it when the
computer beeps.”
a. In a sentence or two, describe the problem Miss deLimit is experiencing with the display

output.
b. Is her solution to “ignore the beeps” a reasonable one given that output is in the prototype

stage?
c. In a paragraph, explain how the display output for this particular problem can be changed so that

it better reflects the rules of the system Miss deLimit is using.
5. Following is a log sheet for a patient information system used by nurses at a convalescent home to

record patient visitors and activities during their shifts. Design a printed report using form design
software that provides a summary for the charge nurse of each shift and a report for the activities
coordinator at the end of a week. Be sure to use proper conventions to indicate constant data, variable
data, and so on. These reports will be used to determine staffing patterns and future activities
offerings.

6. Design display output for Problem 5 using form design software. Make any assumptions about
system capability necessary and follow display design conventions for onscreen instructions. (Hint:
You can use more than one display screen if you wish.)
a. In a paragraph, discuss why you designed each report as you did in Problems 5 and 6. What are

the major differences in your approach to each one? Can the printed reports be successfully
transplanted to displays without changes? Why or why not?

b. Some of the nurses are interested in a Web-based system that patients’ families can access from
home with a password. Design an output screen for the Web. In a paragraph, describe how your
report had to be altered so that it could be viewed by one patient’s family.

7. Clancy Corporation manufactures uniforms for police departments worldwide. Its uniforms are
chosen by many groups because of their low cost and simple but dignified design. You are helping to
design a DSS for Clancy Corporation, and it has asked for tabular output that will help it in making
various decisions about what designers to use, where to market its uniforms, and what changes to
make to uniforms to keep them looking up-to-date. The following table lists some of the data the
company would like to see in tables, including uniform style names, an example of a buyer group for
each style, and which designers design which uniform styles. Prepare an example of tabular output
for display that incorporates these data about Clancy’s. Follow proper conventions for tabular output
displays. Use codes and a key where appropriate.

364 PART IV • THE ESSENTIALS OF DESIGN

Be sure to follow proper design conventions for displays. Use codes and a key if necessary.
b. Choose a second method of graphing that might allow the decision makers at Clancy’s to see a

trend in the purchase of particular uniform styles over time. Draw a graph for display as part of
the output for Clancy’s DSS. Be sure to follow proper design conventions for displays. Use
codes and a key if necessary.

c. In a paragraph, discuss the differences in the two onscreen graphs you have chosen. Defend your
choices.

9. Michael Cerveris owns a number of cars used for racing. What performance measures does he need
to develop to keep track of the performance of his driver, pit crews, and support staff (not to mention
any bald tires his cars experience)?

10. Design a DSS dashboard for Michael (Problem 9). Use appropriate types of charts and graphs to
illustrate performance.

11. Design a dashboard for keeping track of a person’s stock and portfolio. Think about how the
dashboard could be used to make decisions about buying and selling stock. Remember that a client
can have more than one stockbroker.

12. Gabriel Shanks runs a nonprofit theatre that produces seven plays per year in three theatres. Each
play lasts eight weeks but can be extended four weeks if the show is a success. Design a dashboard
for Gabriel, taking into consideration the different phases of putting on a performance as well as the
need to sell as many tickets as possible. Don’t forget that Gabriel is involved in theatre and is very
visual. He doesn’t like tables, however.

13. While Gabriel (from the previous problem) is taking care of various details during an ordinary day,
he would like to keep up on theatre news in Manhattan, at the same time having some simple tools
around to help him with his computer-related activities. What sort of widgets and gadgets would
Gabriel need to do his job while having some simple computer-based tools always available?

14. Browse the Web to view well-designed and poorly designed Web sites. Choose three examples of
each. Comment on what makes the sites excellent or poor, using the critique form presented earlier in
the chapter to compare and contrast them.

15. Propose a Web site for Clancy’s, the uniform company described in Problems 7 and 8. Sketch by
hand or use form design software to create a prototype of Clancy’s home page. Indicate hyperlinks,
and include a sketch of one hyperlink document. Remember to include graphics, icons, and even
sound or other media if appropriate. In a paragraph, describe who the intended users of the Web site
are and state why it makes sense for Clancy’s to have a Web presence.

16. Elonzo’s Department Stores is a chain of about 50 retail stores, specializing in kitchen, bath, and
other household items, including many decorative and fashionable items. Recently Elonzo’s decided
to automate its gift registry to allow wedding and other event guests to be able to browse for items
that were selected by the wedding couple or others.
a. Design a Web page that would allow customers to enter a zip code and find the nearest store.
b. Design a Web page for customers to browse gifts and order them online. Do not include the

actual ordering forms, simply the products. What sort of options should be available for
customers? Include buttons or links to change the sort sequence in your design.

c. Design a printed list that customers could request when they go to one of the stores. What
sequences would be optimal for a customer trying to find items? Would all items requested by
the wedding couple be included on the list? (Hint: Some may have been purchased already.)

8. Clancy’s is interested in graphical output for its DSS. It wants to see a graphical comparison of how
many of each style of uniform are being sold each year.
a. Choose an appropriate graph style and design a graph for display that incorporates the following data:

Style Name Example Buyer Designers

Full military NYPD Claudio, Rialtto, Melvin Mine
Half military LAPD Rialtto, Calvetti, Duran, Melvin Mine
Formal dress Australian Armed Forces Claudio, Dundee, Melvin Mine
Casual dress “Miami Vice” Johnson, Melvin Mine

Full Military
(percent of total) Half Military Formal Dress Casual Dress

2005 50 20 20 10
2006 55 15 20 10
2007 60 15 15 10
2008 62 15 15 8
2009 65 10 15 10

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 365

17. Design an outline of a podcast for someone touring your university, college, or business. What
sequence would you place the topics in? How much time would you allow for each campus or
building location? Assume the party will arrive in the morning and sequence lunch into the podcast.

18. Design an airline flight reminder screen for a smartphone or other handheld device.
19. Design an Ajax style of Web page that would allow a dean at a community college to select part-time

instructors. The dean should be able to select a discipline or a course and have the server send an
XML document containing all the potential part-time instructors for the selection. The XML
document should be used to populate a drop-down list of the instructor names. Clicking an
instructor’s name would display information about the potential instructor. Decide what information
to include that would help the dean make a decision on whom to hire. (Hint: Part-time instructors
may be able to teach only on certain days or only in the morning, afternoon, or evening.)

GROUP PROJECTS
1. Brainstorm with your team members about what types of output are most appropriate for a variety of

executives and high-level managers of Dizzyland, a large theme park in Florida. Include a list of
environments or decision-making situations and types of output. In a paragraph, discuss why the
group suggested particular options for output.

2. Have each group member design an output display or form for the output situations you listed in
Group Project 1. (Use either Microsoft Visio, a CASE tool, or paper layout form to complete each
display or form.)

3. Create a dashboard for Dizzyland managers in Group Project 1.
4. Design a Web site, either on paper or using software with which you are familiar, for Dizzyland in

Group Project 1. Although you may sketch documents or graphics for three levels of pages and
required hyperlinks on paper, create a prototype home page for Dizzyland, indicating hyperlinks
where appropriate. Obtain feedback from other groups in your class and modify your design
accordingly. In a paragraph, discuss how designing a Web site is different from designing displays for
other online systems.

5. Explore the Joomla! Web site at www.joomla.org. How could this open source application be helpful
in implementing your designs from Problem 4? Summarize your findings in a paragraph. Use the
Web to find another CMS and use a paragraph to compare it to Joomla! Be sure to address cost, ease
of use, support, and availability in your comparison.

6. Use brainstorming to develop a new set of widgets (gadgets) to be more productive. Come up with a
list of your top five bright ideas for new widgets.

SELECTED BIBLIOGRAPHY
Davenport, T. H. “Saving IT’s Soul: Human-Centered Information Management.” Harvard Business Re-

view, March–April 1994, pp. 119–131.
Davis, G. B., and H. M. Olson. Management Information Systems, Conceptual Foundations, Structure, and

Development, 2d ed. New York: McGraw-Hill, 1985.
Kendall, K. E., and J. E. Kendall. “DSS Systems Analysis and Design: The Role of the Analyst as Change

Agent from Early DSS to Mashups,” in Handbook of Decision Support Systems 2, Edited by F. Burstein
and C. W. Holsapple, pp. 293–312. Berlin: Springer, 2008.

Souders, S. “High-Performance Web Sites.” Communications of the ACM, Vol. 51, No. 12, December 2008,
pp. 36–41.

www.joomla.org

366 PART IV • THE ESSENTIALS OF DESIGN

E P I S O D E 11
CPU Case

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Reporting on Outputs
“Let’s create output specifications and then work backward through the UML diagrams and data flow to de-
termine the corresponding input data,” says Anna during her next meeting with Chip.

“Of course,” Chip agrees.
Output was separated into two categories: reports and displays. Reports were further defined as exter-

nal reports such as the USER SOFTWARE NOTIFICATION or internal reports such as the HARDWARE
INVENTORY LISTING. Each report was further classified as a detailed, exception, or summary report.

Based on conversations with Paige Prynter, the analysts think the HARDWARE INVESTMENT RE-
PORT has the highest priority. It is needed as soon as possible because the budget process will soon reach a
critical phase and there are many requests for new hardware as well as upgrades for existing equipment.

The process used for creating the HARDWARE INVESTMENT REPORT is similar to the process for
creating all reports. Chip examines the data flow diagrams for the new system and locates the data flow la-
beled HARDWARE INVESTMENT REPORT. Double clicking on the data flow line brings up the reposi-
tory entry for this report.

“I’m really glad we took the time to document the prototype reports and displays when creating the data
flow diagrams,” remarks Chip. “I can easily identify the elements required to produce the report.”

Chip examines the repository for the details for each element.
“This is great,” exclaims Chip. “It was a good idea to define all the elements as we learned about them.”
Chip then proceeds to create a sample report using Microsoft Access. After the first draft, Chip uses the

Print Preview feature to preview the report.
“Hmmm,” murmurs Chip. “Some of the fields need rearranging, and the horizontal spacing needs some

work.”
The report design is modified and reviewed again. By the third try, the report is in its final form. The

next step is crucial: Chip asks Paige to review the report and make any changes she likes. Chip asks, “Are
there any additional columns or other data missing that would make for a more useful report? Are all the
data on the report necessary?”

Paige studies the output for a few minutes and remarks, “Subtotals for each BRAND, including the
NUMBER OF MACHINES and grand totals, are necessary. We receive requests for different types of ma-
chines, and knowing how many of each machine may help determine what is purchased.”

Chip returns to his computer and makes the necessary changes. The final HARDWARE INVEST-
MENT REPORT sample is shown in Figure E11.1. This version is again reviewed by Paige, and she signs
off on the layout as complete.

1/04/2010
Hardware Investment Report

Page 1 of 1Brand Name Model
Number of
Machines

Total
InvestedXxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx

3 $29,997.00Brand Subtotal 3 $29,997.00Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx
4 $39,996.00Xxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxx
2 $19,998.00Brand Subtotal 6 $59,994.00Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxx
3 $29,997.00Xxxxxxxxxxxxxxxx Xxxxxxxxxxxxxxxxxxxx

11 $82,992.00Brand Subtotal 14 $112,989.00
Grand Total 23 $202,980.00

FIGURE E11.1
HARDWARE INVESTMENT
REPORT sample output.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 367

The logic for this summary report is outlined in a process specification. The COMPUTER table is
sorted by MODEL within BRAND. Totals are accumulated for each BRAND and MODEL. When either
BRAND or MODEL changes, a report line is printed. When a change in BRAND occurs, BRAND SUBTO-
TALS are printed. GRAND TOTALS are printed after all records are processed.

Anna spends some time speaking with Cher Ware about her report needs. Several printed reports are
outlined when Cher asks the question, “Will I get online reports that I can quickly view, containing the lat-
est information?”

The discussion that follows results in the creation of several queries.
“How would you like to view the software categories?” asks Anna. “Would you like to see all the soft-

ware on one large scrolling display?”
“Well, I would like to have some way of finding one category and then displaying all the software avail-

able for that category,” replies Cher. “It would also be useful to be able to move to subsequent and previous
categories.”

Anna creates the SOFTWARE BY CATEGORY display by creating a Microsoft Access form, shown in
Figure E11.2. There is a button for finding records as well as buttons to move to the previous and next cate-
gories. In the lower area of the screen is an area to display multiple software packages for the category. The
OPERATING SYSTEM field is stored as a code on the corresponding database table and is converted to the
code description on the display.

Anna shows both Chip and Cher the completed display. “I’m impressed,” exclaims Cher. “That’s ex-
actly what I need!”

At that moment, Hy Perteks saunters in. “What’s going on?” he asks. After viewing the query, he re-
marks, “I would like some Web pages developed for the training classes.”

“What do you have in mind?” inquires Chip.
“Well, I have been giving it some thought,” replies Hy. “I envision that it would be useful for the fac-

ulty and staff to be able to look up information about the software courses we are planning to offer. Later we
could add a Web form for them to enroll in the courses.”

“That would be fun to work on,” remarks Chip. “We could link to the page from our Technology Sup-
port menus.”

“Count me in on it,” replies Anna. “What would you like on the page?”
“I would like to create a Web page that lists the courses, including the level, such as beginning or in-

termediate, and the dates that the courses start,” replies Hy.
Chip and Anna set to work on the Web page. The fields are identified and grouped onto the TRAIN-

ING CLASSES OFFERED data flow, illustrated in the Visible Analyst screen in Figure E11.3. Note that the
Web address is included as an alias. Anna creates the final intranet Web page, illustrated in Figure E11.4.
Chip and Hy review the page.

“I like the menus on the top of the page and the submenu that drops down below it when the mouse
hovers over it, listing further menu choices,” remarks Chip.

“The calendar makes it very useful for the staff to view the currently scheduled courses by date, with
buttons to change the month and year,” comments Hy. “It’s a nice feature to change the courses dynamically
when the month, day, or year changes. That makes for a smooth user experience.”

FIGURE E11.2
SOFTWARE BY CATEGORY
Microsoft Access display screen.

368 PART IV • THE ESSENTIALS OF DESIGN

“Yes, and I think allowing the staff to change how the data are displayed is also very good. Many staff
members like to view courses offered at their campus,” remarks Chip.

“It would add some pizzazz if we include an image for the mascot,” adds Hy, “and the university
motto.”

“I’ll get right on it,” replies Anna. “These are really good suggestions.”
The final Web page is finished and approved by Hy.
“I’ll put out an email to all the faculty and staff and a link on our ‘New and Improved’ Web page,” re-

marks Hy. “Thanks for including my email address. It should help to facilitate registering for courses and
answering any questions. I think we are really making progress!”

The following exercises may be done by designing the report or display using layout forms, or they
may be created using any word processor with which you are familiar. The fields and other related informa-
tion for the reports are contained in Visible Analyst data flow repository entries or in a Web page contain-
ing a copy of the repository. The Web page contains links to the other elements in the repository, making it
easy to view one repository entry and jump to another one and back. The names for the data flow are listed
for each exercise.

FIGURE E11.3
TRAINING CLASSES
OFFERED data flow display
screen.

FIGURE E11.4
An Ajax enabled Web page for
Central Pacific University.

CHAPTER 11 • DESIGNING EFFECTIVE OUTPUT 369

Corresponding reports and Microsoft Access forms have been created. All the information is present in
the Microsoft Access database; you only have to modify the existing reports and screens to produce the final
versions. Modifications are made by clicking on the desired report or screen and then clicking the Design but-
ton. The following modifications may be made. The Page Header contains column headings. The Detail area
contains the print fields for the report.

Click in a field to select it. Click on several fields while holding the shift key to select them.
Drag a selected field (or fields) to move them.
Click on one of the small boxes surrounding the field to change the field size.
Select several fields and click Format and one of the following:

Align, to align all fields with the top, left, and so forth field.
Size, to make fields equal to the widest, tallest, and so forth field.
Horizontal Spacing, to make horizontal spacing equal or to increase or decrease the spacing.
Vertical Spacing, to make vertical spacing equal or to increase or decrease the spacing.

EXERCISES
E-1. Use Microsoft Access to view the HARDWARE INVESTMENT REPORT. If you are familiar with

Microsoft Access, use the File/Export. . . menu option to save the report as a Web page. When the
Export dialogue box opens, click in the Save As Type drop-down list and select HTML Documents.

E-2. Chip, Dot, and Mike participated in several brainstorming sessions resulting in the outlining of sev-
eral reports. Design (or modify using Access) the HARDWARE MASTER REPORT. This report is
large, and you will have to be careful to include all the data in the report area. You may want to have
several detail lines for each record. Print the completed report.

E-3. After meeting with Cher Ware and Hy Perteks to discuss reporting needs, Anna has identified the
fields for the partially completed NEW SOFTWARE INSTALLED REPORT. Design (or modify) the
report to include the elements found in the data flow repository entry. Is the report a summary or de-
tailed report? In a paragraph, outline the logic that you think the report-producing program must use.

E-4. Both Dot and Mike need to know when new computers have been received. Create the NEW COM-
PUTER RECEIVED REPORT. The COMPUTER RECEIVED REPORT data flow contains the nec-
essary elements.

E-5. Design the SOFTWARE MASTER REPORT containing pertinent information that helps Cher and
Hy to locate the various copies of any software package easily. The elements necessary to produce
the report are located on the SOFTWARE MASTER REPORT data flow.

The TITLE, VERSION, OPERATING SYSTEM NAME, PUBLISHER, CATEGORY, and
FIRST and LAST NAME of the software expert should be group printed. Totals are to be included
for each TITLE/OPERATING SYSTEM/VERSION combination. Print the completed report design.

E-6. Design the HARDWARE INVENTORY LISTING, showing the computers available in each room at
each campus. The CAMPUS field should be the CAMPUS DESCRIPTION, not the code represent-
ing the campus.

E-7. Design the INSTALLED COMPUTER REPORT, showing personal computers that have been in-
stalled in each room. Use the CAMPUS DESCRIPTION and group print by CAMPUS DESCRIP-
TION and ROOM LOCATION.

E-8. Use Microsoft Access to view the SOFTWARE BY CATEGORY screen report. Click the Find but-
ton and locate CASE toolset. Click the Next and Previous buttons to view next and previous
Software Categories.

E-9. Design the SOFTWARE BY MACHINE screen report. Refer to the data flow repository entry for
elements.

E-10. Design the COMPUTER PROBLEM REPORT. This report shows all computers that have a large num-
ber of repairs or a large repair cost. Refer to the repository description for the data flow for the elements
or modify the Microsoft Access report.

E-11. Design or modify the INSTALLATION REPORT. Refer to the repository entry for the data flow for the el-
ements. This report shows which computers have been recently received and are available for installation.

E-12. Design the NEW COMPUTER RECEIVED REPORT. Refer to the repository description for the data
flow for the elements or modify the Microsoft Access report. This summary report shows the number of
computers of each brand and model. These computers need to be unpacked before they may be installed
in rooms.

370 PART IV • THE ESSENTIALS OF DESIGN

E-13. Design or modify the PREVENTIVE MAINTENANCE REPORT. Refer to the repository entry for
the data flow for the elements. This report shows which computers need to have preventive mainte-
nance performed on them.

E-14. Design the SOFTWARE CROSS REFERENCE REPORT. Refer to the repository description for the
data flow for the elements or modify the Microsoft Access report. This report shows the computer on
which each software package is installed. The TITLE, VERSION, OPERATING SYSTEM MEAN-
ING, and PUBLISHER are group printed. The detail lines under the group contain data showing the
machine, installation campus, and room.

E-15. Design or modify the OUTSTANDING COMPUTER PURCHASE ORDERS REPORT. Refer to the
repository entry for the data flow for the elements. This report would be produced for all PURCHASE
ORDER records that have a purchase order code of M101, representing computers, with the additional
condition that the QUANTITY ORDERED on the record must be greater than the QUANTITY RE-
CEIVED. In a paragraph, state whether this report is a summary, exception, or detailed report. Explain.

E-16. Design the SOFTWARE INVESTMENT REPORT. Refer to the repository description for the data
flow for the elements or modify the Microsoft Access report.

E-17. Design the SOFTWARE CROSS REFERENCE Web page. Refer to the repository description for the
SOFTWARE CROSS REFERENCE REPORT data flow for the elements on the Web page. This Web
page shows the computers on which each software package is installed. Include a drop-down list of
software that allows the user to select a software package. The design uses Ajax to refresh the Web
page list of computers containing the software and their locations.

E-18. Design the HARDWARE INVENTORY LISTING Web page, showing the computers available in
each room at each campus. The CAMPUS is selected from a drop-down list displaying the CAMPUS
DESCRIPTION. When the user selects a campus name from the drop-down list, the Web page uses
Ajax techniques to fill the campus room drop-down list. When a room is selected, the Web page uses
Ajax to display the machines located in the room. Use the repository for the HARDWARE INVEN-
TORY LISTING without total number of machines at campus or the total number of machines.

The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download sample Microsoft Visio files or a Visible Analyst Project, and
a Microsoft Access database that can be used to complete the exercises.

www.pearsonhighered.com/kendall

371

C H A P T E R 1 2

Designing Effective Input

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Design functional input forms for users of business systems.

2. Design engaging input displays for users of information systems.

3. Design useful input forms for people interacting on the Web.

4. Design useful input pages for users of intranets and the Internet.

Users deserve quality output. The quality of system input determines the
quality of system output. It is vital that input forms, displays, and interac-
tive Web documents be designed with this critical relationship in mind.

Well-designed input forms, displays, and interactive Web fill-in forms
should meet the objectives of effectiveness, accuracy, ease of use, consis-

tency, simplicity, and attractiveness.All these objectives are attainable through the use of basic
design principles, the knowledge of what is needed as input for the system, and an understand-
ing of how users respond to different elements of forms and displays.

Effectiveness means that input forms, input displays, and fill-in forms on the Web all serve
specific purposes for users of the information system, whereas accuracy refers to design that
ensures proper completion. Ease of use means that forms and displays are straightforward and
require no extra time for users to decipher. Consistency means that all input forms, whether
they are input displays or fill-in forms on the Web, group data similarly from one application to
the next, whereas simplicity refers to keeping those same designs uncluttered in a manner that
focuses the user’s attention. Attractiveness implies that users will enjoy using input forms be-
cause of their appealing design.

GOOD FORM DESIGN
The systems analyst should be capable of designing a complete and useful form. Unnecessary
forms that waste an organization’s resources should be eliminated.

Forms are important instruments for steering the course of work. They are preprinted papers
that require people to fill in responses in a standardized way. Forms elicit and capture informa-
tion required by organizational members that will often be input to the computer. Through this
process, forms often serve as source documents for users or for input to ecommerce applications
that humans must enter.

To design forms that people find useful, four guidelines for form design should be observed:

1. Make forms easy to fill in.
2. Ensure that forms meet the purpose for which they are designed.
3. Design forms to ensure accurate completion.
4. Keep forms attractive.

Each of the four guidelines is considered separately in the following sections.

372 PART IV • THE ESSENTIALS OF DESIGN

Making Forms Easy to Fill In
To reduce error, speed completion, and facilitate the entry of data, it is essential that forms be easy
to fill in. The cost of the forms is minimal compared with the cost of the time employees spend
filling them in and then entering data into the information system. It is often possible to eliminate
the process of transcribing data that are entered on a form into the system by using electronic sub-
mission. That method often features data keyed in by users themselves, who visit Web sites set
up for informational or ecommerce transactions.

FORM FLOW. Designing a form with proper flow can minimize the time and effort expended by
employees in form completion. Forms should flow from left to right and top to bottom. Illogical
flow takes extra time and is frustrating. A form that requires people to go directly to the bottom
of the form and then skip back up to the top for completion exhibits poor flow.

SEVEN SECTIONS OF A FORM. A second method that makes it easy for people to fill out forms
correctly is logical grouping of information. The seven main sections of a form are the following:

1. Heading.
2. Identification and access.
3. Instructions.
4. Body.
5. Signature and verification.
6. Totals.
7. Comments.

Ideally, these sections should appear on a page grouped as they are on the Bakerloo Brothers Em-
ployee Expense Voucher in Figure 12.1. Notice that the seven sections cover the basic informa-
tion required on most forms. The top quarter of the form is devoted to three sections: the heading,
the identification and access section, and the instructions section.

The heading section usually includes the name and address of the business originating the
form. The identification and access section includes codes that may be used to file the report and
gain access to it at a later date. (In Chapter 13, we discuss in detail how to access specially keyed
information in a database.) This information is very important when an organization is required
to keep the document for a specified number of years. The instructions section tells how the form
should be filled out and where it should be routed when complete.

The middle of the form is its body, which composes approximately half of the form. This part
of the form requires the most detail and development from the person completing it. The body is
the part of the form most likely to contain explicit, variable data.

The bottom quarter of the form is composed of three sections: signature and verification, to-
tals, and comments. Requiring ending totals and a summary of comments is a logical way to pro-
vide closure for the person filling out the form.

There is one more feature to notice about the Bakerloo Brothers form. The form design pro-
vides an internal double check, with column totals and row totals expected to add up to the same
number. If the row and column totals don’t add up to the same number, the employee filling out
the form knows there is a problem and can correct it on the spot. An error is prevented, and the
employee can be reimbursed the amount due; both outcomes are attributable to a suitable form
design.

CAPTIONING. Clear captioning is another technique that can make easy work of filling out a form.
Captions tell the person completing the form what to put in a blank line, space, or box. Several
options for captioning are shown in Figure 12.2. Two types of line captions, two types of check-
off captions, and examples of a boxed caption and table caption are shown.

The advantage of putting the caption below the line is that there is more room on the line it-
self for data. The disadvantage is that it is sometimes unclear which line is associated with the
caption: the line above or below the caption.

Line captions can be to the left of blanks and on the same line, or they can be printed below
the line on which data will be entered.

Another way to caption is to provide a box for data instead of a line. Captions can be placed
inside, above, or below the box. Boxes on forms help people enter data in the correct place, and
they also make reading the form easier for the form’s recipient. The caption should use a small

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 373

type size so that it does not dominate the entry area. Small vertical tick marks may be included in
the box if the data is intended for entry into a computer system. If there is not enough room on a
record for the data, the person filling out the form, rather than the data entry operator, has the free-
dom to determine how the data should be abbreviated. Captions may also include small clarifica-
tion notes to help the user correctly enter the information, such as Date (MM/DD/YYYY) or
Name (Last, First, Middle Initial).

Whatever styles of line caption are chosen, it is important to employ them consistently. For
instance, it is confusing to fill out a form that has both above- and below-line captions.

Check-off captions are superior when response options are necessarily restricted. Notice the
list of travel methods shown for the vertical check-off example in the previous figure. If employee
expenses for business travel are reimbursed only for those travel methods listed, a check-off sys-
tem is more expedient than a blank line. This method has the added advantage of reminding the
person who is verifying the data to look for an airline ticket stub or other receipt.

A horizontal check-off caption is also superior to a line caption when information required is
routine and constant. An example is a form that would request services from one of the following

EMPLOYEE EXPENSE VOUCHER
Claimant: Make No Entries

in Shaded AreasFull Name of Employee

Department
 Room Number

Employee ID Number

LIST EXPENSES FOR EACH DAY SEPARATELY. ATTACH RECEIPTS FOR ALL EXPENSES EXCEPT MEALS, TAXIS,
AND MISCELLANEOUS ITEMS LESS THAN $3.00. ITEMIZE ALL MISCELLANEOUS EXPENSES.Date

 / /
Place

City, State
Meal

Expenses
Lodging

Expenses Miles Cost

Automobile

Description Cost

Miscellaneous
Total

Cost

Taxi

Cost

I certify that all the above information is correct

Signature of Claimant

Approved by
Form BB-104 01/2009

Date

Date

Totals

Bakerloo Brothers

Voucher Number

Action Taken On:

FIGURE 12.1
Seven sections found in a well-
designed form that help to
encourage completion.

374 PART IV • THE ESSENTIALS OF DESIGN

First Name

First Name
Last Name

Last Name
Title

Telephone () –

First Name

Title

Title

Check off method of travel:
Airplane
Train
Company Car
Personal Car

Telephone

Last Name

Telephone

– –

– –

Photo Lab

Quantity

Printing Department Maintenance Supplies

Unit Item Description User Cost Expanded Cost

Subtotal
Sales Tax

Total

Line caption

Below-line
caption

Boxed caption

Vertical
checklist

Horizontal
checklist

Table caption

FIGURE 12.2
Major captioning alternatives.

departments: Photo Lab, Printing Department, Maintenance, or Supplies. The departments routinely
provide services to others in the organization and are not likely to change quickly.

Table captions work well in the body of a form on which details are required. When an em-
ployee properly fills out a form with table captions, he or she is creating a table for the next per-
son receiving the form, thereby helping to organize data coherently.

A combination of captions can also be used effectively. For example, table captions can be
used to specify categories such as quantity, and line captions can be used to indicate where the
subtotal, sales tax, and total should be. Because different captions serve different purposes, it is
generally necessary to employ several caption styles in each form.

Meeting the Intended Purpose
Forms are created to serve one or more purposes in the recording, processing, storing, and retriev-
ing of information for businesses. Sometimes it is desirable to provide different information to

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 375

different departments or users but still share some basic information. This situation is where spe-
cialty forms are useful.

The term specialty form can also refer solely to the way forms are prepared by the stationer.
Examples of stationers’ specialty forms are multiple-part forms that are used to create instant trip-
licates of data, continuous-feed forms that run through the printer without intervention, and per-
forated forms that leave a stub behind as a record when they are separated.

Ensuring Accurate Completion
Error rates typically associated with collecting data will drop sharply when forms are designed to
ensure accurate completion. Design is important for ensuring that people do the right thing with
the form whenever they use it. When service employees such as meter readers or inventory tak-
ers use handheld devices to scan or otherwise key in data at the appropriate site, the extra step of
transcription during data entry is avoided. Handheld devices use wireless transmission, or are
plugged back into larger computer systems so they can upload the data that the service worker
has stored. No further transcription of what has occurred in the field is necessary.

Keeping Forms Attractive
Although attractiveness of forms is dealt with last, its order of appearance is not meant to dimin-
ish its importance. Rather, it is addressed last because making forms appealing is accomplished
by applying the techniques discussed in the preceding sections. Aesthetic forms draw people into
them and encourage completion.

Forms should look uncluttered. To be attractive, forms should elicit information in the ex-
pected order: convention dictates asking for name, street address, city, state, and zip or postal code
(and country, if necessary). Proper layout and flow contribute to a form’s attractiveness.

Using different type fonts in the same form can help make it appealing for users to fill in.
Separating categories and subcategories with thick and thin lines can also encourage interest in
the form. Type fonts and line weights are useful design elements for capturing attention and mak-
ing people feel secure that they are filling in the form correctly.

Forms design packages are available for PCs. Figure 12.3 shows how forms can be created
using software that allows the analyst to automate quickly business processes for which paper
forms are already in existence. The analyst can use a set of tools to set up fields, check boxes,
lines, boxes, and many other features. Paper forms can also be scanned in and then published to
the Web.

FIGURE 12.3
Software allows a user to take an
existing form, scan it into the
computer, and define fields so that
the form can be easily filled out on
a PC.

376 PART IV • THE ESSENTIALS OF DESIGN

Controlling Business Forms
Controlling business forms is an important task. Businesses often have a forms specialist who
controls forms, but sometimes this job falls to the systems analyst, who sets up and implements
forms control.

The basic duties for controlling forms include making sure that each form in use fulfills its spe-
cific purpose in helping workers accomplish their tasks and that the specified purpose is integral to
organizational functioning, preventing duplication of the information that is collected and of the
forms that collect it, designing effective forms, deciding on how to reproduce forms in the most
economical way, and establishing procedures that make forms available (when needed) at the low-
est possible cost. Often this entails making forms available on the Web for printing out. A unique
form number and revision date (month/year) should be included on each form, regardless of
whether it is completed and submitted manually or electronically. This helps users be organized and
efficient.

GOOD DISPLAY AND WEB FORMS DESIGN
Much of what we have already said about good form design is transferable to display design and
the design of Web sites and Web pages. Once again, the user must remain foremost in the ana-
lyst’s thoughts during the design of displays.

There are differences, however, and systems analysts should strive to realize the unique
qualities of displays rather than to adopt blindly the conventions of paper forms. One big dif-
ference is the constant presence of a cursor on the display, which orients the user to the current
data entry position. As data are entered onscreen, the cursor moves one character ahead, point-
ing the way.

Another major difference among electronic, Web, and static forms is that designers can in-
clude context-sensitive user help in any electronic fill-in form. This practice can reduce the need
for instructions being shown for each line, thus reducing the clutter of the form and cutting down
on calls to Technical Support. Using a Web-based approach also permits the designer to take ad-
vantage of hyperlinks, thus ensuring that the forms are filled out correctly by providing users with
hyperlinked examples of correctly completed forms.

In this section, we present guidelines for effective display design. They are presented in or-
der to aid the attainment of the overall input design goals of effectiveness, accuracy, ease of use,
simplicity, consistency, and attractiveness.

The four guidelines for display design are important but not exhaustive. As noted in
Chapter 11, they include the following:

1. Keep the display simple.
2. Keep the display presentation consistent.
3. Facilitate user movement among display screens and pages.
4. Create an attractive and pleasing display.

In the next subsections, we develop each of these guidelines, and we present many design tech-
niques for observing the four guidelines.

Keeping the Display Simple
The first guideline for good display design is to keep the display simple. The display should show
only that which is necessary for the particular action being undertaken. For the occasional user,
50 percent of the display area should contain useful information.

THREE SCREEN SECTIONS. Display output should be divided into three sections. The top of the
screen features a “heading” section. The heading contains titles of software and open files, pull-
down menus, and icons that do certain tasks.

The middle section is called the “body” of the display. The body can be used for data en-
try and is organized from left to right and top to bottom, because people in Western cultures
move their eyes on a page in this way. Captions and instructions should be supplied in this sec-
tion to help the user enter the pertinent data in the right place. Context-sensitive help can also
be made available by having the user click the right mouse button in the body section of the
display.

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 377

C O N S U L T I N G O P P O R T U N I T Y 1 2 . 1

This Form May Be Hazardous to Your Health

Figure 12.C1 is a printed medical history form that Dr. Mike
Robe, a family practitioner, has his receptionist give to all new pa-
tients. All patients must fill it out before they see the doctor.

The receptionist is getting back many incomplete or confusing
responses, which makes it difficult for Dr. Robe to review the forms
and understand why the new patient is there. In addition, the poor
responses make it time consuming for the receptionist to enter new
patients into the files.

Redesign the form on 81
2� � 11� paper so that pertinent new pa-
tient data can be collected in a logical and inoffensive way. Make sure
the form is self-explanatory to new patients. It should also be easy for
Dr. Robe to read and easy for the receptionist to enter into the patient
database, which is sorted by patient name and Social Security num-
ber. The office uses PCs connected by a LAN. How would you re-
design the form so that it can be electronically submitted by the
receptionist? Which office procedures would you have to change?

Have you ever had surgery? Yes____ No____ If so, when?________Describe the surgery

Have you ever been hospitalized? Yes____ No____ If so, when?________Why?

Complete the following.

I have had Family historyDiabetes
Heart trouble
Cancer
Seizure
Fainting

What have you been immunized for?
Family:

Spouse or next of kin Relationship Address
Date of last exam ___/___ Who referred you?
Why are you seeing the doctor today?
Are you currently having pain? _______ Constant ______ Sporadic ______How long does it last? Please give us your soc. sec. #
IMPORTANT! We need your correct insurance carrier number

Medical History Form
Name

Employer
AgeAddress

Zip Phone OfficeInsurer
Is this [] your policy [] your spouse’s policyBlue Cross [] State Physician’s Service [] Other [] (state)

FIGURE 12.C1
Your help in improving this form is greatly appreciated.

378 PART IV • THE ESSENTIALS OF DESIGN

The third section of the display is the “comments and instructions” section. This section may
display a short menu of commands that remind the user of basics such as how to change pages or
functions, save the file, or terminate entry. Inclusion of such basics can make inexperienced users
feel infinitely more secure about their ability to complete their task.

Other ways to keep the display simple is to use context-sensitive help, roll-over buttons that
reveal more information, and other pop-up windows. Users can minimize or maximize the size
of windows as needed. In this way, users start with a simple, well-designed display that they can
customize and control through the use of multiple windows. Hyperlinks on a Web-based fill-in
form serve a similar purpose.

Keeping the Display Consistent
The second guideline for good display design is to keep the display consistent. If users are work-
ing from paper forms, displays should follow what is shown on paper. Displays can be kept con-
sistent by locating information in the same area each time a new display is accessed. Also,
information that logically belongs together should be consistently grouped together: Name and
address go together, not name and zip code. Although the display should have a natural move-
ment from one region to another, information should not overlap from one group to another. You
would not want name and address in one area and zip code in another.

Facilitating Movement
The third guideline for good display design is to make it easy to move from one page to an-
other. The “three-clicks” rule says that users should be able to get to the pages they need within
three mouse or keyboard clicks. Web-based forms facilitate movement with the use of hyper-
links to other relevant Web pages. Another common method for movement is to have users feel
as if they are physically moving to a new page. This illusion of physical movement among
screens can be obtained by scrolling using arrows, context-sensitive pop-up windows, or on-
screen dialog.

Designing an Attractive and Pleasing Display
The fourth guideline for good display design is to create an attractive display for the user. If users
find displays appealing, they are likely to be more productive, need less supervision, and make
fewer errors. Displays should draw users into them and hold their attention. This goal is accom-
plished with the use of plenty of open area surrounding data entry fields so that the display
achieves an uncluttered appearance. You would never crowd a form; similarly, you should never
crowd a display. You are far better off using multiple windows or hyperlinks than jamming every-
thing onto one page.

Use logical flows in the plan to your display pages. Organize material to take advantage of the
way people conceptualize their work so that they can easily find their way around. With the advent
of GUIs, it is possible to make input displays very attractive. By using color or shaded boxes and
creating three-dimensional boxes and arrows, you can make forms user friendly and fun to use.

When contemplating the use of different font styles and sizes, ask yourself if they truly as-
sist the user in understanding and approving of the display. If they draw undue attention to the art
of display design or if they serve as a distraction, leave them out. Be aware that not all Web pages
are viewed identically by different browsers. Test your prototype forms with a variety of combi-
nations to see if users declare preferences for combinations or whether they are distressing to the
majority of users. For Web fonts use Verdana or Arial.

Using Icons in Display Design
Icons are pictorial, onscreen representations symbolizing computer actions that users may select
using a mouse, keyboard, lightpen, touch screen, or joystick. Icons serve functions similar to
those of words and may replace them in many menus, because their meaning is more quickly
grasped than words. Mobile devices such as Apple’s iPhone and iPod have popularized the use of
icons on touch screens and made this a familiar interface for many business and other users.

There are some guidelines for the design of effective icons. Shapes should be readily rec-
ognizable so that the user is not required to master a new vocabulary. Numerous icons are al-
ready known to most users. Use of standard icons can quickly tap into this reservoir of common

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 379

Patient Last Name First Middle Initial
Examining Station Date of Exam
Patient Number Social Security Number
First Exam Claim number

SPEECH AUDIOMETRY SECT. Comments [
SPEECH RECEP. THRESHOLD
Right Ear []
Left Ear [] Referred by []
RIGHT EAR DISCR. Reason for referral
% [] Masking []

% [] Masking []

Examining Audiologist
LEFT EAR DISCRIM. Exam. Audiologist’s No.

Next Appt.

AUDIOLOGICAL EXAMINATION REPORT

AIR CONDUCTION

BONE CONDUCTION

500 1000 2000 4000 6000
Right ear

500 1000 2000 4000 6000
Left ear

500 1000 2000 4000 6000
Right ear

500 1000 2000 4000 6000
Left ear

FIGURE 12.C2
This screen can be designed to be more user friendly.

C O N S U L T I N G O P P O R T U N I T Y 1 2 . 2

Squeezin’ Isn’t Pleasin’

The Audiology Department in a large veteran’s hospital is using
a PC and monitor so that audiology technicians can enter data di-
rectly into the patient records system. After talking with Earl Lobes,
one of the technicians, you determine that the screen design is a ma-
jor problem.

“We used a form at one time, and that was decent,” said Mr.
Lobes. “The display doesn’t make sense, though. I guess they had
to squeeze everything on there, and that ruined it.”

You have been asked to redesign the display (see
Figure 12.C2) to capture the same information but simplify it,
and by doing so reduce the errors that have been plaguing the
technicians. You realize that squeezing isn’t the only problem
with the display.

Explain your reasons for changing the display as you did. You
may use more than one display page if you think it is necessary.

meaning. A user may point to a file cabinet, “pull out” a file folder icon, “grab” a piece of pa-
per icon, and “throw” it in the wastebasket icon. By employing standard icons, designers and
users all save time.

Icons for a particular application should be limited to approximately 20 recognizable shapes,
so that icon vocabulary is not overwhelming and so that a worthwhile coding scheme can still be re-
alized. Use icons consistently throughout applications where they will appear together to ensure
continuity and understandability. Generally, icons are worthwhile for users if they are meaningful.

Graphical User Interface Design
A graphical user interface (GUI, pronounced “goo’ë”) is the way that users interface with the
Windows and Macintosh operating systems. This is also referred to as a point-and-click interface.
Users can use a mouse to click on an object and drag it into position. Graphical user interfaces

380 PART IV • THE ESSENTIALS OF DESIGN

take advantage of additional features in display design such as text boxes, check boxes, option
buttons, list and drop-down list boxes, sliders and spin buttons, tab control dialog boxes, and im-
age maps. Figure 12.4 is a Microsoft Access input display showing a variety of GUI controls.

TEXT BOXES. A rectangle represents a text box, as mentioned previously, and is used to outline
data entry and display fields. Care must be taken to ensure that the text box is large enough to
accommodate all the characters that must be entered. Each text box should have a caption to the
left, identifying what is to be entered or what is displayed in the box. In Microsoft Access,
character data are aligned on the left, and numeric data are aligned on the right.

CHECK BOXES. In the GUI controls example, a check box is used to indicate a new customer.
Check boxes contain an X or are empty, corresponding to whether or not the user selected the
option; they are used for nonexclusive choices in which one or more of the options may be
checked. An alternative notation is to use a square button with a check mark (✓) to indicate that
the option has been selected. Note that check box text, or label, is usually placed to the right of
the box. If there is more than one check box, the labels should have some order to them, either
alphabetic or with the most commonly checked item appearing first in a list. If there are more than
10 check boxes, group them together in a bordered box.

OPTION BUTTONS. A circle, called an option button or a radio button, is used to select exclusive
choices. Only one of several options can be chosen. In this way you can make it clear to users that
they must decide among options. Choices are again listed to the right of the button, usually in some
sequence. If there is a commonly selected option, it is usually selected as a default when the page
first displays. Often there is a rectangle, called an option group, surrounding the radio buttons. If
there are more than six option buttons, consider using a list box or a drop-down list box.

LIST AND DROP-DOWN LIST BOXES. A list box displays several options that may be selected with
the mouse. A drop-down list box is used when there is little room available on the page. A single
rectangle with an arrow points down toward a line located on the right side of the rectangle.
Selecting this arrow causes a list box to be displayed. Once a user makes a choice, it is displayed
in the drop-down selection rectangle and the list box disappears. If there is a commonly selected
choice, it is usually displayed in the drop-down list by default.

TAB CONTROL DIALOG BOXES. Tab control dialog boxes are another part of graphical user
interfaces and another way to get users organized and into system material efficiently. In
designing tab control boxes, create a separate tab for each unique feature, place the most
commonly used tabs in front and display them first, and include buttons for OK, Cancel, and
Help.

FIGURE 12.4
The designer has many GUI
components that allow flexibility
in designing input screens for the
Web or other software packages.
This example is from Microsoft
Access.

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 381

SLIDERS AND SPIN BUTTONS. Sliders and spin buttons are used to change data that have a
continuous range of values, giving users more control when choosing values. Moving the slider
in one direction or the other (either left/right or up/down) increases or decreases the values.
Figure 12.5 illustrates the use of sliders to change the amount of red, green, and blue when
selecting a new color. Spin buttons are also used to change a continuous value and are shown to
the right of the sliders.

IMAGE MAPS. Image map fields are used to select values within an image. The user clicks on a
point within an image and the corresponding x- and y-coordinates are sent to the program. Image
maps are used when creating Web pages containing maps with instructions to click in a certain
area in order to view a detailed map of the region.

TEXT AREAS. A text area is used for entering a larger amount of text. These areas include a
number of rows, columns, and scroll bars that allow the user to enter and view text greater than
the size of the box area. There are two ways to handle this text. One is to avoid the use of word
wrap, forcing the user to press the Enter key to move to the next line; the text will scroll to the
right if it exceeds the width of the text area. The other option is to allow word wrap.

MESSAGE BOXES. Message boxes are used to warn users and provide other feedback messages
in a dialog box, often overlapping the display. These message boxes have different formats. Each
should appear in a rectangular window and should clearly spell out the message so that the user
knows precisely what is happening and what actions are possible.

COMMAND BUTTONS. A command button performs an action when the user selects it with the
mouse. Calculate Total, Add Order, and OK are all examples. The text is centered inside the
button, which has a rectangular shape. If there is a default action, the text is surrounded with a
dashed line. The button may also be shaded to indicate that it is the default. Users press the Enter
key to select the default button.

Form Controls and Values
Each of the controls included in a GUI interface must have some way of storing the data associ-
ated with the control. On a Web page this is done using a name and a value pair that are transmit-
ted to the server or in an email sent along with the form, such as a name of city and a value of
Paris. The name is defined on the Web page form and the server software must recognize the name
to understand what to do with the value or data sent with the Web form.

How the value is obtained differs for each Web form control. In text boxes or text areas, the
value consists of the characters keyed into the boxes. In radio buttons and check boxes, the text
that displays to the right of each radio button or check box is for human use only. The value is de-
fined in the Web form and is transmitted when the form is sent. If these data are used to update a
database, the values are often codes that are sent and then stored at the server, and the analyst must
decide what the appropriate values should be when each radio button or check box is clicked.
Drop-down lists are somewhat different from radio buttons or check boxes in that there are many
options for a given drop-down list. Values must be decided for each of the drop-down list options

FIGURE 12.5
Sliders and spin buttons are two
additional GUI components the
analyst can use to design input
screens.

382 PART IV • THE ESSENTIALS OF DESIGN

FIGURE 12.6
A Web-based input form for users
to register for a cruise.

and, when an option is chosen, the selected value is sent with the form. Form values may also be
used in calculations that are performed using JavaScript on the browser. These may be used to
multiply, add, and make decisions.

Figure 12.6 is an example of a form used to obtain prices and to register for a cruise. The text
in the Name, Address, City, State, Zip, Phone, and Email areas is sent to the server when the form
is submitted. Only one of the radio buttons for the 4-day, 7-day, or 14-day cruise may be selected.
The values sent are S for short if the 4-day cruise is selected, A for average length if 7 days has
been selected, and L for a long cruise if the 14-day cruise is selected. In addition, when one of
these cruises is selected, the dollar amount is inserted into one of the text boxes on the left side
of the Web form, and any previously selected radio buttons and amounts are cleared. If the ocean
side room check box is checked, a value of Y for yes is transmitted to the server, the amount is
inserted into the left-side text box, and the total is updated. If the customer tries to change the
amounts in the calculated text boxes, they are reset. When the submit button is clicked, the
amounts are sent to the server along with all the other data.

Hidden Fields
Another type of control found on Web forms is a hidden field. These are not visible to the viewer,
do not take up any space on the Web page, and can contain only a name and a value. Often hid-
den fields are used to store values sent from one Web form to the server. These typically need to
be included on a second form when multiple forms are required to capture all the transaction data.
Sometimes they are used to retain information about the type of browser being used, the viewer’s
operating system, and so on. Sometimes a hidden field will contain a key field used to locate a
record for the customer or the browsing session.

Event-Response Charts
When there are complicated interactions on a Web form (or any other GUI form), an event-
response chart may be used to list the variety of events that can occur. Event-response charts may
be used at a high level to model business events and responses (covered in Chapter 7), but the
events that occur on a Web form or other display are usually limited to user actions. These events
may be clicking a button, changing a value, focusing the field (moving the cursor inside the field
or to a radio button, check box, or other control), blurring a field (the user moves the cursor out
of the field), loading the Web page, detecting keystrokes, and many other events. The response
lists how the Web page should react when the event occurs. Events are for a particular object, such
as a button, a text field, the whole Web page, and so on.

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 383

Figure 12.7 is a Web site used to estimate the cost of staying at Azure Islé Resort. The user
can enter the number of people, change the starting and ending dates, and enter the number of
people for a variety of extra activities, such as scuba diving or golf.

The event-response chart is shown in Figure 12.8. Notice that there may be a number of
events for each Web form control. Since the user may do any number of actions in any order, the
event-response chart is useful to show what should happen. For example, the user may click the
Calculate button first, change the starting and ending dates, or change the number of people. The
event-response chart is also useful for building a Web form that requires minimal action from the
user. An example of this is when the user changes the starting month or day; the ending month or
day is then changed to match the starting month or day. The year changes when the month is ear-
lier than the current month, since people cannot stay at the resort prior to the current day in the
same year.

Sometimes the event-response chart may be used to explore improvements to the Web page.
Suppose that Azure Islé Resort determined that most of its customers stayed for seven days. When
the starting month or day changes, the ending date could be set for seven days in the future as a
default. It might also be a good idea to have radio buttons that allow the customer to select a stay
of 4, 7, or 14 days and calculate the ending date. Other improvements to a Web page might be de-
tecting when a number of characters have been entered, for example the three digits that comprise
a U.S. telephone area code, and then moving the cursor into the next field.

Events are not limited to working within a single Web page. They may also be used to con-
trol navigation among Web pages. This can happen when changing a selection in a drop-down list
or clicking a radio button. Events may also be used to change the contents of drop-down lists. For
example, on a job search page, by selecting one category of job, detailed positions for that job ap-
pear in a second drop-down list.

Dynamic Web Pages
Dynamic Web pages change themselves as the result of user action. They often use JavaScript to
modify some part of the Web page or a style. Changing an image when the mouse moves over it
or rotating random images at a given time interval are common examples of dynamic Web pages.
The Web page may detect the width of the browser window and modify the page accordingly.
Menus that expand when the user clicks a small plus sign to the left of the menu or when the
mouse moves over a menu are other examples of dynamic Web pages.

The power of dynamic Web pages has been greatly expanded in recent Web browsers. By
using JavaScript, a Web form may morph or change itself to add new fields or remove old
fields, or change field attributes, such as the length of a field or a radio button changing into a

FIGURE 12.7
A Web site permitting users to
estimate the cost of staying at
Azure Islé Resort. Cost changes
depend on the number of people
included, length of stay, and extra
activities added.

384 PART IV • THE ESSENTIALS OF DESIGN

Form Control Event
ResponseWeb Page

Page loads Place the current year in the Starting Year and Ending Year fields.
Place the cursor in the Number of People field.

Number of People Value changes Verify that Number of People contains a number greater than zero.
Starting Month Selection

changes Set the Ending Month in the drop-down list to the Starting Month. If the
month is less than the current month, change the Starting Year and
Ending Year values to the next year.

Starting Day Selection
changes Set the Ending Day in the drop-down list to the Starting Day. Use the

Starting Month value to set the Starting Year and Ending Year values.

Starting Year Receives focus Use the Starting Month value to calculate the Starting Year and
Ending Year values.

Number of Days Receives focus;
value changes

Calculate the Number of Days that the customer is staying. If the
number is less than or equal to zero, display an error message.

Basic Charge Receives focus Calculate the Basic Charge and put the cursor in the Scuba Adventure
Number of People field.Scuba Adventure

Number of People
Receives focus Select the current amount displayed (zero) so the customer may replace it.

Scuba Adventure
Number of People

Value changes Calculate the Scuba Cost based on the value of Scuba Adventure Number
of People and put the cursor in the Golf Number of People field.

Scuba Cost Value changes Recalculate the Scuba Cost and put the cursor in the Golf Number
of People field.Golf Number of

People Receives focus Select the current amount (zero) so the customer may replace it.
Golf Number of
People Value changes Calculate the Golf Cost and put the cursor in the Horseback Riding

Number of People field.
Golf Cost

Value changes Recalculate the Golf Cost and put the cursor in the Horseback Riding
Number of People field.Horseback Riding

Number of People
Receives focus Select the current amount displayed (zero) so the customer may replace it.

Horseback Riding
Number of People

Value changes Calculate the Horseback Riding Cost based on the value of Horseback
Riding Number of People and put the cursor in the Last Name field.

Horseback Riding
Cost Value changes Recalculate the Horseback Riding Cost and put the cursor in the

Last Name field.Total Cost Value changes Calculate the total cost and put the cursor in the Last Name field.
Calculate Button Button clicked Validate the form data and display an error message if any errors occur.

Calculate the Total Cost if there are no errors.

Reset Button Button clicked Clear the form and place the current year in the Starting Year and Ending
Year fields. Place the cursor in the Number of People field.

Print Button Button clicked Validate the form data and display an error message if any errors occur.
Calculate Total Cost if there are no errors. Use a Web cookie to pass the
data to a confirmation page that does not allow the users to change
any data.Submit Button Button clicked Validate the form data and display an error message if any errors occur.
Calculate Total Cost if there are no errors. Send the form to the server
and send confirmation to the user.

FIGURE 12.8
An event-response chart that lists the form control, event, and response for a number of events that can occur as a user interacts with the Azure
Islé Resort cost estimator screen.

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 385

check box. This makes the Web page more responsive to user actions and often will eliminate the
need to load new Web pages based on user choices.

The analyst should think about the information that would make sense to the Web site viewer.
For example, placing the country selection list on a Web page before other address elements
would allow the user to change the country list and then to change captions to reflect the country.
If the person selected United States from the drop-down list, the captions would say ‘State’ and
‘Zip Code.’ If the country was Canada, the captions would say ‘Province’ and ‘Postal Code.’ If
Japan, ‘Prefecture’ and ‘Mail Code.’

Three-Dimensional Web Pages
Dynamic Web pages may also be used to temporarily display information, such as a block of help
information, a calendar with clickable dates used to assist date entry fields, airport codes, and
other information. This information may be stored by using a series of stacked layers (using the
cascading styles z-index property) in the Web page design, each on top of another. The main Web
page is the base plane, the standard layer of the Web page that displays or obtains information,
while others below the page are not visible.

When help is requested or the user clicks in the date field, the layer is either moved to the top
and becomes visible or is generated by JavaScript code and appears. The position of the layer is de-
termined by the designer or analyst, such as a calendar appearing on the right side of a date field.
When a date is selected, a close link is clicked, or the user clicks outside of the calendar, the layer
then moves below the surface of the Web page or is removed. The analyst must determine when it
makes sense to include a layer, often examining each field on a Web page to determine if additional
information would help to ensure accurate information and good communication with the user.

The analyst should determine the following:

1. How is the layer built? Is it created using JavaScript code, such as a calendar, or is
additional information required to build the layer? If additional information is required,
where is the data located and how should it be obtained? Ideally the information is
obtained from only one database table on the server using Ajax techniques.

2. What events cause the layer to be created? These include a user clicking or tabbing into a
field, clicking a link, or counting the number of keystrokes entered into a field. An example
would be a hotel chain with many locations. To include all the locations in a drop-down list
would make the list too long. When the user enters three characters, a block surfaces listing
hotels starting with those three letters, including the country, city, state or province, and
other information. If the event was detecting only two letters, the list may be too large for
the display block.

3. What events remove the layer, such as a close button, clicking a date, clicking outside
the region, or selecting a hotel from the list?

4. Where should the surfaced block be placed? Typically next to the field that created the
block, in x- and y-coordinates.

5. How large should the block be, measured in pixels? If the information is too large for the
block, such as a list of hotels, the analyst should decide how to handle the additional
information. Options include adding scroll bars or positioning a link at the bottom to the
next page of information.

6. What should the region formatting attributes, such as color and border, be? If there is
a series of links, review their appearance with the users. Ask the users if they would like
the color to change as the mouse moves over each row.

7. What should happen when an option is selected? In the case of a reservation calendar,
when a date is clicked, the date is placed in the starting date. If a hotel is selected, the city,
state or province, and country information, along with a link to the hotel, should populate
the Web form fields.

Using layers is an effective way to build Web sites since it does not require any pop-up pages
(which may be blocked by Internet security software). Additionally, a new Web page does not
have to load, and, because the information is contained in a layer, it does not take up any space
on the main Web page.

Figure 12.9 is an example of a Web form used by an insurance company to change client infor-
mation; to add a new location for a client, such as a new store or restaurant for an existing client; or

386 PART IV • THE ESSENTIALS OF DESIGN

If “Add New Property”

is clicked, a new

insured property box

appears.

If “Corporate” is

checked, the page

changes to display a

field for “Company.”

FIGURE 12.9
An example of a dynamic Web
page from an insurance company.
If a user clicks on “Add New
Property,” a new insured property
box appears.

to remove a store for the client. If the Corporate check box is checked, the Last Name, First Name,
and Middle are changed to a Company name field, with the caption text changing as well. If the
Add New Property button is clicked, a new set of fields for the third property is added. Care must
be taken to generate unique names that the server will recognize for the additional fields. When the
form is submitted, the server updates the database tables for the additional fields.

The analyst must decide when the use of dynamic Web pages is appropriate. If the data
change when other parts of the Web page change (such as clicking a radio button or selecting an
item from a drop-down list), it may be good policy to design the Web pages as a dynamic form.
If, however, some parts of the Web form are unsecured and other parts require encryption, it is
probably best not to use dynamic forms.

A good example of a form that modifies itself may be found at Expedia.com (www.expedia
.com). Clicking radio buttons for a flight, hotel, car, or cruise causes the form to change to gather
the data appropriate to reserving a flight, hotel, and so on.

Dynamic Web pages have the advantage of modifying themselves quickly, with fewer inter-
ruptions to send and receive data from the server. However, there are several disadvantages when
creating dynamic Web pages. One is that they will not work if JavaScript is turned off. The ana-
lyst must decide what to do in this situation.

If the person must use the Web site (as in a corporate intranet environment, in a site used to
obtain student loans, or in the case of processing government or other transactions), the Web page

www.expedia.com
www.expedia.com

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 387

can state clearly that it will not function if JavaScript is turned off and then direct the user on how
to turn it on. Most commerce Web sites will not require JavaScript to be turned on and will have
an alternate Web site for customers.

A second disadvantage when using dynamic Web pages is that they may not be compliant
with the American Disabilities Act. (For more on Web accessibility for all users, please see
Chapter 14 on designing human–computer interaction.)

Ajax (Asynchronous JavaScript and XML)
Ajax is a technique that works in more recent Web browsers. It involves the use of JavaScript and
extensible markup language (XML). Traditionally, each time a Web page needed data from a dif-
ferent database table, a request was sent to the server and a whole new page was loaded. This is
effective but slow, because an entire page must be loaded just to provide additional data for a
drop-down list or some other Web form control based on the one selected previously.

Ajax allows Web developers to build a Web page that works more like a traditional desktop
program. As new data are needed, the browser sends a request to the server, and the server sends
a small amount of data back to the browser, which updates the current page. This means that the
viewer does not experience an interruption of work and the Web page does not reload. The page
is dynamically updated with the new data.

The data may be either a small text file or an XML document containing many customers or
other repeating data. If the data is an XML file, each customer element is called a node, and each
node is numbered (starting with zero) from the beginning of the XML document. This allows the
Web page to go to the first or last customer or to loop through all the customers one by one with
a button click.

Let’s say a systems analyst was designing a traditional Web site, without Ajax, for making a
reservation for a European ferry. The resultant Web site might contain several pages. The first
page would ask the customer about the origin and destination of the journey, the date of the
planned trip, and the number of passengers. Since pricing is determined by the number and ages
of the passengers, a second Web page would display asking for the ages of the passengers. A third
would ask the type of vehicle desired for land transportation, and so on.

The same information may be obtained using Ajax techniques, illustrated in Figure 12.10.
The same starting and ending destinations, as well as dates, are entered on the top of the Web
form. The Web page uses the destinations and dates to determine whether there is any available
space on the ferry. After the customer changes the number of passengers, the form dynamically
changes to add the three drop-down lists for each passenger, along with instructions on the side—
without reloading the entire page. When the type of vehicle changes, in this example to Car, the
selected vehicle type is sent to the server. The caption on the form changes the text from vehicle
to Car Make. The server sends the possible car makes, and the Car Make drop-down list is pop-
ulated with the data. When the car make is selected, the chosen value is sent to the server and the
Car Model drop-down list is populated, and so on.

The Web page used in this example responds much faster than the alternative, which is hav-
ing several different pages displayed, and it is easier for the user to work with. There is still a need
to have a confirmation Web page (although the page could dynamically change to remove form
fields and replace them with text), and another Web page for name, address, and credit card infor-
mation. The analyst must decide how to partition the transaction into a series of pages, some using
Ajax and some not. If small amounts of data need to be obtained to continue the transaction, and
the data logically fits on a single Web form or page, then Ajax may be the best approach. At times
it is better to use several pages, as in the case when a user makes an airline reservation. One Web
form would obtain all the flight information, and another page would be used to display the flights.
A third page might be used to obtain passenger information, and a fourth page might use Ajax to
select seat locations, meals, and other individual needs for each passenger.

Ajax has the advantage of making the Web work faster and of providing a smoother viewing
experience for users. The disadvantages are that JavaScript must be enabled and that the Web
page may violate the Americans with Disabilities Act. Security must be taken into consideration
if needed. There are numerous examples of Ajax Web sites. Some notable ones include Google
Earth (earth.google.com), and Google Suggest, which responds to the viewer’s keystrokes by pro-
viding a drop-down list of possible search terms. Ajax Write (www.ajaxlaunch.com/ajaxwrite) is
a Web-based word processor. There is also an Ajax spreadsheet and a sketching tool.

www.ajaxlaunch.com/ajaxwrite

388 PART IV • THE ESSENTIALS OF DESIGN

After the customer

selects four passengers,

the server generates

four drop-down lists.

After identifying all

four passengers, a

question regarding a

vehicle appears.

More questions

appear until the form

is complete.

FIGURE 12.10
When analysts use Ajax techniques, a dynamic Web page responds more rapidly to short user input than it would if several different pages were
required for display.

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 389

Using Color in Display Design
Color is an appealing and proven way to facilitate users with tasks requiring computer input. Ap-
propriate use of color in display screens allows you to contrast foreground and background, high-
light important fields on forms, feature errors, highlight special code input, and call attention to
many other special attributes.

Highly contrasting colors should be used for display foreground and background so that users
can grasp what is presented quickly. Background color will affect perception of foreground color.
For example, dark green may look like a different color if taken off a white background and
placed on a yellow one.

The top five most legible combinations of foreground lettering on background are (starting
with the most legible combination):

1. Black on yellow.
2. Green on white.
3. Blue on white.
4. White on blue.
5. Yellow on black.

The least legible are red on green and blue on red. As can be gathered from these foreground and
background combinations, bright colors should be used for foregrounds, with less bright colors
for the background. Strongly contrasting colors should be assigned first to fields that must be dif-
ferentiated; then other colors can be assigned.

Use color to highlight important fields on displays. Fields that are important can be colored dif-
ferently than the rest. Take into consideration cultural norms. Red usually means danger, but “in the
red” also means a company is losing money. Green means “go” and is a safe color in Western countries.

By observing Web accessibility guidelines, you will also want to take into consideration that
8 to 10 percent of the male population has color blindness, but less than 1 percent of females suf-
fer from it. Use other indicators in addition to color to support users in completing their tasks.

As with any enhancement, designers need to question the added value of using color. Use of
color can be overdone; a useful heuristic is no more than four colors for new users and only up to
seven for experienced ones. Irrelevant colors distract users and detract from their performance.
In numerous instances, however, color has been shown to facilitate use in very specific ways.
Color should be considered an important way to contrast foreground and background, highlight
important fields and data, point out errors, and allow special coding of input.

INTRANET AND INTERNET PAGE DESIGN
In Chapter 11, the rudiments of designing Web sites were discussed. There are more hints about de-
signing a good Internet or intranet fill-in form that should be noted now that you have learned some
of the elementary aspects of input form and display design. Figure 12.11 shows a fill-in form order
page that shows many elements of good design for the Web. Guidelines include the following:

1. Provide clear instructions, because Web users may not be familiar with technical
terminology.

2. Demonstrate a logical entry sequence for fill-in forms, especially because the users may
have to scroll down to a region of the page that is not visible at first.

3. Use a variety of text boxes, push buttons, drop-down menus, check boxes, and radio
buttons to serve specific functions and to create interest in the form.

4. Provide a scrolling text box if you are uncertain about how much space users will need to
respond to a question, or about what language, structure, or form users will use to enter data.

5. Prepare two basic buttons on every Web fill-in form: Submit and Clear Form.
6. If the form is lengthy and the users must scroll excessively, divide the form into several

simpler forms on separate pages.
7. Create a feedback screen that refuses submission of a form unless mandatory fields are filled

in correctly. The returned form screen can provide detailed feedback to the user in a different
color. Red is appropriate here. For example, a user may be required to fill in a country in the
country field, or indicate a credit card number if that type of payment has been checked off.
Often a required field is denoted on an initial input screen with a red asterisk.

390 PART IV • THE ESSENTIALS OF DESIGN

C O N S U L T I N G O P P O R T U N I T Y 1 2 . 3

It’s Only Skin Deep

When contemplating upgrading the design of the ecommerce
Web site for Marathon Vitamin Shops, Bill Berry, the owner, real-
ized that his customers were diverse.

“We’ve worked hard to attract many different types of cus-
tomers. As far as the store goes, we are succeeding. People with
many different interests come in. I’ve met sports enthusiasts who
want high-energy vitamins to boost their power. Other customers
want to lose weight with the help of vitamin supplements. Some of
our customers are health conscious and believe that a vitamin a day
keeps the doctor away. Some even embrace the lifestyle first culti-
vated in the 1970s. By the way the store is set up, you can see that
we’re trying to segment the space so that each kind of consumer
feels welcome. It’s hard to translate that to the Web, though.”

Bill turns to one of his employees, Jin Singh, and asks her, “Is
there anything we can do to transform the online catalog so that it
attracts different customers? And what about being responsive to
the different people who visit the site?”

Jin, who just happens to be an Internet Webcast enthusiast,
says, “I have just the thing,” as she turns to her computer and brings
up her Windows Media Player. “Personally, I like to get into a
frame of mind that matches the music or videos I am experiencing
on the Web.”

Jin shows Bill examples of some “skins” on the screen. You
can see a variety of skins for the Microsoft Windows Media Player
displayed in Figure 12.C3.

Jin continues, “Skins allow me to customize the appearance of
my Media Player. When I play oldies, I choose a rusty skin. When
I am playing something new age, I opt for a skin that has a rainbow
of colors, and so on.”

Peering at the screen, Bill exclaims, “I think you’re onto some-
thing. What did you call those things again?”

Jin laughs and explains, “They’re called skins, but they’re just
fun overlays that customers can add to whatever it is they’re view-
ing. I can envision that eventually the Web site can take on an en-
tirely new appearance depending on customer preferences for a
particular kind of skin.”

Based on your assessment of the different types of customers
Marathon would like to attract to its Web site, design, draw, and de-
scribe a series of skins that would be appropriate for the company’s
purposes. Explain in two paragraphs how the inclusion of user-
controlled skins on a Web site can further the analyst’s design ob-
jectives of attractiveness and ease of use for input.

FIGURE 12.C3
Six skins from Microsoft’s Windows Media Player allow users to customize their players to fit their moods.

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 391

Ecommerce applications involve more than just good design of Web sites. Customers need
to feel confident that they are buying the correct quantity, that they are getting the right price, and
that the total cost of an Internet purchase, including shipping charges, is what they expect. The
most common way to establish this confidence is to use the metaphor of a shopping cart or shop-
ping bag. Figure 12.12 shows the contents of a shopping cart for a customer making a purchase.
An important feature of the shopping cart is that the customer can edit the quantity of the item or-
dered or can remove the item entirely.

Ecommerce applications place additional demands on the analyst who must design Web sites
to meet several user and business objectives, including setting forth the corporate mission and
values regarding confidentiality, preserving user privacy, and easy and rapid product returns; the
efficient processing of transactions; and building good customer relationships.

FIGURE 12.11
The order screen from the
Merchants Bay Web site (www
.merchantsbay.com) is a good
example of how to design an input
form that is clear, easy to use, and
functional.

FIGURE 12.12
The Merchants Bay Web site
(www.merchantsbay.com) is a
good example of a shopping cart.

www.merchantsbay.com
www.merchantsbay.com
www.merchantsbay.com

392 PART IV • THE ESSENTIALS OF DESIGN

SUMMARY
This chapter has covered elements of input design for forms, displays, and Web fill-in forms. Well-designed
input should meet the goals of effectiveness, accuracy, ease of use, simplicity, consistency, and attractive-
ness. Knowledge of many different design elements will allow the systems analyst to reach these goals.

The four guidelines for well-designed input forms are the following: (1) make forms easy to fill in,
(2) ensure that forms meet the purpose for which they are designed, (3) design forms to ensure accurate com-
pletion, and (4) keep forms attractive.

Design of useful forms, displays, and Web fill-in forms overlaps in many important ways, but there are
some distinctions. Displays show a cursor that continually orients the user. Displays often provide assis-
tance with input, whereas with the exception of preprinted instructions, it may be difficult to get additional
assistance with a form. Web-based documents have additional capabilities, such as embedded hyperlinks,

M A C A P P E A L

Ecommerce has changed the world by asking users to enter their own information directly to Web-
based input forms and in doing so has increased the accuracy of data entry. While this approach is ef-
ficient for the companies receiving data, it pushes the keying of that information to the user.
Fortunately software is available to automate that process so users merely make a couple of clicks
rather than typing in long strings of alphanumeric characters that make up IDs, passwords, and credit
card numbers. On a PC, RoboForm by Siber Systems is a good alternative. On the Mac, 1Password
by Agile Web Solutions appears to be the current leader.

1Password allows a user to automate logins, complete credit card information, fill in an identity
complete with street address and email, and key secure notes. Like every good password program,
1Password includes important features such as strong password generators, antiphishing technology,
and built-in protection from keyloggers. 1Password is also an app for the iPhone and a program for
the Palm, so users can take their passwords with them.

FIGURE 12.MAC
1Password from Agile Web Solutions.

©2006–09 Agile Web Solutions, all rights reserved.

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 393

H Y P E R C A S E ® E X P E R I E N C E 1 2

“I sn’t spring the most beautiful season here? The architect really
captured the essence of the landscape, didn’t he? I mean, you can’t go
anywhere in the building without seeing another beautiful vista
through those huge windows. When Snowden came back, he looked
at your output displays. The good news is that he thinks they’ll work.
The project is blossoming, just like the flowers and trees. When Snow-
den returns from Finland, would you have some input display screens
ready to demonstrate? He doesn’t want things to slow down just be-
cause he’s out of the country. By the way, the Singapore trip was very
successful. Maybe MRE will be worldwide someday.”

HYPERCASE Questions
1. Using either a paper layout form, Microsoft Visio, or form

design software, design a prototype paper form that captures
client information for the Training Unit.

2. Test your form on three classmates by having each of them
fill it out. Ask them for a written critique of the form.

3. Redesign your input form to reflect your classmates’
comments.

4. Using either a paper layout form, Microsoft Visio, or form
design software, design a prototype display form that
captures client information for the Training Unit.

5. Test your input display on three classmates by having each of
them try it out. Ask them for a written critique of the
display’s design.

6. Redesign the input display based on the comments you
receive. In a paragraph, explain how you have addressed
each comment.

FIGURE 12.HC1
Take a look at some of the input screens in HyperCase. You may want to redesign some
of the electronic forms.

context-sensitive help functions, and feedback forms, to correct input before final submission. Skins can be
added as an option to personalize a Web site.

The four guidelines for well-designed displays are as follows: (1) keep the display simple, (2) keep the
display presentation consistent, (3) facilitate user movement among display screens and pages, and (4) cre-
ate an attractive and pleasing display. Many different design elements allow the systems analyst to meet
these guidelines.

The proper flow of paper forms, display screens, and fill-in forms on the Web is important. Forms should
group information logically into seven categories, and displays should be divided into three main sections. Cap-
tions on forms and displays can be varied, as can font types and the weights of lines dividing subcategories of

394 PART IV • THE ESSENTIALS OF DESIGN

information. Multiple-part forms are another way to ensure that forms meet their intended purposes. Design-
ers can use windows, pop-ups, dialog boxes, and defaults onscreen to ensure the effectiveness of design.

Event-response charts help the analyst to document what should happen when events occur. Dynamic
Web pages modify the Web page in response to events. These can be constructed as three-dimensional Web
pages. Ajax techniques request and receive a small amount of data from the server and use the data to mod-
ify the Web page on the fly.

Web fill-in forms should be constructed with the following seven guidelines in mind as well as those
in Chapter 11:

1. Provide clear instructions.
2. Demonstrate a logical entry sequence for fill-in forms.
3. Use a variety of text boxes, push buttons, drop-down menus, check boxes, and radio buttons.
4. Provide a scrolling text box if you are uncertain about how much space users will need to respond to

a question.
5. Prepare two basic buttons on every Web fill-in form: Submit and Clear Form.
6. If the form is lengthy and the users must scroll extensively, divide the form into several simpler

forms on separate pages.
7. Create a feedback screen that highlights errors in an appropriate color and refuses submission of the

form until mandatory fields are correctly filled in.

KEYWORDS AND PHRASES
Ajax
base plane
box caption
check box
command button
control of business forms
cursor
display color combinations
drop-down list box
dynamic Web pages
event-response chart
facilitating movement on pages
form flow
form values
hidden field
horizontal check-off caption
image map
Internet/intranet fill-in form
layer

line caption
list box
message box
onscreen color
onscreen dialog
onscreen icon
option button
prompt
radio button
response time
seven sections of a form
skins
slider
specialty form
spin button
table caption
text box
three sections of a display
vertical check-off caption

REVIEW QUESTIONS
1. What are the design objectives for paper input forms, input screens, or Web-based fill-in forms?
2. List the four guidelines for good form design.
3. What is proper form flow?
4. What are the seven sections of a good form?
5. List four types of captioning for use on forms.
6. What is a specialty form? What are some disadvantages of using specialty forms?
7. List the four guidelines for good display design.
8. What are the three sections useful for simplifying a display?
9. What are the advantages of using onscreen windows?

10. What are the disadvantages of using onscreen windows?
11. List two ways display screens can be kept consistent.
12. Give three ways to facilitate movement between display pages.
13. List four graphical interface design elements. Alongside each one, describe when it would be

appropriate to incorporate each of them in a display design or on a Web-based fill-in form.
14. When should check boxes be used?
15. When should option buttons be used?

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 395

16. What are two different ways that form values are used?
17. What are hidden fields used for on a Web form?
18. List four different types of events.
19. What are dynamic Web pages?
20. What are three-dimensional Web pages?
21. How does Ajax improve a Web page that changes based on user actions?
22. List the five most legible foreground and background color combinations for display use.
23. Define what is meant by the term skins when used in Web design.
24. What are four situations in which color may be useful for display and Web-based fill-in form design?
25. List seven design guidelines for a Web-based fill-in form.

PROBLEMS
1. Here are captions used for a U.S. state census form:

Name

Occupation

Address

Zip code

Number of people in household

Age of head of household

a. Redo the captions so that the state census bureau can capture the same information requested on
the old form without confusing respondents.

b. Redesign the form so that it exhibits proper flow. (Hint: Make sure to provide an access and
identification section so that the information can be stored in the state’s computer system.)

c. Redesign the form so it can be filled in by citizens who visit the state’s Web site. What changes
were necessary in moving from a paper form to one that will be submitted electronically?

2. Elkhorn College needs to keep better track of students and others who use the many computers
available in the Buck Memorial Library.
a. Design and draw a representation of a display screen for students to use in signing into the

computers in the library. Label the three sections of a display that you included.
b. Design a paper form to be left alongside each computer daily that users who are part of the

community (but are not students) are required to fill out. The form should ask for name, date and
time of visit, general purpose for computer use (i.e., word processing, Web surfing, examining
real estate documents online), and the time they have logged off. Label the seven sections of a
form that you included.

3. Speedy Spuds is a fast-food restaurant offering all kinds of potatoes. The manager has a 30-second
rule for serving customers. Servers at the counter say they could achieve that rule if the form they
must fill out and give to the kitchen crew were simplified. The information from the completed form
is entered into the computer system at the end of the day, when the data entry person needs to enter
the kind of potato purchased, additional toppings purchased, the quantity, and the price charged. The
current form is difficult for servers to scan and fill out quickly.
a. Design and draw a form (you choose the size, but be sensible) that lists possible potatoes and

toppings in a manner that is easy for counter servers and kitchen crew to scan, and can also be
used as input for the inventory/reorder system that is on the extranet connecting Speedy Spuds
and Idaho potato growers. (Hint: Remember to observe all the guidelines for good form design.)

b. Design and draw a representation of a display screen that can be used by the servers and clerks to
fill in the information captured on the form.

c. Design a display screen based on the display you designed in Problem 3b. This time, it should
function as a display that shows a kitchen crew member what to prepare for each Spuds order.
List three changes to the existing display that you made to adapt it to function as an output
display.

396 PART IV • THE ESSENTIALS OF DESIGN

4. Sherry’s Meats, a regional meat wholesaler and retailer, needs to collect up-to-date information on
how much of each meat product it has in each store. It will then use that information to schedule
deliveries from its central warehouse. Currently, customers entering the store fill out a detailed form
specifying their individual orders. The form lists over 150 items; it includes meat and meat products
available in different amounts. At the end of the day, between 250 and 400 customer orders are
tabulated and deducted from the store’s inventory. Then the office worker in each store phones in an
order for the next day. Store employees have a difficult time tabulating sales because of the mistakes
customers make in filling out their forms.
a. It is not possible to have the solitary office worker in each store fill out the numerous customer

order forms. Change the form (31
2� � 6� either horizontal or vertical) and draw it so that it is
easier for customers to fill out correctly and for office workers to tabulate.

b. Design and draw a specialty form of the same size that will meet the needs of Sherry’s
customers, office workers, and warehouse workers.

c. Design and draw two different forms of the same size to meet the purposes in Problem 4b,
because Sherry’s carries both poultry and beef products. (Hint: Think about ways to make forms
easy to distinguish visually.)

d. Design a fill-in form for onscreen display. When a customer submits an order, it is entered into
Sherry’s inventory system by any person who is serving customers at the counter. This
information will be captured and sent to the central warehouse computer to help control
inventory.

e. In a paragraph, describe the drawbacks of having lots of different people at different locations
enter data. In a paragraph, list steps you can take as the designer so that the fill-in form is
designed to ensure accuracy of entry.

f. Design a Web page used by a customer to enter an order directly to Sherry’s.
g. Design a Web page to obtain credit card information for a Web order. Partition the data onto two

Web pages for additional security.
h. Design a three-dimensional dynamic Web page that allows Sherry’s to customize certain

products, such as requesting specific ingredients in a meatloaf or a salad. When the customer
selects a product from a drop-down list, the ingredients must be displayed with a means of
selecting which ones should be included in the product.

5. R. George’s, a fashionable clothing store that also has a catalog business, would like to keep track of
the customers coming into the store so as to expand its mailing list.
a. Design and draw a simple form that can be printed on 3� � 5� cards and given to in-store

customers to fill out. (Hint: The form must be aesthetically appealing to encourage R. George’s
upscale clientele to complete it.)

b. Design and draw a representation of a display screen that captures in-store customer information
from the cards in Problem 5a.

c. Design and draw a second onscreen tab control dialog box that compares in-store customers with
catalog customers.

d. The owner is having you help enhance his catalog business by setting up an ecommerce site.
Design a Web-based form to capture information from those who visit the Web site. In a
paragraph, explain how it will differ from the printed form.

6. Recently, an up-and-coming discount brokerage house expressed an interest in developing its own
Web-based portfolio management software that clients could use at home on their PCs to make
trades, get real-time stock quotes, and so on.
a. Design two input displays that make data entry easy for the client. The first display should allow

users to enter stock symbols for the stocks they want to track on a daily basis. The second display
should allow the client to use an icon-based system to design a customized report showing stock
price trends in a variety of graphs or text.

b. Suggest two other input displays that should be included in this new portfolio management
software.

7. My Belle Cosmetics is a large business that has sales well ahead of any other regional cosmetics
firm. As an organization, it is very sensitive to color, because it introduces new color lines in its
products every fall and spring. The company has recently begun using technology to electronically
show in-store customers how they appear in different shades of cosmetics without requiring them to
actually apply the cosmetics.
a. Design and draw a representation of a display screen that can be used by sales clerks at a counter

to try many shades of lipstick and makeup on an individual customer very quickly and with a
high degree of accuracy. Input from customers should be their hair color, the color of their
favorite clothing, and their typical environmental lighting (fluorescent, incandescent, outdoor,
and so on).

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 397

b. Design and draw a representation of a display screen that is equivalent to the one in Problem 7a
but that vividly demonstrates to decision makers in My Belle how color improves the
understandability of the screen.

c. One of the affiliates My Belle has on the Web is a large department store chain. In a paragraph,
describe how the display screen in Problem 7a can be altered so that an individual can use it and
My Belle can put it on the department store’s ecommerce site to attract customers.

8. The Home Finders Realty Corporation specializes in locating homes for prospective buyers. Home
information is stored in a database and is to be shown on an inquiry display screen. Design a GUI
interface, Web-based display to enter the following data fields, which are used to select and display
homes matching the criteria. Keep in mind the features available for a GUI display. The design
elements (which are not in any particular sequence) are as follows:
a. Minimum size (in square feet).
b. Maximum size (in square feet, optional).
c. Minimum number of bedrooms.
d. Minimum number of bathrooms.
e. Garage size (number of cars, optional).
f. School district (a limited number of school districts are available for each area).
g. Swimming pool (yes/no, optional).
h. Setting (either city, suburban, or rural).
i. Fireplace (yes/no, optional).
j. Energy efficient (yes/no).

In addition, describe the hyperlinks necessary to achieve this type of interaction.
9. Design a Web entry page for the Home Finders Realty Corporation display screen created in

Problem 8.
10. The five-year-old TowerWood hotel chain needs help designing its Web site. The company maintains

properties in all the large U.S. tourist communities such as Orlando, Florida (near Disney World);
Maui, Hawaii; Anaheim, California (near Disneyland); Las Vegas, Nevada; and New Orleans,
Louisiana. Their properties feature a variety of rooms in all these locations.
a. In a paragraph, discuss how the company can use skins on its Web site to attract different types

of clientele, including families with small children, young couples on their honeymoon, retired
couples who want to travel on a budget, and business travelers who need business services.

b. Design and draw a series of skins that would appeal to the different types of hotel clientele listed
in Problem 10a. (Hint: Use a graphics package or drawing program to help design the skins.)

c. Add a group of potential Web site users for the TowerWood hotel chain who were not mentioned
in Problem 10a and design and draw additional skins for them. Then create a table that matches
each client group with a particular skin you designed.

11. Sludge’s Auto is an auto parts recycling center, including classic and antique cars. Rhode Wheeler,
the owner, would like to get his bearings on a Web site for customers to browse for parts. Design an
Ajax Web page used to find parts. The customer needs to know the make, model, and year of a car as
well as the part. If the part is in stock, the description, condition of the part, price, and shipping cost
are displayed, with the quantity available for each part, along with a picture of the part. Provide a
button for each part that may be clicked to purchase the part.

12. Design the Add Customer Web page for Sludge’s auto. Include a profile that would allow Sludge’s to
send the customer an email if a certain part becomes available.

13. Design the Purchase Web page for Sludge’s Auto. Assume that the customer has been added and has
been logged on. Display some information about the customer. Split credit card information (type of
credit card, credit card number, expiration date, and the security code found on the back of the card)
between two Web pages.

14. Design a Web page using Ajax for registering an electronic product, either hardware or software. The
form should have the purchaser’s name and address, telephone number, email address, and a drop-
down list of product categories. When the category is changed, send the category value to the server,
which returns an XML document containing the products for the category, used to create a drop-
down list of products. When the customer selects a product, the product value is sent to the server,
which returns an XML document used to create a model or version of the product.

GROUP PROJECTS
1. Maverick Transport is considering updating its input display screens. With your team, brainstorm

about what should appear on input screens of computer operators who are entering delivery load data
as loads are approved. Fields will include date of delivery, contents, weight, special requirements (for
example, whether contents are perishable), and so on.

398 PART IV • THE ESSENTIALS OF DESIGN

2. Each team member should design an appropriate input display using either a CASE tool, a drawing
tool such as Microsoft Visio, or paper and pencil. Share your results with your team members.

3. Make a list of other input displays that Maverick Transport should develop. Remember to include
dispatcher screens as well as screens to be accessed by customers and drivers. Indicate which should
be PC screens or displays on wireless handheld devices.

4. Design a Web-based screen that will allow Maverick Transport customers to track the progress of a
shipment. Brainstorm with team members for a list of elements, or perform an interview with a local
trucking company to find out its requirements. List what hyperlinks will be essential. How will you
control access so that customers can track only their own shipments?

SELECTED BIBLIOGRAPHY
Direct Ferries. “Web Site Uses Ajax in Their Application.” www.directferries.co.uk/poirishsea.htm. Last ac-

cessed July 31, 2009.
Garrett, J. J. “Ajax: A New Approach to Web Applications.” February 18, 2005. www.adaptivepath.com.

Last accessed July 31, 2009.
Google Suggest. “Web Site That Uses Ajax.” www.google.com/webhp?complete�1&hl�en. Last accessed

July, 31, 2009.
Ives, B. “Graphical User Interfaces for Business Information Systems.” MIS Quarterly (Special Issue),

December 1982, pp. 15–48.
Kyng, M., and L. Mathiassen. Computers and Design in Context. Cambridge, MA: MIT Press, 1997.
Nielsen, J., R. Molich, C. Snyder, and S. Farrell. E-Commerce User Experience. Fremont, CA: Nielsen

Norman Group, 2001.
Reisner, P. “Human Factors Studies of Data Base Query Languages: A Survey and Assessment.” Computing

Surveys, Vol. 4, No. 1, 1981.
Schmidt, A., and K. E. Kendall. “Using Ajax to Clean Up a Web Site: A New Programming Technique for

Web Site Development.” Decision Line, October 2006, pp. 11–13.

www.directferries.co.uk/poirishsea.htm
www.adaptivepath.com
www.google.com/webhp?complete=1&hl=en

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 399

E P I S O D E 12
CPU Case

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Forming Screens and Screening Forms
Pooling information from the output design and reviewing their progress, Chip and Anna proceed to the next
stage, the design of input. “Web pages must be designed to capture input information easily and accurately,”
remarks Anna.

Chip starts working on modifying the display used to enter the form data. The ADD NEW COMPUTER
entry display is shown in Figure E12.1. One of the considerations of the entry display is ease of entering
data, and another is accuracy. Still another consideration is the availability of help. New employees would
not be familiar with the operation of the system or with what is required for a particular field entry. To
achieve these goals, Chip includes drop-down lists for the OPTICAL DRIVE, COMPUTER TYPE, and
OPERATING SYSTEM. “I like the way these drop-down lists work,” he remarks to Anna. “The users can
easily select the codes that should be stored in the database.”

“Why have the users select codes?” replies Anna. “There must be a way for them to select descriptive
code meanings, such as the name of the operating system, and have the computer store the codes.”

“That’s an excellent idea!” exclaims Chip. A short time later, the modifications have been implemented.
Anna reviews the display screen and remarks, “This looks terrific! I like the grouping of the check

boxes and descriptive information contained in the drop-down lists.”
“Watch this one in action,” replies Chip. “I’ve added a button for the users to click when they have en-

tered all the data and made all the selections. They can also print the completed form.”
“What about help?” asks Anna.
“I’ve thought about that also,” answers Chip. “As the cursor moves from field to field, the status line

on the bottom of the screen displays one line of help appropriate for that field. I can also add tool-tip help,
a small box of help options that appears when the mouse cursor remains over one entry area for a short
amount of time.” Notice that the pull-down lists have meaningful names in the data areas. Help is shown in
the status line at the bottom of the display.

Dot reviews the completed display and enters some test data. “I’m really impressed!” she exclaims. “It
is much smoother than I ever expected. When can we expect the rest of the system?” Chip smiles with ap-
preciation and remarks that great progress is being made. “I do hope that the rest of the system is as clear to
use and easy to operate!” Dot says appreciatively.

Meanwhile, Anna is meeting with Hy Perteks, who is desperately seeking help. “I’m swamped with
requests for help on software packages! Is there any way to design a portion of the system for maintaining

FIGURE E12.1
Pull-down lists on the ADD NEW
COMPUTER Microsoft Access
screen.

400 PART IV • THE ESSENTIALS OF DESIGN

information on the available software experts?” asks Hy. “I have names written on scraps of paper and I
keep misplacing them. Often I find out who these experts are only after someone else finds them first.”

Anna asks some questions about what information would be required and how Hy would like to main-
tain and display the records. Hy replies, “There is so much expertise available, but the only way I have of
locating the person’s information is by using their name as an index. And, I confess, I’m awful at remem-
bering the correct spelling of the first name, let alone the last name.” Anna assures him that there will be an
easy-to-use system available soon.

Back at her desk, Anna thinks about the problem. “The ADD display screen would be easy to create,
but what about the CHANGE one?” She wonders, “How can I?” and then thinks, “Ah ha!” as she snaps her
fingers. The design becomes clear. There would be a display with two distinct regions on it. The first region
would contain the last and first name of the software expert. Included with the display is a Find button as
well as buttons for scrolling back and forth through records. If the users make a mistake entering data, there
is an Undo button, and there is also a button to save the changes. The completed display screen is illustrated
in Figure E12.2.

“Great-looking display,” grins Chip. “I want to be here when you show it to Hy.”
The problem of deleting software course records for software that is no longer in use requires a differ-

ent approach. Anna reasons that it would be easy if she used the Find feature to locate a record and then used
a Find Next button to locate the next record that matches the criteria. There would also be buttons that al-
low her to move to the next or previous records. (See the DELETE SOFTWARE COURSE.)

After the record is located, the DELETE SOFTWARE COURSE program would display pertinent in-
formation. All codes on the file, such as COURSE LEVEL and OPERATING SYSTEM, would be replaced
with the full code meaning. None of the data would be able to be modified at this time. The operator would
have the opportunity to review the record and then choose to either delete or not delete the record. When the
delete button is clicked, a dialog box is displayed asking the users if they really want to delete the record.
They may choose to cancel the delete at that time.

Hy is delighted with the prototype display screens. As he tests each of them, he remarks, “You don’t
know how easy it’s going to be for me to answer help requests. These are fabulous!” He pauses for a long
moment and then asks, “I have a lot of requests about providing periodically scheduled training courses. Do
you think we could work on a system to register for courses?”

Anna purses her lips for a moment and remarks, “Did you ever hear of a project having scope creep,
always adding little things and the project never ends? The university does, however, have a Web initiative.
We can design an interactive Web page for registering courses.”

“That’s great!” replies Hy. “That’s more than I ever hoped for.”
Anna starts to design the Web page, including the users’ first and last names as well as their email ad-

dresses and office phone. Additional areas are used to enter the campus where they are located, the software
they use, and their class level. Chip reviews the form and remarks, “How about using Ajax to have them
enter their campus email address and click a Find Employee button? The server would find the employees
and then populate the Web page with their first and last names, along with their office phone. They could

FIGURE E12.2
The CHANGE SOFTWARE
EXPERT Microsoft Access screen.

CHAPTER 12 • DESIGNING EFFECTIVE INPUT 401

overtype the office phone with a cell phone if they were traveling. Rather than have them type in the cam-
pus and software information, why not have them select options from a drop-down list? And what about al-
lowing them to select convenient times for training?”

“Good idea,” replies Anna. “And I think the levels of training should be a drop-down list as well.” The
completed intranet Web page is illustrated in Figure E12.3. Notice that there are buttons to submit the query
or reset it and a drop-down list containing their campus as a default value. Other drop-down lists contain in-
structions on what to select. There are check boxes on the left to select the course they are registering for.
Included on the bottom is a link for submitting email questions to the training officer.

Hy is thrilled. “This form is better than I ever imagined. I think we are really providing effective train-
ing registration, and I know that my phone will not be ringing as much. I’ve got another great idea!”

The following exercises may be done by designing the report or display screen using printer or display
screen layout forms, or they may be created using any word processor with which you are familiar. The fields
and other related information for the reports are contained in a repository Web page or in the Visible Ana-
lyst data flow repository entries. The names for the data flow are listed for each exercise.

Corresponding reports and displays (called forms in Microsoft Access) have been created. All the in-
formation is present in the Microsoft Access database; you only have to modify the existing reports and dis-
play screens to produce the final versions. Modifications are made by clicking on the desired report or screen
and then clicking the Design button. The following modifications may be made. The Page Header contains
column headings. The Detail area contains the print fields for the report.

Click in a field to select it. Click on several fields while holding the Shift key to select them.
Drag a selected field (or fields) to move them.
Click on one of the small boxes surrounding the field to change the field size.

Select several fields and click Format and either:

Align, to align all fields with the top, left, and so on field.
Size, to make fields equal to the widest, tallest, and so on field.
Horizontal spacing, to make horizontal spacing equal, or to increase or decrease the spacing.
Vertical spacing, to make vertical spacing equal, or to increase or decrease the spacing.

EXERCISES
E-1. Cher Ware has remarked several times that a good form would make the task of adding new software

much easier. It would also provide permanent paper documentation for software additions.
Design a form to add software to the SOFTWARE MASTER. Open Data Flow Diagram 0 in

Visio or Visible Analyst. View the SOFTWARE RECEIVED FORM repository entry for the data
flow. Click on the link for the NEW SOFTWARE RECORD in the Composition to view the data
structure containing the elements required on the form. Click the link (or Jump in Visible Analyst) to
each element to determine the length of the screen field.

FIGURE E12.3
An intranet Web form for Training
Registration on the CPU Web site.

402 PART IV • THE ESSENTIALS OF DESIGN

E-2. Design the ADD SOFTWARE RECORD display screen, either on paper or by modifying the
Microsoft Access screen. Use the fields created in Exercise E-1. The Repository Web page or Visible
Analyst data structure name is NEW SOFTWARE RECORD.

E-3. Hy Perteks would like a form to fill in as he learns about new software experts. Use the repository
data structure called ADD SOFTWARE EXPERT to determine the fields required for the form.

E-4. Create the ADD SOFTWARE EXPERT display on paper, using a word processor, or by modifying
the Microsoft Access form. Test the ADD SOFTWARE EXPERT display, using the drop-down lists
and observing the status bar on the bottom of the screen.

E-5. Design or modify the Microsoft Access form for the DELETE SOFTWARE EXPERT display.
Which fields are drop-down lists? Use the repository data structure called DELETE SOFTWARE
EXPERT.

E-6. Design or modify the Microsoft Access form for the DELETE COMPUTER RECORD display. The
repository data structure is called DELETE COMPUTER RECORD.

E-7. Cher Ware and Anna spent the better part of a morning working out the details on the software por-
tion of the system. Plagued by the problem of providing consistent software upgrades for all ma-
chines, Cher would like an easy method of upgrading. A few older versions of software may also be
retained for special needs.

Part of the solution is to produce a report, sorted by location, of all machines containing the soft-
ware to be upgraded. As the new software is installed, a check mark is placed on the report after each
machine.

Design the UPGRADE SOFTWARE display design. Add a Find button to locate the title and to
provide a field that can be used to enter the new VERSION NUMBER. The update program will dis-
play a line for each machine containing the old version of the installed software. These lines are sorted
by CAMPUS LOCATION and ROOM LOCATION.

Columns are CAMPUS LOCATION, ROOM LOCATION, INVENTORY NUMBER, BRAND
NAME, MODEL, UPGRADE, and RETAIN OLD VERSION. The UPGRADE column contains a
check box that is to be checked if the software is to be upgraded. The RETAIN OLD VERSION is
also a check box, unchecked by default. The users would check the box for a specific machine that
must retain the old and new versions of the software.

Look in the repository data structure called SOFTWARE UPGRADE for the elements contained
on the screen.

E-8. Explain why the UPGRADE SOFTWARE display screen would display machines rather than have
Cher enter the machine IDs. In a paragraph, discuss why the display shows records in a
CAMPUS/ROOM sequence.

E-9. Design the CHANGE SOFTWARE display screen. This allows Cher Ware to modify data that have
been entered incorrectly, as well as information that routinely changes, such as SOFTWARE EX-
PERT and NUMBER OF COPIES. The SOFTWARE INVENTORY NUMBER is the primary key
and may not be changed. The other SOFTWARE MASTER fields that should be included on the
screen are found in the repository data structure called SOFTWARE CHANGES. Use these fields to
design the display screen. A limited display screen, CHANGE SOFTWARE RECORD, has been cre-
ated in Microsoft Access. Use the Microsoft Access Field List to add fields to it. Include the follow-
ing buttons: Find, Find Next, Previous Record, Next Record, Save Record, and Cancel Changes.

E-10. Hy Perteks is concerned that old courses for obsolete versions of software are cluttering the drives.
Create and print the DELETE SOFTWARE COURSE display.

Entry fields are the SOFTWARE TITLE, OPERATING SYSTEM, and VERSION NUMBER.
The program displays a line for each course taught for the software version. The first column contains
an entry field with a D (for delete) presented as a default. Placing a space in the field will prevent the
record from being deleted. The other columns for each line are COURSE TITLE, LEVEL, and
CLASS LENGTH. Add a meaningful operator message.

E-11. Design the UPDATE MAINTENANCE INFORMATION display screen. It contains entry fields
that allow Mike Crowe to change maintenance information as computers are repaired or as routine
maintenance is performed on them. The repository data structure is UPDATE MAINTENANCE
INFORMATION.

The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft Project, or
a Microsoft Access file that can be used to complete the exercises.

www.pearsonhighered.com/kendall

403

C H A P T E R 1 3

Designing Databases

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Understand database concepts.

2. Use normalization to efficiently store data in a database.

3. Use databases for presenting data.

4. Understand the concept of data warehouses.

5. Comprehend the usefulness of publishing databases to the Web.

Data storage is considered by some to be the heart of an information sys-
tem. First, the data have to be available when the user wants to use them.
Second, the data must be accurate and consistent (they must possess in-
tegrity). Beyond this requirement, the objectives of database design include
efficient storage of data as well as efficient updating and retrieval. Finally,

it is necessary that information retrieval be purposeful.The information obtained from the stored
data must be in a form useful for managing, planning, controlling, or decision making.

There are two approaches to the storage of data in a computer-based system. The first is
to store the data in individual files, each unique to a particular application. The second ap-
proach involves building a database. A database is a formally defined and centrally controlled
store of data intended for use in many different applications.

Individual files are often designed only with immediate needs in mind, so it becomes im-
portant to query the system for a combination of some of the attributes, these attributes may
be contained in separate files or may not even exist. Databases are planned, so that data is
organized for efficient storage and effective retrieval. Data warehouses are very large data-
bases that store summarized data relating to a specific subject so that queries are answered
very efficiently.

DATABASES
Databases are not merely a collection of files. Rather, a database is a central source of data meant
to be shared by many users for a variety of applications. The heart of a database is the database
management system (DBMS), which allows the creation, modification, and updating of the data-
base; the retrieval of data; and the generation of reports and displays. The person who ensures that
the database meets its objectives is called the database administrator.

The effectiveness objectives of the database include the following:

1. Ensuring that data can be shared among users for a variety of applications.
2. Maintaining data that are both accurate and consistent.
3. Ensuring that all data required for current and future applications will be readily available.

404 PART IV • THE ESSENTIALS OF DESIGN

4. Allowing the database to evolve as the needs of the users grow.
5. Allowing users to construct their personal view of the data without concern for the way the

data are physically stored.

The foregoing list of objectives provides us with a reminder of the advantages and disadvantages
of the database approach. First, the sharing of the data means that data need to be stored only once.
That in turn helps achieve data integrity, because changes to data are accomplished more easily
and reliably if the data appear once rather than in many different files.

When a user needs particular data, a well-designed database anticipates the need for such
data (or perhaps it has already been used for another application). Consequently, the data have
a higher probability of being available in a database than in a conventional file system. A well-
designed database can also be more flexible than separate files; that is, a database can evolve
as the needs of users and applications change.

Finally, the database approach has the advantage of allowing users to have their own view of
the data. Users need not be concerned with the actual structure of the database or its physical storage.

Many users are extracting parts of the central database from mainframes and downloading
them onto PCs or handheld devices. These smaller databases are then used to generate reports or
answer queries specific to the end user.

Relational databases for PCs have improved dramatically over the last few years. One major
technological change has been the design of database software that takes advantage of the GUI.
With the advent of programs such as Microsoft Access, users can drag and drop fields between
two or more tables. Developing relational databases with these tools has been made relatively easy.

DATA CONCEPTS
It is important to understand how data are represented before considering the use of files or the
database approach. In this section, critical definitions are covered, including the abstraction of
data from the real world to the storage of data in tables and database relations.

Reality, Data, and Metadata
The real world will be referred to as reality. Data collected about people, places, or events in re-
ality will eventually be stored in a file or database. To understand the form and structure of the

C O N S U L T I N G O P P O R T U N I T Y 1 3 . 1

Hitch Your Cleaning Cart to a Star

The Marc Schnieder Janitorial Supply Company has asked for
your assistance in cleaning up its data storage. As soon as you begin
asking Marc Schnieder detailed questions about his database, his face
gets flushed. “We don’t really have a database as you describe it,” he
says with some embarrassment. “I’ve always wanted to clean up our
records, but I couldn’t find a capable person to head the effort.”

After talking with Mr. Schnieder, you walk down the hall to
the closet-sized office of Stan Lessink, the chief programmer. Stan
fills you in on the historical development of the current information
system. “The Marc Schnieder Janitorial Supply Company is a rags-
to-riches story,” Stan remarks. “Mr. Schnieder’s first job was as a
janitor in a bowling alley. He saved enough money to buy some
products and started selling them to other alleys. Soon he decided
to expand the janitorial supply business. He found out that as his
business grew, he had more product lines and types of customers.
Salespeople in the company are assigned to different major product

lines (stores, offices, and so on); some are in-house sales, and some
specialize in heavy equipment, such as floor strippers and waxers.
Records were kept in separate files.”

You recall Mr. Schnieder saying, “The problem is that we have
no way to compare the profits of each division. We would like to set
up incentive programs for salespeople and provide better balance in
allocating salespeople to each product line.”

When you talk with Stan, however, he adds, “Each division
has its own incentive system. Commissions vary. I don’t see how
we can have a common system. Besides, I can get our reports out
quickly because our files are set up the way we want them. We have
never issued a paycheck late.”

Describe how you would go about analyzing the data storage
needs of the Marc Schnieder Janitorial Supply Company. Would
you trash the old system or just polish it up a bit? Discuss the im-
plications of your decision in two paragraphs.

CHAPTER 13 • DESIGNING DATABASES 405

Reality

Data

Metadata
Data Item
Definitions

Record
Definitions

Data Item
Occurrences

Record
Occurrences

AttributesEntities

FIGURE 13.1
Reality, data, and metadata.

data, information about the data itself is required. The information that describes data is referred
to as metadata.

The relationship between reality, data, and metadata is pictured in Figure 13.1. Within the
realm of reality are entities and attributes; within the realm of actual data are record occurrences
and data item occurrences; and within the realm of metadata are record definitions and data item
definitions. The meanings of these terms are discussed in the following subsections.

ENTITIES. Any object or event about which someone chooses to collect data is an entity. An entity
may be a person, place, or thing (for example, a salesperson, a city, or a product). Any entity can
also be an event or unit of time such as a machine breakdown, a sale, or a month or year. In
addition to the entities discussed in Chapter 2 is an additional minor entity called an entity
subtype. Its symbol is a smaller rectangle within the entity rectangle.

An entity subtype is a special one-to-one relationship used to represent additional attributes
(fields) of another entity that may not be present on every record of the first entity. Entity sub-
types eliminate the situation in which an entity may have null fields stored on database tables.

An example is the primary entity of a customer. Preferred customers may have special fields
containing discount information, and this information would be in an entity subtype. Another ex-
ample is students who have internships. The STUDENT MASTER should not have to contain in-
formation about internships for each student, because perhaps only a small number of students
have internships.

RELATIONSHIPS. Relationships are associations between entities (sometimes they are referred to
as data associations). Figure 13.2 is an entity-relationship (E-R) diagram that shows various types
of relationships.

The first type of relationship is a one-to-one relationship (designated as 1:1). The diagram
shows that there is only one PRODUCT PACKAGE for each PRODUCT. The second one-to-
one relationship shows that each EMPLOYEE has a unique OFFICE. Notice that all these enti-
ties can be described further (a product price would not be an entity, nor would a phone
extension).

Another type of relationship is a one-to-many (1:M) or a many-to-one association. As shown
in the figure, a PHYSICIAN in a health maintenance organization is assigned many PATIENTS,
but a PATIENT is assigned only one PHYSICIAN. Another example shows that an EMPLOYEE
is a member of only one DEPARTMENT, but each DEPARTMENT has many EMPLOYEES.

Finally, a many-to-many relationship (designated as M:N) describes the possibility that en-
tities may have many associations in either direction. For example, a STUDENT can have many
COURSE(s), and at the same time a COURSE may have many STUDENT(s) enrolled in it. The
second example shows that a SALESPERSON can call on many CITY(s) and a CITY can be a
sales area for many SALESPERSON(s).

The standard symbols for crow’s foot notation, the official explanation of the symbols, and
what they actually mean, are all given in Figure 13.3. Notice that the symbol for an entity is a rec-
tangle. An entity is defined as a class of a person, place, or thing. A rectangle with a diamond in-
side stands for an associative entity, which is used to join two entities. A rectangle with an oval
in it stands for an attributive entity, which is used for repeating groups.

The other notations necessary to draw E-R diagrams are the connections, of which there are
five different types. In the lower portion of the figure, the meaning of the notation is explained.

is
assigned

to
has One-to-one

(1:1)

belongs
totreats

One-to-many
(1:M)

or
Many-to-one

(M:1)

servestakes Many-to-many
(M:N)

Examples of E-R Diagrams Relationships

Office

Employee

Product Package

Product

Department

Physician Employee

Salesperson

Patient

Student

Courses City

FIGURE 13.2
Entity-relationship (E-R) diagrams
can show one-to-one, one-to-
many, many-to-one, or many-to-
many associations.

When a straight line connects two plain entities and the ends of the line are both marked with two
short marks (||), a one-to-one relationship exists. Following that you will notice a crow’s foot with
a short mark (|); when this notation links entities, it indicates a relationship of one-to-one or one-
to-many (to one or more).

Entities linked with a straight line plus a short mark (|) and a zero (which looks more like a
circle, O) are depicting a relationship of one-to-zero or one-to-one (only zero or one). A fourth
type of link for relating entities is drawn with a straight line marked on the end with a zero (O)
followed by a crow’s foot. This type shows a zero-to-zero, zero-to-one, or zero-to-many relation-
ship. Finally, a straight line linking entities with a crow’s foot at the end depicts a relationship to
more than one.

406 PART IV • THE ESSENTIALS OF DESIGN

CHAPTER 13 • DESIGNING DATABASES 407

Entity

Symbol Official Explanation What It Really Means

Associative entity

Attributive entity

To 1 relationship

To many relationship

To 0 or 1 relationship

To 0 or more relationship

To more than 1 relationship

A class of persons, places, or things

Used to join two entities

Used for repeating groups

Exactly one

One or more

Only zero or one

Can be zero, one, or more

Greater than one

FIGURE 13.3
The entity-relationship symbols
and their meanings.

An entity may have a relationship connecting it to itself. This type of relationship is called a
self-join relationship; the implication is that there must be a way to link one record in a file to an-
other record in the same file. An example of a self-join relationship can be found in the Hyper-
Case simulations found throughout these chapters. A task may have a precedent task (that is, one
that must be completed before starting the current task). In this situation, one record (the current
task) points to another record (the precedent task) in the same file.

The relationships in words can be written along the top or the side of each connecting line.
In practice, you see the relationship in one direction, although you can write relationships on both
sides of the line, each representing the point of view of one of the two entities. (See Chapter 2 for
more details about drawing E-R diagrams.)

AN ENTITY-RELATIONSHIP EXAMPLE. An entity-relationship diagram containing many entities,
many different types of relations, and numerous attributes is featured in Figure 13.4. In this E-R
diagram, we are concerned about a billing system, and in particular with the prescription part of
the system. (For simplicity, we assume that office visits are handled differently and are outside
the scope of this system.)

The entities are PRESCRIPTION, PHYSICIAN, PATIENT, and INSURANCE CARRIER.
The entity TREATMENT is not important for the billing system, but it is part of the E-R diagram
because it is used to bridge the gap between PRESCRIPTION and PATIENT. We therefore drew
it as an associative entity in the figure.

Here, a PHYSICIAN treats many PATIENT(s) (1:M), who each subscribe to an individual
INSURANCE CARRIER. Of course, the PATIENT is only one of many patients that subscribe
to that particular INSURANCE CARRIER (M:1).

408 PART IV • THE ESSENTIALS OF DESIGN

treatsis taken
care of by

insures subscribes
to

experiences

is given to

(Physician-Name,
Physician-Address,

Physician-Phone,
Specialty)

Patient-Address,
Patient-Phone,

Date-First-Visit)

Carrier-Address,
Plan-Description)

(Patient-Name,

includesbelongs
to

(Product-Name,
Patient-Name,
Description,
Date,
Symptom)

(Product-Name,
Dosage,
Manufacturer,
Amount)

(Carrier-Name,

Physician

Patient

Prescription

Treatment

Insurance
Carrier

FIGURE 13.4
The entity-relationship diagram
for patient treatment. Attributes
can be listed alongside the entities.
In each case, the key is underlined.

To complete the PHYSICIAN’s records, the physician needs to keep information about the
treatments a PATIENT has. Many PATIENT(s) experience many TREATMENT(s), making it a
many-to-many (M:N) relationship. TREATMENT is represented as an associative entity because
it is not important in our billing system by itself. TREATMENT(s) can include the taking of PRE-
SCRIPTION(s), and thus is also an M:N relationship, because many treatments may call for com-
binations of pharmaceuticals and many drugs may work for many treatments.

Some detail is then filled in for the attributes. The attributes are listed next to each of the en-
tities, and the key is underlined. For example, the entity PRESCRIPTION has a PRODUCT-
NAME, DOSAGE, MANUFACTURER, and AMOUNT. Ideally, it would be beneficial to design
a database in this fashion, using entity-relationship diagrams and then filling in the details concern-
ing attributes. This top-down approach is desirable, but it is sometimes very difficult to achieve.

ATTRIBUTES. An attribute is some characteristic of an entity. There can be many attributes for
each entity. For example, a patient (entity) can have many attributes, such as last name, first name,
street address, city, state, and so on. The date of the patient’s last visit as well as the prescription
details are also attributes. When the data dictionary was constructed in Chapter 8, the smallest
particular described was called a data element. When files and databases are discussed, these data
elements are generally referred to as data items. Data items are in fact the smallest units in a file
or database. The term data item is also used interchangeably with the word attribute.

Data items can have values. These values can be of fixed or variable length; they can be al-
phabetic, numeric, special characters, or alphanumeric. Examples of data items and their values
can be found in Figure 13.5.

Sometimes a data item is also referred to as a field. A field, however, represents something
physical, not logical. Therefore, many data items can be packed into a field; the field can be read
and converted to a number of data items. A common example of this is to store the date in a sin-
gle field as MM/DD/YYYY. To sort the file in order by date, three separate data items are ex-
tracted from the field and sorted first by YYYY, then by MM, and finally by DD.

RECORDS. A record is a collection of data items that have something in common with the entity
described. Figure 13.6 is an illustration of a record with many related data items. The record
shown is for an order placed with a mail-order company. The ORDER-#, LAST NAME,
INITIAL, STREET ADDRESS, CITY, STATE, and CREDIT CARD are all attributes. Most
records are of fixed length, so there is no need to determine the length of the record each time.

CHAPTER 13 • DESIGNING DATABASES 409

Entity Data Item Value

Salesperson

Package

Order

Salesperson Number
Salesperson Name
Company Name
Address
Sales

Width
Height
Length
Weight
Mailing Address
Return Address

Product(s)
Description(s)
Quantity Ordered
Last Name of Customer
First Initial
Street Address
City
State
Zip Code
Credit Card Number
Date Order Was Placed
Amount
Status

87254
Kaytell
Music Unlimited
45 Arpeum Circle
$20,765

2
16
16
3
765 Dulcinea Drive
P.O. Box 341, Spring Valley, MN

B521
“My Fair Lady” compact disc
1
Kiley
R.
765 Dulcinea Drive
La Mancha
CA
93407
65-8798-87
01/03/2010
$6.99
Backordered

FIGURE 13.5
Typical values assigned to data
items may be numbers, alphabetic
characters, special characters, and
combinations of all three.

ORDER-# LAST NAME INITIAL STREET ADDRESS CITY STATE CREDIT CARD

Record

Key Attributes

FIGURE 13.6
A record has a primary key and
may have many attributes.

Under certain circumstances (for instance, when space is at a premium), variable-length
records are used. A variable-length record is used as an alternative to reserving a large amount of
space for the longest possible record, such as the maximum number of visits a patient has made to
a physician. Each visit would contain many data items that would be part of the patient’s full record
(or file folder in a manual system). Later in this chapter, normalization of a relation is discussed.
Normalization is a process that eliminates repeating groups found in variable-length records.

KEYS. A key is one of the data items in a record that is used to identify a record. When a key
uniquely identifies a record, it is called a primary key. For example, ORDER-# can be a primary
key because only one number is assigned to each customer order. In this way, the primary key
identifies the real-world entity (customer order).

Special care must be taken when designing the primary key. Often it is a sequential number
or a sequential number with a self-checking number (called a check digit) at the end of the dig-
its. At times there is some meaning built into the primary key, but defining a primary key based
on an attribute is considered a risk. If the attribute changes, the primary key will also change, cre-
ating a dependency between the primary key and the data.

410 PART IV • THE ESSENTIALS OF DESIGN

An example of a primary key based on data is using a state abbreviation for the state name
or an airline luggage code for an airport name. An attribute or a collection of attributes that can
serve as a primary key is called a candidate key. A primary key should also be minimal and con-
tain no extra attributes than are necessary to identify a record.

A key is called a secondary key if it cannot uniquely identify a record. Secondary keys either
may be unique or may identify multiple records in a database. Secondary keys can be used to se-
lect a group of records that belong to a set (for example, orders from the state of Virginia).

When it is not possible to identify a record uniquely by using one of the data items found in
a record, a key can be constructed by choosing two or more data items and combining them. This
key is called a concatenated, or composite, key. When a data item is used as a key in a record, the
description is underlined. Therefore, in the ORDER record (ORDER-#, LAST NAME, INITIAL,
STREET ADDRESS, CITY, STATE, CREDIT CARD), the key is ORDER-#. If an attribute is a
key in another file, it should be underlined with a dashed line.

Some databases allow the developer to use an object identifier (OID), which is a unique key
for each record in the database, not just in a table. Given an object identifier, one record will be
obtained regardless of the table on which it exists. This may be included with an order or a pay-
ment confirmation, along with a message like, “This is your confirmation number.”

METADATA. Metadata are data about the data in the file or database. Metadata describe the name
given and the length assigned to each data item. Metadata also describe the length and composition
of each of the records.

Figure 13.7 is an example of metadata for a database for some generic software. The length
of each data item is indicated according to a convention, where 7.2 means that seven spaces are
reserved for the number, two of which are to the right of the decimal point. The letter N signifies
“numeric,” and the A stands for “alphanumeric.” The D stands for “date” and is automatically in
the form MM/DD/YYYY. Some programs, such as Microsoft Access, use plain English for meta-
data, so words such as text, currency, and number are used. Microsoft Access provides a default
of 50 characters as the field length for names, which is fine when working with small systems. If,
however, you are working with a large database for a bank or a utility company, for example, you
do not want to devote that much space to that field. Otherwise, the database would become quite
large and filled with wasted space. That is when you can use metadata to plan ahead and design
a more efficient database.

Files
A file contains groups of records used to provide information for operations, planning, manage-
ment, and decision making. The types of files used are discussed first, followed by a description
of the many ways conventional files can be organized.

FILE TYPES. Files can be used for storing data for an indefinite period of time, or they can be used
to store data temporarily for a specific purpose. Master files and table files are used to store data
for a long period. The temporary files are usually called transaction files, work files, or report files.

Master Files Master files contain records for a group of entities. The attributes may be updated
often, but the records themselves are relatively permanent. These files tend to have large records
containing all the information about a data entity. Each record usually contains a primary key and
several secondary keys.

Although the analyst is free to arrange the data elements in a master file in any order, a stan-
dard arrangement is to place the primary key field first, followed by descriptive elements, and fi-
nally by elements that change frequently with business activities. Examples of a master file
include patient records, customer records, a personnel file, and a parts inventory file.

Table Files A table file contains data used to calculate more data or performance measures. One
example is a table of postage rates used to determine the shipping costs of a package. Another
example is a tax table. Table files usually are read only by a program.

Transaction Files A transaction file is used to enter changes that update the master file and
produce reports. Suppose a newspaper subscriber master file needs to be updated; the transaction
file would contain the subscriber number, and a transaction code such as E for extending the
subscription, C for canceling the subscription, or A for address change. Then only information

CHAPTER 13 • DESIGNING DATABASES 411

Data Item Value

Salesperson Number
Salesperson Name
Company Name
Address
Sales

Width
Height
Length
Weight
Mailing Address
Return Address

Product(s)
Description(s)
Quantity Ordered
Last Name of Customer
First Initial
Street Address
City
State
Zip Code
Credit Card Number
Date Order Was Placed
Amount
Status

N 5
A 20
A 26
A 36
N 9.2

N 2
N 2
N 2
N 2
A 36
A 36

A 4
A 30
N 2
A 24
A 1
A 28
A 12
A 2
N 9
N 10
D 8 MM/DD/YYYY
$ 7.2
A 22

Special formats

for fields may

be specified.

7.2 means that

the field takes up

7 digits, two of

which are right of

the decimal.

Fields

N Numeric
A Alphanumeric or text
D Date MM/DD/YYYY
$ Currency
M Memo

FIGURE 13.7
Metadata includes a description of
what the value of each data item
looks like.

relevant to the updating needs to be entered; that is, the length of renewal if E, and the address if
A. No additional information would be needed if the subscription were canceled. The rest of the
information already exists in the master file. Transaction files may contain several different types
of records, such as the three used for updating the newspaper subscription master, with a code on
the transaction file indicating the type of transaction.

Report Files When it is necessary to print a report when no printer is available (e.g., when the printer
is busy printing other jobs), a report file is used. Sending the output to a file rather than a printer is
called spooling. Later, when the device is ready, the document can be printed. Report files are very
useful, because users can take files to other computer systems and output to specialty devices.

Relational Databases
Databases can be organized in several ways. The most common type of database is a relational
database. A relational database is organized in meaningful tables, which minimizes the repetition
of data, which in turn minimizes errors and storage space.

LOGICAL AND PHYSICAL VIEWS OF DATA. A database, unlike a file, is intended to be shared by
many users. It is clear that the users all see the data in different ways. We refer to the way a user
pictures and describes the data as a user view. The problem, however, is that different users have
different user views. These views need to be examined by the systems analyst, and an overall
logical model of the database developed. Finally, the logical model of the database must be
transformed into a corresponding physical database design. Physical design is involved with how
data are stored and related, as well as how they are accessed.

412 PART IV • THE ESSENTIALS OF DESIGN

User Reports
(Tabular Outputs, Graphs, etc.)

Conceptual Schema
(Logical Design Model of the Database)

Internal Schema
(Physical Design Model of the Database)

User Views or User Schema
(User’s Description of Data Needed)

FIGURE 13.8
Database design includes
synthesizing user reports, user
views, and logical and physical
designs.

In database literature, the views are referred to as schema. Figure 13.8 shows how the user
reports and user views (user schema) are related to the logical model (conceptual schema) and
physical design (internal schema).

There are three main types of logically structured databases: hierarchical, network, and rela-
tional. The first two types may be found in legacy (older) systems. An analyst today would typi-
cally design a relational database.

RELATIONAL DATA STRUCTURES. A relational data structure consists of one or more two-
dimensional tables, which are referred to as relations. The rows of the table represent the records,
and the columns contain attributes.

Figure 13.9 shows the relational structure for a music CD ordering database. Here, three ta-
bles are needed to (1) describe the items and keep track of the current price of CDs (ITEM
PRICE), (2) describe the details of the order (ORDER), and (3) identify the status of the order
(ITEM STATUS).

To determine the price of an item, we need to know the item number to be able to find it in
the relation ITEM PRICE. To update G. MacRae’s credit card number, we can search the ORDER
relation for MacRae and correct it only once, even though he ordered many CDs. To find out the
status of part of an order, however, we must know the ITEM-# and ORDER-#, and then we must
locate that information in the relation ITEM STATUS.

Maintaining the tables in a relational structure is usually quite simple when compared with
maintaining a hierarchical or network structure. One of the primary advantages of relational struc-
tures is that ad hoc queries are handled efficiently.

CHAPTER 13 • DESIGNING DATABASES 413

B235 Guys and Dolls 8.99
B521 My Fair Lady 6.99
B894 42nd Street 10.99
B992 A Chorus Line 10.99

B235 10784 Shipped 5/12
B235 19796 Shipped 5/14
B235 11872 In Process
B521 11821 In Process
B894 11845 Backordered
B894 11872 Shipped 5/12
B992 10784 Shipped 5/12

10784 MacRae G 2314 Curly Circle Lincoln NE 45-4654-76
10796 Jones S 34 Dream Lane Oklahoma City OK 44-9876-74
11821 Preston R 1008 Madison Ave. River City IA 34-7642-64
11845 Channing C 454 Harmonia St. New York NY 34-0876-87
11872 Kiley R 765 Dulcinea Drive La Mancha CA 65-8798-87

ORDER-# LAST NAME

ORDER-#ITEM-# STATUS

TITLEITEM-# PRICE

STREET ADDRESS CHARGE ACCTCITYI ST

ITEM PRICE

ITEM STATUS

ORDER

FIGURE 13.9
In a relational data structure, data
are stored in many tables.

When relational structures are discussed in database literature, different terminology is often
used. A file is called either a table or relation, a record is usually referred to as a tuple, and the at-
tribute value set is called a domain.

For relational structures to be useful and manageable, the relational tables must first be nor-
malized. Normalization is detailed in the following section.

NORMALIZATION
Normalization is the transformation of complex user views and data stores to a set of smaller, sta-
ble data structures. In addition to being simpler and more stable, normalized data structures are
more easily maintained than other data structures.

The Three Steps of Normalization
Beginning with either a user view or a data store developed for a data dictionary (see Chapter 8),
the analyst normalizes a data structure in three steps, as shown in Figure 13.10. Each step involves
an important procedure, one that simplifies the data structure.

The relation derived from the user view or data store will most likely be unnormalized. The
first stage of the process includes removing all repeating groups and identifying the primary key.
To do so, the relation needs to be broken up into two or more relations. At this point, the relations
may already be of the third normal form, but it is likely more steps will be needed to transform
the relations to the third normal form.

The second step ensures that all nonkey attributes are fully dependent on the primary key. All
partial dependencies are removed and placed in another relation.

The third step removes any transitive dependencies. A transitive dependency is one in which
nonkey attributes are dependent on other nonkey attributes.

414 PART IV • THE ESSENTIALS OF DESIGN

Step 1 Remove Repeating Groups

Step 2 Remove Partial Dependencies

Step 3

User
Views

Remove Transitive Dependencies

Third Normal
Form Relations

(3NF)

Normalized
Relations

(1NF)

Unnormalized
Relationship

Second Normal
Form Relations

(2NF)

FIGURE 13.10
Normalization of a relation is
accomplished in three major steps.

A Normalization Example
Figure 13.11 is a user view for the Al S. Well Hydraulic Equipment Company. The report shows the
(1) SALESPERSON-NUMBER, (2) SALESPERSON-NAME, and (3) SALES-AREA. The body
of the report shows the (4) CUSTOMER-NUMBER and (5) CUSTOMER-NAME. Next is the
(6) WAREHOUSE-NUMBER that will service the customer, followed by the (7) WAREHOUSE-
LOCATION, which is the city in which the company is located. The final information contained in
the user view is the (8) SALES-AMOUNT. The rows (one for each customer) on the user view show
that items 4 through 8 form a repeating group.

If the analyst was using a data flow/data dictionary approach, the same information in the
user view would appear in a data structure. Figure 13.12 shows how the data structure would ap-
pear at the data dictionary stage of analysis. The repeating group is also indicated in the data struc-
ture by an asterisk (*) and indentation.

Before proceeding, note the data associations of the data elements in Figure 13.13. This type of
illustration is called a bubble diagram or data model diagram. Each entity is enclosed in an ellipse,
and arrows are used to show the relationships. Although it is possible to draw these relationships
with an E-R diagram, it is sometimes easier to use the simpler bubble diagram to model the data.

In this example, there is only one SALESPERSON-NUMBER assigned to each SALES-
PERSON-NAME, and that person will cover only one SALES-AREA, but each SALES-AREA
may be assigned to many salespeople: hence, the double arrow notation from SALES-AREA
to SALESPERSON-NUMBER. For each SALESPERSON-NUMBER, there may be many
CUSTOMER-NUMBER(s).

Furthermore, there would be a one-to-one correspondence between CUSTOMER-NUMBER
and CUSTOMER-NAME; the same is true for WAREHOUSE-NUMBER and WAREHOUSE-
LOCATION. CUSTOMER-NUMBER will have only one WAREHOUSE-NUMBER and WARE-
HOUSE-LOCATION, but each WAREHOUSE-NUMBER or WAREHOUSE-LOCATION may

CHAPTER 13 • DESIGNING DATABASES 415

CUSTOMER
NUMBER

SALES

CUSTOMER
NAME

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

Salesperson #: 3462Name: WatersSales Area: West

Al S. WellHydraulic Equipment CompanySpring Valley, Minnesota

18765 Delta Services 4 Fargo 13,540
18830 M. Levy and Sons 3 Bismarck 10,600

FIGURE 13.11
A user report for the Al S. Well
Hydraulic Equipment Company.

SALESPERSON-NUMBER
SALESPERSON-NAME
SALES-AREA
CUSTOMER-NUMBER* (1-) CUSTOMER-NAME

 WAREHOUSE-NUMBER
 WAREHOUSE-LOCATION
 SALES-AMOUNT

FIGURE 13.12
The analyst would find a data
structure (from a data dictionary)
useful in developing a database.

service many CUSTOMER-NUMBER(s). Finally, to determine the SALES-AMOUNT for one
salesperson’s calls to a particular company, it is necessary to know both the SALESPERSON-
NUMBER and the CUSTOMER-NUMBER.

The main objective of the normalization process is to simplify all the complex data items that
are often found in user views. For example, if the analyst were to take the user view discussed
previously and attempt to make a relational table out of it, the table would look like Figure 13.14.
Because this relation is based on our initial user view, we refer to it as SALES-REPORT.

SALES-REPORT is an unnormalized relation, because it has repeating groups. It is also
important to observe that a single attribute such as SALESPERSON-NUMBER cannot serve
as the key. The reason is clear when one examines the relationships between SALESPERSON-
NUMBER and the other attributes in Figure 13.15. Although there is a one-to-one correspon-
dence between SALESPERSON-NUMBER and two attributes (SALESPERSON-NAME and
SALES-AREA), there is a one-to-many relationship between SALESPERSON-NUMBER and

where the inner set of parentheses represents the repeated group.

416 PART IV • THE ESSENTIALS OF DESIGN

SALES-AREA

CUSTOMER-
NAME

WAREHOUSE-
LOCATION

WAREHOUSE-
LOCATION

SALES-AMOUNT

SALESPERSON-
NUMBER

CUSTOMER-
NUMBER

WAREHOUSE-
NUMBER

WAREHOUSE-
NUMBER

CUSTOMER-
NUMBER

SALESPERSON-
NUMBER

+
CUSTOMER-

NUMBER

SALESPERSON-
NAME

FIGURE 13.13
Drawing data model diagrams for
data associations sometimes helps
analysts appreciate the complexity
of data storage.

SALESPERSON
NUMBER

SALESPERSON
NAME

SALES
AREA

CUSTOMER
NAME

CUSTOMER
NUMBER

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

SALES
AMOUNT

3462 Waters West 18765 Delta Systems 4 Fargo 13540
18830 A. Levy and Sons 3 Bismarck 10600
19242 Ranier Company 3 Bismarck 9700

3593 Dryne East 18841 R. W. Flood Inc. 2 Superior 11560
18899 Seward Systems 2 Superior 2590
19565 Stodola’s Inc. 1 Plymouth 8800

etc.

FIGURE 13.14
If the data were listed in an
unnormalized table, there could be
repeating groups.

the other five attributes (CUSTOMER-NUMBER, CUSTOMER-NAME, WAREHOUSE-
NUMBER, WAREHOUSE-LOCATION, and SALES-AMOUNT).

SALES-REPORT can be expressed in the following shorthand notation:

SALES REPORT (SALESPERSON-NUMBER,
SALESPERSON-NAME, SALES-AREA,
(CUSTOMER-NUMBER,
CUSTOMER-NAME,
WAREHOUSE-NUMBER,
WAREHOUSE-LOCATION,
SALES-AMOUNT))

CHAPTER 13 • DESIGNING DATABASES 417

CUSTOMER-
NUMBER

CUSTOMER-
NAME

SALESPERSON-
NAME

SALES-AREA

WAREHOUSE-
NUMBER

WAREHOUSE-
LOCATION

SALES-AMOUNT

SALESPERSON-
NUMBER

FIGURE 13.15
A data model diagram shows that
in the unnormalized relation, the
SALESPERSON-NUMBER has a
one-to-many association with
some attributes.

FIRST NORMAL FORM (1NF). The first step in normalizing a relation is to remove the repeating
groups. In our example, the unnormalized relation SALES-REPORT will be broken into two
separate relations. These new relations will be named SALESPERSON and SALESPERSON-
CUSTOMER.

Figure 13.16 shows how the original, unnormalized relation SALES-REPORT is normalized
by separating the relation into two new relations. Notice that the relation SALESPERSON con-
tains the primary key SALESPERSON-NUMBER and all the attributes that were not repeating
(SALESPERSON-NAME and SALES-AREA).

The second relation, SALESPERSON-CUSTOMER, contains the primary key from the rela-
tion SALESPERSON (the primary key of SALESPERSON is SALESPERSON-NUMBER), as
well as all the attributes that were part of the repeating group (CUSTOMER-NUMBER,
CUSTOMER-NAME, WAREHOUSE-NUMBER, WAREHOUSE-LOCATION, and SALES-
AMOUNT). Knowing the SALESPERSON-NUMBER, however, does not automatically mean that
you will know the CUSTOMER-NAME, SALES-AMOUNT, WAREHOUSE-LOCATION, and so
on. In this relation, one must use a concatenated key (both SALESPERSON-NUMBER and
CUSTOMER-NUMBER) to access the rest of the information. It is possible to write the relations
in shorthand notation as follows:

SALESPERSON (SALESPERSON NUMBER,
SALESPERSON-NAME, SALES AREA)

SALESPERSON-CUSTOMER (SALESPERSON-NUMBER,
CUSTOMER-NUMBER,
CUSTOMER-NAME,
WAREHOUSE-NUMBER,
WAREHOUSE-LOCATION,
SALES-AMOUNT)

and

The relation SALESPERSON-CUSTOMER is a first normal relation, but it is not in its ideal form.
Problems arise because some of the attributes are not functionally dependent on the primary key

418 PART IV • THE ESSENTIALS OF DESIGN

3462 Waters West

3593 Dryne East

etc.

SALESPERSON

SALES-REPORT

SALESPERSON-CUSTOMER

3462 18765 Delta Systems 4 Fargo 13540

3462 18830 A. Levy and Sons 3 Bismarck 10600

3462 19242 Ranier Company 3 Bismarck 9700

3593 18841 R. W. Flood Inc. 2 Superior 11560

3593 18899 Seward Systems 2 Superior 2590

3593 19565 Stodola’s Inc. 1 Plymouth 8800

etc.

SALESPERSON
NUMBER

SALESPERSON
NUMBER

SALESPERSON
NAME

SALESPERSON
NAME

SALES
AREA

SALES
AREA

CUSTOMER
NUMBER

CUSTOMER
NAME

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

SALES
AMOUNT

CUSTOMER
NUMBER

CUSTOMER
NAME

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

SALES
AMOUNT

SALESPERSON
NUMBER

FIGURE 13.16
The original unnormalized relation
SALES-REPORT is separated into
two relations, SALESPERSON
(3NF) and SALESPERSON-
CUSTOMER (1NF).

(that is, SALESPERSON-NUMBER, CUSTOMER-NUMBER). In other words, some of the non-
key attributes are dependent only on CUSTOMER NUMBER and not on the concatenated key. The
data model diagram in Figure 13.17 shows that SALES-AMOUNT is dependent on both
SALESPERSON-NUMBER and CUSTOMER-NUMBER, but the other three attributes are depen-
dent only on CUSTOMER-NUMBER.

CUSTOMER-
NAME

WAREHOUSE-
NUMBER

WAREHOUSE-
LOCATION

CUSTOMER-
NUMBER

SALES-
AMOUNT

SALESPERSON-
NUMBER

FIGURE 13.17
A data model diagram shows that
three attributes are dependent on
CUSTOMER-NUMBER, so the
relation is not yet normalized.
Both SALESPERSON-NUMBER
and CUSTOMER-NUMBER are
required to look up SALES-
AMOUNT.

CHAPTER 13 • DESIGNING DATABASES 419

SECOND NORMAL FORM (2NF). In the second normal form, all the attributes will be functionally
dependent on the primary key. Therefore, the next step is to remove all the partially dependent
attributes and place them in another relation. Figure 13.18 shows how the relation SALESPERSON-
CUSTOMER is split into two new relations: SALES and CUSTOMER-WAREHOUSE. These
relations can also be expressed as follows:

CUSTOMER
NUMBER

CUSTOMER
NAME

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

18765 Delta Systems 4 Fargo

18830 A. Levy and Sons 3 Bismarck

19242 Ranier Company 3 Bismarck

18841 R. W. Flood Inc. 2 Superior

18899 Seward Systems 2 Superior

19565 Stodola’s Inc. 1 Plymouth

etc.

SALESPERSON
NUMBER

CUSTOMER
NUMBER

SALES
AMOUNT

SALESPERSON
NUMBER

SALES
AMOUNT

3462 18765 13540

3462 18830 10600

3462 19242 9700

3593 18841 11560

3593 18899 2590

3593 19565 8800

etc.

SALESPERSON-CUSTOMER

CUSTOMER-WAREHOUSE

SALES

CUSTOMER
NUMBER

CUSTOMER
NAME

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

FIGURE 13.18
The relation SALESPERSON-
CUSTOMER is separated into a
relation called CUSTOMER-
WAREHOUSE (2NF) and a
relation called SALES (1NF).

SALES (SALESPERSON-NUMBER, CUSTOMER-NUMBER,
SALES-AMOUNT)

CUSTOMER WAREHOUSE (CUSTOMER-NUMBER,
CUSTOMER-NAME,
WAREHOUSE-NUMBER,
WAREHOUSE-LOCATION)

and

The relation CUSTOMER-WAREHOUSE is in the second normal form. It can still be simplified
further because there are additional dependencies in the relation. Some of the nonkey attributes
are dependent not only on the primary key, but also on a nonkey attribute. This dependency is re-
ferred to as a transitive dependency.

Figure 13.19 shows the dependencies in the relation CUSTOMER-WAREHOUSE. For the
relation to be a second normal form, all the attributes must be dependent on the primary key
CUSTOMER-NUMBER, as shown in the diagram. WAREHOUSE-LOCATION, however, is ob-
viously dependent on WAREHOUSE-NUMBER also. To simplify this relation, another step is
required.

420 PART IV • THE ESSENTIALS OF DESIGN

THIRD NORMAL FORM (3NF). A normalized relation is in the third normal form if all the nonkey
attributes are fully functionally dependent on the primary key and there are no transitive (nonkey)
dependencies. In a manner similar to the previous steps, it is possible to break apart the relation
CUSTOMER-WAREHOUSE into two relations, as shown in Figure 13.20.

The two new relations are called CUSTOMER and WAREHOUSE, and can be written as
follows:

CUSTOMER-
NUMBER

CUSTOMER-
NAME

WAREHOUSE-
LOCATION

WAREHOUSE-
NUMBER

FIGURE 13.19
A data model diagram shows that
a transitive dependency exists
between WAREHOUSE-
NUMBER and WAREHOUSE-
LOCATION.

18765 Delta Systems 4

18830 A. Levy and Sons 3

19242 Ranier Company 3

18841 R. W. Flood Inc. 2

18899 Seward Systems 2

19565 Stodola’s Inc. 1

etc.

CUSTOMER

CUSTOMER-WAREHOUSE

4 Fargo

3 Bismarck

2 Superior

1 Plymouth

etc.

WAREHOUSE

CUSTOMER
NUMBER

CUSTOMER
NAME

WAREHOUSE
NUMBER

CUSTOMER
NUMBER

CUSTOMER
NAME

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

FIGURE 13.20
The relation CUSTOMER-
WAREHOUSE is separated into
two relations called CUSTOMER
(1NF) and WAREHOUSE (1NF).

CUSTOMER (CUSTOMER-NUMBER, CUSTOMER-NAME,
WAREHOUSE-NUMBER)

WAREHOUSE (WAREHOUSE-NUMBER,
WAREHOUSE-LOCATION)

and

The primary key for the relation CUSTOMER is CUSTOMER-NUMBER, and the primary key
for the relation WAREHOUSE is WAREHOUSE-NUMBER.

In addition to these primary keys, we can identify WAREHOUSE-NUMBER to be a foreign
key in the relation CUSTOMER. A foreign key is any attribute that is nonkey in one relation but

CHAPTER 13 • DESIGNING DATABASES 421

a primary key in another relation. We designated WAREHOUSE-NUMBER as a foreign key in
the previous notation and in the figures by underscoring it with a dashed line: __________.

Finally, the original, unnormalized relation SALES-REPORT has been transformed into four
3NF relations. In reviewing the relations shown in Figure 13.21, one can see that the single rela-
tion SALES-REPORT was transformed into the following four relations:

SALESPERSON (SALESPERSON-NUMBER, SALESPERSON-NAME,
SALES-AREA)

SALES (SALESPERSON-NUMBER, CUSTOMER-NUMBER,
SALES-AMOUNT)

CUSTOMER (CUSTOMER-NUMBER, CUSTOMER-NAME,
WAREHOUSE-NUMBER)

WAREHOUSE (WAREHOUSE-NUMBER,
WAREHOUSE-LOCATION)

and

The third normal form is adequate for most database design problems. The simplification gained
from transforming an unnormalized relation into a set of 3NF relations is a tremendous benefit
when it comes time to insert, delete, and update information in the database.

An E-R diagram for the database is shown in Figure 13.22. One SALESPERSON serves
many CUSTOMER(s), who generate SALES and receive their items from one WAREHOUSE
(the closest WAREHOUSE to their location). Take the time to notice how the entities and at-
tributes relate to the database.

Using the Entity-Relationship Diagram to Determine Record Keys
The E-R diagram may be used to determine the keys required for a record or a database relation.
The first step is to construct the E-R diagram and label a unique (primary) key for each data entity.

SALESPERSON
NAME

SALES
AREA

3462 Waters West

3593 Dryne East

etc.

SALESPERSON

3462 18765 13540

3462 18830 10600

3462 19242 9700

3593 18841 11560

3593 18899 2590

3593 19565 8800

etc.

SALES

18765 Delta Systems 4

18830 A. Levy and Sons 3

19242 Ranier Company 3

18841 R. W. Flood Inc. 2

18899 Seward Systems 2

19565 Stodola’s Inc. 1

etc.

CUSTOMER

4 Fargo

3 Bismarck

2 Superior

1 Plymouth

etc.

WAREHOUSE

CUSTOMER
NUMBER

CUSTOMER
NUMBER

CUSTOMER
NAME

WAREHOUSE
NUMBER

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

SALESPERSON
NUMBER

SALESPERSON
NUMBER

SALES
AMOUNT

FIGURE 13.21
The complete database consists of
four 1NF relations called
SALESPERSON, SALES,
CUSTOMER, and
WAREHOUSE.

422 PART IV • THE ESSENTIALS OF DESIGN

(Salesperson-Number,
Salesperson-Name,
Sales-Area)

generatesare
made by

are
purchased
by

agrees
to

receives from

sends to

(Salesperson-Number,
Customer-Number,
Sales Amount)

(Customer-Number,
Customer-Name,
Warehouse-Number)

(Warehouse-Number,
Warehouse-Location)

Salesperson

Customer

Sales

Warehouse

FIGURE 13.22
An entity-relationship diagram for
the Al S. Well Hydraulic Company
database.

places

Customer-Number

contains

Order-Number
Customer-Number

Item-Number

Customer Order Item
FIGURE 13.23
An entity-relationship diagram for
customer orders.

Figure 13.23 shows an E-R diagram for a customer order system. There are three data entities: CUS-
TOMER, with a primary key of CUSTOMER-NUMBER; ORDER, with a primary key of ORDER-
NUMBER; and ITEM, with ITEM-NUMBER as the primary key. One CUSTOMER may place
many orders, but each ORDER can be placed by one CUSTOMER only, so the relationship is one-
to-many. Each ORDER may contain many ITEM(s), and each ITEM may be contained in many
ORDER(s), so the ORDER-ITEM relationship is many-to-many.

A foreign key, however, is a data field on a given file that is the primary key of a different
master file. For example, a DEPARTMENT-NUMBER indicating a student’s major may exist on
the STUDENT MASTER table. DEPARTMENT-NUMBER could also be the unique key for the
DEPARTMENT MASTER table.

One-to-Many Relationship
A one-to-many relationship is the most common type of relationship, since all many-to-many re-
lationships must be broken down into two one-to-many relationships. When a one-to-many rela-
tionship occurs, place the primary key on the table at the one end of the relationship as a foreign
key on the table on the many end of the relationship. For example, since one customer may have
many orders, place the customer number on the order record.

The design of Web pages, displays, or reports that include information from only one record
of the many relationship, along with information from the one end of the relationship, is easy to
construct. The display will not have any repeating information. An example is an order inquiry
using an order number to look up a single order. Since the order is for one customer, the result
would be fields from the order and a single customer.

Designing the reverse is more complicated, since the table at the one end of the relationship
may have many records for the many end. These are implemented in a variety of ways. For a sim-
ple display screen, the information from the one end is displayed with a repeating number of

CHAPTER 13 • DESIGNING DATABASES 423

groups of information from the many end of the relationship. In Microsoft Access, this might be
a form with a subform, such as a customer with a subform of all the customer’s orders. If there
was a large number of records from the many end, scroll bars would appear.

In simple situations, the relationship might also be implemented by using a drop-down list,
with each record from the many end becoming one entry in the one end; an example is the dis-
play of a car along with a drop-down list containing all the models for the car. When designing
Web sites, the information from the one end might be at the top of the page, with multiple groups
of data below it or multiple links to the data. An example is one search engine topic resulting in
many matching links or one genre of music and many artists that match the genre.

Many-to-Many Relationship
When the relationship is many-to-many, three tables are necessary: one for each data entity and one
for the relationship. The ORDER and ITEM entities in our example have a many-to-many relation-
ship. The primary key of each data entity is stored as a foreign key of the relational table. The rela-
tional table may simply contain the primary keys for each data entity or may contain additional data,
such as the grade received for a course or the quantity of an item ordered. Refer to the table layout
illustrated in Figure 13.24. The ORDER ITEM table contains information about which order con-
tains which items, and provides a link between the ORDER table and the ITEM MASTER table.

The relationship table should be indexed on each foreign key—one for each of the tables in
the relationship—and may have a primary key consisting of a combination of the two foreign
keys. Often corporations will use a unique key, such as sequence number, as the primary key for
the relational table. To find many records from a second table given the first table, directly read
the relational table for the desired key. Locate the matching record in the second many table. Con-
tinue to loop through the relational table until the desired key is no longer found. For example, to
find records in the ITEM MASTER for a specific record in the ORDER table, directly read the
ORDER-ITEM table using the ORDER-NUMBER as the index. Records are logically sequenced
based on the data in the index, so all records for the same ORDER-NUMBER are grouped to-
gether. For each ORDER-ITEM record that matches the desired ORDER-NUMBER, directly
read the ITEM MASTER table using the ITEM-NUMBER as an index.

The logic is the same for the reverse situation, such as finding all the orders for a backordered
item that has been received. Use the desired ITEM-NUMBER to read the ORDER-ITEM table
directly. The ORDER-ITEM index is set to the ITEM-NUMBER. For all matching ORDER
ITEM records, use the ORDER-NUMBER to read the ORDER table directly. Finally, read the
CUSTOMER MASTER table directly to obtain the CUSTOMER-NAME and ADDRESS using
the CUSTOMER-NUMBER on the ORDER table.

Relational tables may have relationships to more tables in the database than just the two to
which they directly connect. For example, there might be a relational table called Class or Sec-
tion to link students and courses, since each student may take many courses and each course may
have many students. The Section table may have a relationship to the Textbook or to the Instruc-
tor for that section.

ORDER
NUMBER

CUSTOMER
NUMBER

ORDER
DATE

QUANTITY
ORDERED

ITEM
NUMBER

ITEM
DECRIPTION

ITEM
COST

ITEM
PRICE

QUANTITY
ON HAND

ORDER

ORDER-ITEM

ITEM MASTER

ORDER
NUMBER

ITEM
NUMBER

The
ORDER-ITEM

serves as a link.

FIGURE 13.24
When the relationship is many-to-
many, three files are necessary.

424 PART IV • THE ESSENTIALS OF DESIGN

GUIDELINES FOR MASTER FILE/DATABASE RELATION DESIGN
The following guidelines should be taken into account when designing master files or database
relations:

1. Each separate data entity should create a master database table. Do not combine two
distinct entities on one file. For example, items are purchased from vendors. The ITEM
MASTER table should contain only item information, and the VENDOR MASTER table
should contain only vendor information.

2. A specific data field should exist only on one master table. For example, the CUSTOMER
NAME should exist only on the CUSTOMER MASTER table, not on the ORDER table or
any other master table. The exceptions to this guideline are the key or index fields, which
may be on as many tables as necessary. If a report or screen needs information from many
tables, the indexes should provide the linkage for obtaining the required records.

3. Each master table or database relation should have programs to Create, Read, Update, and
Delete (abbreviated CRUD) the records. Ideally, only one program should add new records
and only one program should delete specified records. Many programs, however, may be
responsible for changing data fields in the course of normal business activities. For
example, a CUSTOMER MASTER file may have a CURRENT BALANCE field that is
increased by the ORDER TOTAL in the order processing program and decreased by a
PAYMENT AMOUNT or an AMOUNT RETURNED from two additional programs.

Integrity Constraints
Integrity constraints are rules that govern changing and deleting records, and that help keep the
data in the database accurate. Three types of integrity constraints apply to a database:

1. Entity integrity.
2. Referential integrity.
3. Domain integrity.

Entity integrity constraints are rules that govern the composition of primary keys. The primary
key cannot have a null value, and if the primary key is a composite key, none of the compo-
nent fields in the key can contain a null value. Some databases allow you to define a unique
constraint or a unique key. This unique key identifies only one record, which is not a primary
key. The difference between a unique key and a primary key is that a unique key may contain
a null value.

Referential integrity governs the nature of records in a one-to-many relationship. The table that
is connected to the one end of the relationship is called the parent. The table connected to the many
end of the relationship is called the child table. Referential integrity means that all foreign keys in
the many table (the child table) must have a matching record in the parent table. Hence, you can-
not add a record in the child (many) table without a matching record in the parent table.

A second implication is that you cannot change a primary key that has matching child table
records. If you could change the parent record, the result would be a child record that would have
a different parent record or an orphan record, or a child record without a parent record. Examples
are a GRADE record for a student that would not be on the STUDENT MASTER table and an
ORDER record for a CUSTOMER NUMBER that did not exist. The last implication of referen-
tial integrity is that you cannot delete a parent record that has child records. That would also lead
to the orphan records mentioned earlier.

Referential integrity is implemented in two different ways. One way is to have a restricted
database, in which the system can update or delete a parent record only if there are no matching
child records. A cascaded database will delete or update all child records when a parent record is
deleted or changed (the parent triggers the changes).

A restricted relationship is better when deleting records. You would not want to delete a cus-
tomer record and have all the outstanding invoices deleted as well! The cascaded approach is bet-
ter when changing records. If the primary key of a student record is changed, all the course
records for that student would have their foreign keys (the STUDENT NUMBER on the
COURSE MASTER) changed as well.

Domain integrity rules are used to validate the data, such as table, limit, range, and other val-
idation checks. They are further explained in Chapter 15. The domain integrity rules are usually

CHAPTER 13 • DESIGNING DATABASES 425

stored in the database structure in one of two forms. Check constraints are defined at the table
level and can refer to one or more fields in the table. An example is that the DATE OF PUR-
CHASE is always less than or equal to the current date. Rules are defined at the database level as
separate objects and can be used with a number of fields. An example is a value that is greater
than zero, used to validate a number of elements.

Anomalies
Four anomalies may occur when creating database tables:

1. Data redundancy.
2. Insert anomaly.
3. Deletion anomaly.
4. Update anomaly.

Data redundancy occurs when the same data are stored in more than one place in the data-
base (except for primary keys stored as foreign keys). This problem is solved by creating tables
that are in 3NF.

M A C A P P E A L

Although Microsoft Word, Excel, and PowerPoint are available for the Mac operating system, the
only way to run Microsoft Access is to run Windows in virtualization mode or by booting into Win-
dows. There are two other options for the Mac—Bento and FileMaker Pro. Bento is a personal data-
base that allows users to efficiently gather information from the address book, calendar application,
Apple Mail, and Microsoft Excel, and then quickly add new fields to create a customizable database.

Some users may find Bento limiting; so another option is Bento’s big brother, FileMaker Pro. It
is a full, relational database program that has support for direct access to SQL databases. Its distin-
guishing characteristic is that the screens, forms, and reports that access the database are fully inte-
grated with the database engine.

FIGURE 13.MAC
A screen from Bento, a personal database. Screenshot used with permission from
FileMaker, Inc.

426 PART IV • THE ESSENTIALS OF DESIGN

An insert anomaly occurs when the entire primary key is not known and the database cannot
insert a new record, which would violate entity integrity. This problem usually occurs when the
primary key is a composite key containing several smaller attributes. An insert anomaly may be
avoided by using a sequence number for the primary key.

A deletion anomaly happens when a record is deleted, resulting in the loss of other related
data. An example is an item that has a vendor number and a particular item is the only refer-
ence to a certain vendor. If that item is deleted, there would be no reference to the vendor
record.

An update anomaly results when a change to one attribute value either causes the database
to contain inconsistent data or causes multiple records to need changing. An example is when a
street name changes in a city. You might change some of the street names and not others, or you
will have to ensure that all street names have been changed. This can occur when you have tran-
sitive dependencies and may be prevented by creating tables that are in 3NF (although in the street
example, the data may be in 3NF).

MAKING USE OF THE DATABASE
There are several steps you must take in sequential order to assure that the database will be use-
ful for presenting data.

Steps in Retrieving and Presenting Data
There are eight steps in the retrieval and presentation of data:

1. Choose a relation from the database.
2. Join the relations together.
3. Project columns from the relation.
4. Select rows from the relation.
5. Derive new attributes.
6. Index or sort rows.
7. Calculate totals and performance measures.
8. Present data.

The first and last steps must be done, but the six steps in between are optional, depending on how
data are to be used. Figure 13.25 is a visual guide to the steps.

The final step in the retrieval of data is presentation. Presentation of the data abstracted from
the database can take many forms. Sometimes the data will be presented in tabular form, some-
times in graphs, and other times as a single-word answer on a screen. Output design, as covered
in Chapter 11, provides a more detailed look at presentation objectives, forms, and methods.

DENORMALIZATION
One of the main reasons for normalization is to organize data so as to reduce redundant data. If
you are not required to store the same data over and over again, you can save a great deal of space.
Such organization allows the analyst to reduce the amount of storage needed, something that was
very important when storage was expensive.

We learned in the last section that to use normalized data we had to progress through a series
of steps that involved joining, sorting, and summarizing. When speed of querying the database
(that is, asking a question and requiring a rapid response) is critical, it may be important to store
data in other ways.

Denormalization is the process of taking the logical data model and transforming it into a
physical model that is efficient for the most often needed tasks. These tasks can include report
generation, but they can also mean more efficient queries. Complex queries such as online ana-
lytic processing (OLAP), as well as data mining and knowledge data discovery (KDD) processes,
can also make use of databases that are denormalized.

Denormalization can be accomplished in a number of different ways. Figure 13.26 depicts some
of these approaches. First, we can take a many-to-many relationship, such as that of SALESPER-
SON and CUSTOMER, which share the associative entity SALES. By combining the attributes
from SALESPERSON and SALES we can avoid one of the join processes. This may result in a con-
siderable amount of data duplication, but it makes the queries about sales patterns more efficient.

CHAPTER 13 • DESIGNING DATABASES 427

Another reason for denormalization is to avoid repeated reference to a lookup table. It may
be more efficient to repeat the same information—for example, the city, state, and zip code—even
though this information can usually be stored as a zip code only. Hence, in the sales example,
CUSTOMER and WAREHOUSE may be combined.

Finally, we look at one-to-one relationships because they are very likely to be combined for
practical reasons. If we learn that many of the queries regarding orders also are interested in how
the order was shipped, it would make sense to combine, or denormalize. Hence, in the example,
some of the details can appear in both ORDER-DETAILS and SHIPPING-DETAILS when we
go through denormalization.

Choose a relation(s)
from the database.

Join the relations
together.

Project columns from
the relation.

Select rows from
the relation.

Derive new attributes.

Index or sort rows.

Calculate totals and
performance measures.

Present data.REPORT

FIGURE 13.25
Data are retrieved and presented in
eight distinct steps.

428 PART IV • THE ESSENTIALS OF DESIGN

SALESPERSON

SALESPERSON
NUMBER

SALESPERSON
NAME

SALES
AREA

SALESPERSON-SALES-DENORMALIZED

SALESPERSON
NUMBER

CUSTOMER
NUMBER

CUSTOMER
NUMBER

SALES
AMOUNT

SALES

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

WAREHOUSE

CUSTOMER
NUMBER

CUSTOMER
NAME

SALES
AMOUNT

WAREHOUSE
NUMBER

CUSTOMER

CUSTOMER
NUMBER

CUSTOMER
NAME

WAREHOUSE
NUMBER

WAREHOUSE
LOCATION

CUSTOMER-DENORMALIZED

CUSTOMER
NUMBER

CUSTOMER
NAME

ORDER
NUMBER

ORDER
DATE

ORDER
AMOUNT

ORDER-DETAILS

ORDER-DETAILS-DENORMALIZED

SHIPPING
NUMBER

SHIP-TO
NAME

SHIP-TO
ADDRESS

SHIPPING
DATE

SHIPPING
METHOD

CUSTOMER
NUMBER

SHIPPING-DETAILS

SHIPPING
NUMBER

SHIP-TO
NAME

SHIP-TO
ADDRESS

SHIPPING
DATE

SHIPPING
METHOD

CUSTOMER
NUMBER

SHIPPING-DETAILS-DENORMALIZED

ORDER
NUMBER

ORDER
DATE

Combining an

entity with an

associative

entity

Combining

1 : 1
relationships

Combining

look-up
tables

SALESPERSON
NUMBER

SALESPERSON
NAME

SALES
AREA

CUSTOMER
NUMBER

CUSTOMER
NAME

ORDER
NUMBER

ORDER
DATE

ORDER
AMOUNT

SHIPPING
NUMBER

SHIP-TO
NAME

SHIP-TO
ADDRESS

SHIPPING
DATE

FIGURE 13.26
Three examples of
denormalization in order to make
access more efficient.

CHAPTER 13 • DESIGNING DATABASES 429

DATA WAREHOUSES
Data warehouses differ from traditional databases. The purpose of a data warehouse is to organize
information for quick and effective queries. In effect, they store denormalized data, but they go one
step further. They organize data around subjects. Most often, a data warehouse is more than one
database processed so that data are represented in uniform ways. Therefore, the data stored in data
warehouses comes from different sources, usually databases that were set up for different purposes.

The data warehouse concept is unique. Differences between data warehouses and traditional
databases include the following:

1. In a data warehouse, data are organized around major subjects rather than individual
transactions.

2. Data in a data warehouse are typically stored as summarized data rather than the detailed,
raw data found in a transaction-oriented database.

3. Data in a data warehouse cover a much longer time frame than data in traditional
transaction-oriented databases because queries usually concern longer-term decision
making rather than daily transaction details.

4. Most data warehouses are organized for fast queries, whereas the more traditional
databases are normalized and structured in such a way as to provide efficient storage of
information.

5. Data warehouses are usually optimized for answering complex queries, known as OLAP,
from managers and analysts, rather than simple, repeatedly asked queries.

6. Data warehouses allow easy access via data mining software (called siftware) that searches
for patterns and is able to identify relationships not imagined by human decision makers.

7. Data warehouses include not just one but multiple databases that have been processed so that
the warehouse’s data are defined uniformly. These databases are referred to as clean data.

8. Data warehouses usually include data from outside sources (such as an industry report, the
company’s Security and Exchange Commission filing, or even information about
competitors’ products), as well as data generated for internal use.

Building a data warehouse is a monumental task. The analyst needs to gather data from a va-
riety of sources and translate that data into a common form. For example, one database may store
information about gender as “Male” and “Female,” another may store it as “M” and “F,” and a
third may store it as “1” and “0.” The analyst needs to set a standard and convert all the data to
the same format.

Once the data are clean, the analyst has to decide how to summarize the data. Once summa-
rized, the detail is lost, so an analyst has to predict the type of queries that might be asked.

Then, the analyst needs to design the data warehouse by logically organizing, and perhaps
even physically clustering, the data by subject, requiring much analysis and design. The analyst
needs to know a substantial amount about the business.

Typical data warehouses tend to be from 50 gigabytes to tens of terabytes in size. Because
they are large, they are also expensive. Most data warehouses cost millions of dollars.

Online Analytic Processing
First introduced in 1993 by E. F. Codd, online analytic processing (OLAP) was meant to answer
decision makers’ complex questions. Codd concluded that a decision maker had to look at data in
a number of different ways. Therefore, the database itself had to be multidimensional. Many peo-
ple picture OLAP as a Rubik’s Cube of data. You can look at the data from all different sides, and
can also manipulate the data by twisting or turning it so that it makes sense.

This OLAP approach validated the concept of data warehouses. It then made sense for data to
be organized in ways that allowed efficient queries. Of course, OLAPinvolves the processing of data
through manipulation, summarization, and calculation, so more than a data warehouse is involved.

Data Mining
Data mining can identify patterns that a human is unable to detect. Either the decision maker can-
not see a pattern, or perhaps the decision maker is not able to think about asking whether that pat-
tern exists. Data mining algorithms search data warehouses for patterns using algorithms.
Figure 13.27 illustrates the concept of data mining.

430 PART IV • THE ESSENTIALS OF DESIGN

C O N S U L T I N G O P P O R T U N I T Y 1 3 . 2

Storing Minerals for Health, Data for Mining

One of Marathon Vitamin Shops’s employees, Esther See, ap-
proaches the owner, Bill Berry, about an observation she had. “I’ve
noticed that our customers have different habits. Some come in reg-
ularly, and others are less predictable,” Esther says. “When I see a
regular customer, I pride myself on knowing what the customer will
buy and maybe even suggest other vitamins they might like. I think
I generate more sales that way. The customer is happier, too.”

Esther continues, “I wish I could be better at helping out some
of the customers who come in less frequently, though.”

“That’s a very nurturing attitude, Esther, and it helps out our
store as well,” Bill replies. “I know that we can benefit in other
ways by getting a better handle on customer patterns. For instance,
we can be sure that we have an item in stock.”

Esther nods in agreement and adds, “It’s not just the type of vi-
tamin I’m talking about. Some customers prefer one brand over an-

other. I don’t know if it depends on their income level or the inter-
ests they have in leisure activities. Sports, for example.”

“I see, Ms. See,” Bill chuckles at his own joke, “but do you
have anything in mind?”

“Yes, Mr. Berry,” she says more formally. “We should orga-
nize the data we have about our customers using a data warehouse
concept. We can merge the data we have with data from other
sources. Then we can look for patterns in our data. Maybe we can
identify existing patterns and predict new trends.”

Think about how you would organize a data warehouse for
Marathon Vitamin Shops. What other databases would you like to
merge into the data warehouse? What sort of patterns should Bill
Berry be looking for? Identify these patterns by type (associations,
sequences, clustering, or trends) and discuss them in a page or two.

Data mining is known by another name, knowledge data discovery (KDD). Some think that
KDD differs from data mining because KDD is meant to assist decision makers in finding pat-
terns rather than turning control over to an algorithm to find them. The decision aids available are
called siftware; they include statistical analysis, decision trees, neural networks, intelligent
agents, fuzzy logic, and data visualization.

External
Data

Data
Maintained
Internally

Prospects/mailing
lists from
other
companies

Customer
purchase history
from credit
card

Customer
demographics
from municipality

Warranty card
customer
sent in Information

from survey that
customer filled
out

Customer profile
obtained when
customer made
purchase from
the Web

Special
promotional
offer for
customer

External
Data

External
Data

Customer
Process 1

Customer Order
Contains customer order information and is used to update the

customer master and item files and to produce an order record.

ID
Name
Description

Comments

Source
Destination

Type of Data Flow
File Screen Report Form InternalData Structure Traveling with the Flow

Volume/TimeOrder Information
10/hour

An order record information for one customer order. The ordermay be received by mail, by FAX, or by the customer telephoning the orderprocessing department directly.

FIGURE 13.27
Data mining collects personal
information about customers in an
effort to be more specific in
interpreting and anticipating their
preferences.

CHAPTER 13 • DESIGNING DATABASES 431

The types of patterns decision makers try to identify include associations, sequences, clus-
tering, and trends. Associations are patterns that occur together at the same time. For example,
a person who buys cereal usually buys milk to go with the cereal. Sequences, on the other hand,
are patterns of actions that take place over a period of time. For example, if a family buys a house
this year, they will most likely buy durables (a refrigerator, or washer and dryer) next year. Clus-
tering is the pattern that develops among a group of people. For example, customers who live in
a particular zip code may tend to buy a particular car. Finally, trends are patterns that are noticed
over a period of time. For example, consumers may move from buying generic goods to pre-
mium products.

The concept of data mining came from the desire to use a database for a more selective tar-
geting of customers. Early approaches to direct mail included using zip code information as a
way to determine what a family’s income might be (assuming a family must generate sufficient

C O N S U L T I N G O P P O R T U N I T Y 1 3 . 3

Losing Prospects

“Market share can be a real problem,” says Ryan Taylor, di-
rector of marketing systems for a large East Coast health insurer.
“One of the greatest challenges we face is how to identify good
leads for our salespeople. With over 50 percent market share, we
must eliminate the names of most of the prospects we buy before
populating our marketing database. It is critical that we get it right
because our marketing database is a critical part of our company’s
arsenal of strategic information tools.”

Ryan explains to Chandler, one of your systems analysis team
members, “A marketing database, or MDB for short, is a powerful,
relational database that is the heart of marketing systems. Our mar-
keting database is used to provide information for all marketing sys-
tems. They include productivity tools, such as our Sales Force
Automation and our Mass Mailing Systems, which are designed to
aid our salespeople in managing the sales cycle. They also include
analytical tools, such as our geographic information systems (GIS)
or graphical query language (GQL) tools, which are designed to
provide decision support.

“The primary function of a marketing database, though, is to
track information on our customers and prospects. We currently
track geographic information, demographic information, and psy-
chographic information, or, as I like to say, where they live, who
they are, and how they think.

“The simplest marketing databases can be made up of just
three files: Prospect Profile, Customer Profile, and Purchase and
Payment History.

“Once you have designed your marketing database, the next
challenge is deciding how to populate it. We currently purchase our
prospect information from a list vendor. Because our company’s
marketing strategy is based on mass marketing, we buy every busi-
ness in our area. Because of this volume, we pay less than a dime
for each prospect. If, however, a company is practicing product dif-
ferentiation, their prospect base will likely be more defined. This
company would likely pay a premium for more detailed data that
have been carefully validated,” explains Ryan.

“We face a real challenge. If I had a dollar for every time a rep
complained to me about the address on a prospect being wrong, I

could retire and move to Florida,” Ryan quips. “I’m expected to
identify which prospects are bad. That’s not too hard if you only
have a thousand of them, but what do you do when you have over a
quarter of a million?”

Ryan continues, “Because we use these data frequently for large
mailings, it is very important for us to ensure that the names and ad-
dresses on that file are as accurate as possible. For example, they
should conform to postal standards and should not be duplicates.

“We achieve this through a technique called data hygiene.
How’s that for a geeky term? Data hygiene is usually accomplished
with specialized software, which is used to determine the validity
of an address. This software matches the database address to its own
internal database of valid streets and number ranges in a given city
or zip code.”

Ryan resumes, “One of the other data challenges faced by mar-
keters is eliminating duplicate records in the marketing database.
There are two types of duplicates we look for: internal duplicates,
which are the existence of multiple records of the same customer or
prospect, and external duplicates, which represent our inability to
eliminate customers from our prospect data.

“Internal duplicates create reporting problems and increase
mailing costs. External duplicates are even worse; they are both
costly and embarrassing,” Ryan explains. “One of the most embar-
rassing things for a sales representative is to make a prospecting call
only to find out that the business is already our customer. The cus-
tomer is generally left feeling like only a number in one of our com-
puters. It creates a poor impression and wastes valuable time and
resources.”

In two paragraphs, describe some techniques Ryan could use to
help identify internal and external duplicates in his company’s mar-
keting database. Describe how you would build a marketing database
to minimize duplicates (use a paragraph). Are there operational meth-
ods that might cut down on this problem? List them. Who else in the
organization could help with this process? Provide a brief list. In a
paragraph, recommend methods to Chandler and your other systems
analysis team members that can be used to help enlist and secure the
assistance of other relevant organizational members.

432 PART IV • THE ESSENTIALS OF DESIGN

income to afford to live in the prestigious Beverly Hills zip code 90210 or some other affluent
neighborhood). It was a way (not perfect, of course) to limit the number of catalogs sent.

Data mining takes this concept one step further. Assuming past behavior is a good predictor
for future purchases, a large amount of data is gathered on a particular person from credit card
purchases. The company can identify what stores we shop in, what we have purchased, how much
we paid for an item, and when and how frequently we travel. Data are also entered, stored, and
used for a variety of purposes when we fill out warranties, apply for a driver’s license, respond
to a free offer, or apply for a membership card at a video rental store. Moreover, companies share
these data and often make money on the sale of them as well.

American Express has been a leader in data mining for marketing purposes. American Ex-
press will send you discount coupons for new stores or entertainment when it sends you a credit
card bill, having determined that you have shopped in similar stores or attended similar events.
General Motors offers a MasterCard that allows customers to accumulate bonus points toward the
purchase of a new car, and then sends out information about new vehicles at the most likely time
that a consumer would be interested in purchasing a new car.

The data mining approach is not without problems, however. First, the costs may be too high to
justify data mining, something that may only be discovered after huge setup costs have been accrued.
Second, data mining has to be coordinated so that various departments or subsidiaries do not all try
to reach the customer at the same time. In addition, customers may think their privacy has been in-
vaded and resent the offers that are coming their way. Finally, customers may think profiles created
solely on the basis of their credit card purchases present a highly distorted image of who they are.

Analysts should take responsibility for considering the ethical aspects of any data mining
projects that are proposed. Questions about the length of time profile material is kept, the confi-
dentiality of it, the privacy safeguards included, and the uses to which inferences are put should
all be asked and considered with the client. The opportunities for abuse are apparent and must be
guarded against. For consumers, data mining is another push technology, and if consumers do not
want to be pushed, the data mining efforts will backfire.

SUMMARY
How to store data is often an important decision in the design of an information system. There are two ap-
proaches to storing data. The first approach is to store data in individual files, one file for each application.
The second approach is to develop a database that can be shared by many users for a variety of applications
as the need arises.

An understanding of data storage requires a grasp of three realms: reality, data, and metadata. An en-
tity is any object or event for which we are willing to collect and store data. Attributes are the actual char-
acteristics of these entities. Data items can have values and can be organized into records that can be
accessed by a key. Metadata describe the data and can contain restrictions about the value of a data item
(such as numeric only).

Examples of conventional files include master files, table files, transaction files, work files, and report
files. Databases typically are constructed with a relational structure. Legacy systems can have hierarchical
or network structures, however.

Normalization is the process that takes user views and transforms them into less complex structures called
normalized relations. There are three steps in the normalization process. First, all repeating groups are removed.
Second, all partial dependencies are removed. Finally, the transitive dependencies are taken out. After these
three steps are completed, the result is the creation of numerous relations that are of third normal form (3NF).

The entity-relationship diagram may be used to determine the keys required for a record or a database
relation. The three guidelines to follow when designing master tables or database relations are that (1) each
separate data entity should create a master table (do not combine two distinct entities within one table); (2) a
specific data field should exist only on one master table; and (3) each master table or database relation should
have programs to Create, Read, Update, and Delete.

The process of retrieving data may involve as many as eight steps: (1) choosing a relation, (2) joining
two relations together, (3) projecting (choosing) columns, (4) selecting relevant rows, (5) deriving new at-
tributes, (6) sorting or indexing rows, (7) calculating totals and performance measures, and finally (8) pre-
senting the results to the user.

Denormalization is a process that takes the logical data model and transforms it into a physical model
that is efficient for tasks that are most needed. Data warehouses differ from traditional databases in many
ways; one is that they store denormalized data, which is organized around subjects. Data warehouses allow
easy access via data mining software, called siftware, which searches for patterns and identifies relation-
ships not imagined by human decision makers.

CHAPTER 13 • DESIGNING DATABASES 433

Data mining involves using a database for more selective targeting of customers. Assuming that past
behavior is a good predictor for future purchases, companies collect data about a person from past credit
card purchases, driver’s license applications, warranty cards, and so on. Data mining can be powerful, but
it may be costly and it needs to be coordinated. In addition, it may infringe on consumer privacy or even a
person’s civil rights.

H Y P E R C A S E ® E X P E R I E N C E 1 3

2. Apply normalization to the table your team has developed to
remove repeating groups. Display your results.

3. Remove transitive dependencies from your table and show
your resulting database table.

Table name: CLIENT TABLE

Column Name Description

CLIENT ID
(primary key)

Mnemonic made up by users, such as
STHSP for State Hospital

CLIENT NAME The actual, full client name

ADDRESS The client’s address

CONTACT The name of the contact person

PHONE NUMBER The phone number of the contact
person

CLASS The type of institution (Veteran’s
Administration hospital, clinic, other)

STAFF-SIZE Size of client staff (number)

TRAINING LEVEL Minimum required expertise level of
the staff (as defined by the class)

EQUIP-QTY The number of medical machines that
the client has

EQUIP TYPE The type of medical machines (e.g.,
X-ray, MRI, CAT)

EQUIP MODEL-YR The model and year of each medical
machine

“I hear very good things about your team from the people in
Management Systems. You even got some hard-earned praise
from Tom Ketcham who isn’t easy to please these days. Even he
is seeing some possibilities. I think you’ll pull us together yet . . .
unless we all go off in different directions again. I’m just teasing
you. I told you to think about whether we are a family, a zoo, or a
war zone. Now’s the time to start designing systems that fit us.
You’ve been here long enough now to form those opinions. I hope
they’re favorable. I think our famous Southern hospitality coupled
with my noticeably British sense of humor should help influence
you, don’t you? I was so busy persuading you that we’re worth the
effort that I almost forgot to tell you: Tom and Snowden have
agreed to think about moving toward a database of some sort.
Would you have this ready in the next two weeks? Tom is at a con-
ference in Minneapolis, but when he returns you should have
some database ideas worked up for Snowden and him to discuss.
Keep at it.”

HYPERCASE Questions
1. Assume your team members have used the Training Unit

Client Characteristics Report to design a database table to
store the relevant information contained on this report, with
the following result:

KEYWORDS AND PHRASES
attribute
bubble diagram
clean data
concatenated key
conventional file
CRUD (Create, Read, Update, and Delete)
data element
data item
data mining
data model diagram
data storage
data warehouse
database

database administrator
database management system (DBMS)
delete anomaly
denormalization
domain integrity
entity
entity integrity constraint
entity-relationship (E-R) diagram
entity subtype
first normal form (1NF)
hierarchical data structure
information retrieval
logical view

434 PART IV • THE ESSENTIALS OF DESIGN

master file
network data structure
normalization
object identifier (OID)
online analytical processing (OLAP)
partial dependencies
physical view
primary key
reality, data, and metadata
record
referential integrity
relational data structure
relationship
repeating group

report file
retrieval
second normal form (2NF)
secondary key
siftware
special characters
table file
third normal form (3NF)
transaction file
transitive dependencies
unnormalized relation
update anomaly
work file

REVIEW QUESTIONS
1. What are the advantages of organizing data storage as separate files?
2. What are the advantages of organizing data storage using a database approach?
3. What are the effectiveness measures of database design?
4. List some examples of entities and their attributes.
5. What is the difference between a primary key and an object identifier?
6. Define the term metadata. What is the purpose of metadata?
7. List types of commonly used conventional files. Which of these are temporary files?
8. Name the three main types of database organization.
9. Define the term normalization.

10. What is removed when a relation is converted to the first normal form?
11. What is removed when a relation is converted from 1NF to 2NF?
12. What is removed when a relation is converted from 2NF to 3NF?
13. List the three entity constraints. In a sentence, describe the meaning of each entity constraint.
14. Describe the four anomalies that may occur when creating database tables.
15. List the eight steps for retrieving, presorting, and presenting data.
16. What does join do? What is projection? What is selection?
17. Define denormalization.
18. Explain the differences between traditional databases and data warehouses.
19. Define what siftware does when used in data mining.

PROBLEMS
1. Given the following file of renters:

Record
Number Last Name

Apartment
Number Rent

Lease
Expires

41 Warkentin 102 550 4/30

42 Buffington 204 600 4/30

43 Schuldt 103 550 4/30

44 Tang 209 600 5/31

45 Cho 203 550 5/31

46 Yoo 203 550 6/30

47 Pyle 101 500 6/30

a. Show an example of projection.
b. Show an example of selection.
c. Show two different examples of sorting rows.
d. Show an example of calculating totals.

CHAPTER 13 • DESIGNING DATABASES 435

USNJ Grade Report Spring Semester 2010

Name: E. Z. Grayed Major: MIS

Student: 472-6124-59 Status: Senior

Course Number Course Title Professor
Professor’s

Department Grade

MIS 403 Systems Analysis Diggs, T. MIS B

MIS 411 Conceptual Foundations Barre, G. MIS A

2. The following is an example of a grade report for two students at the University of Southern New
Jersey:

USNJ Grade Report Spring Semester 2010

Name: I. M. Smarte Major: MIS

Student: 053-6929-24 Status: Senior

Course Number Course Title Professor
Professor’s

Department Grade

MIS 403 Systems Analysis Diggs, T. MIS A

MIS 411 Conceptual Foundations Barre, G. MIS A

MIS 420 Human Factors in IS Barre, G. MIS B

CIS 412 Database Design Menzel, I. CIS A

DESC 353 Management Models Murney, J. MIS A

Draw a data model diagram with associations for the user view.
3. Convert the user view in Problem 2 to a 3NF relation. Show each step along the way.
4. What problem might arise when using a primary key of course number for the data in Problem 2?

(Hint: Think about what would happen if the Department Name [not shown in the data] changes.)
5. Draw an entity-relationship diagram for the following situation: Many students play many different

sports. One person, called the head coach, assumes the role of coaching all these sports. Each of the
entities has a number and a name. (Make any assumptions necessary to complete a reasonable
diagram. List your assumptions.)

6. The entity-relationship diagram you drew in Problem 5 represents the data entities that are needed to
implement a system for tracking students and the sports that they play. List the tables that are needed
to implement the system, along with primary, secondary, and foreign keys that are required to link the
tables.

7. Draw an entity-relationship diagram for the following situation: A commercial bakery makes many
different products. These products include breads, desserts, specialty cakes, and many other baked
goods. Ingredients such as flour, spices, and milk are purchased from vendors. Sometimes an
ingredient is purchased from a single vendor, and other times an ingredient is purchased from many
vendors. The bakery has commercial customers, such as schools and restaurants, that regularly place
orders for baked goods. Each baked good has a specialist that oversees the setup of the bakery
operation and inspects the finished product.

8. List the tables and keys that are needed to implement the commercial bakery system.
9. Draw an E-R diagram for the ordering system in Figure 13.24.

10. Draw a data flow diagram for placing an order. Base your data flow diagram on the E-R diagram.
11. Create an entity-relationship diagram for a genealogy software package called “PeopleTree” to keep

track of ancestors. Assume that each person will be on a Person table and that one person may have
one biological father and mother as well as an adopted mother and father. The mothers and fathers
must be stored on the Person table as well. Each person should have only one birthplace, stored on
the Place table. Many people may be born in the same place.

12. Define the primary key used for the Person and Place tables.

436 PART IV • THE ESSENTIALS OF DESIGN

13. GaiaOrganix is an organic food wholesale co-op linking producers and consumers. GaiaOrganix
negotiates purchases by grocery and other stores from farmers who raise a variety of crops, such as
fruits, vegetables, and grain. Each farmer may produce a number of crops, and each crop may be
produced by a number of farmers. To provide the highest level of fresh products, the produce is
shipped directly from the farm to the store. Each store may purchase from many farms, and each
farm may sell to many stores. Draw an entity-relationship diagram in the third normal form showing
the relationship between the producer (farms) and the retailer (stores).

14. ArticleIndex.com is a company that produces indexes of magazine and periodical articles for a given
discipline. A Web user should be able to enter an article topic or authors and receive a detailed list of
all the articles and periodicals in which the topic was found. Each article may have many authors,
and each author may write many articles. An article may be found in only one periodical, but each
periodical will usually contain many articles. Each article may have many topics, and each topic may
be in many articles. Draw an entity-relationship diagram in the third normal form for the articles,
authors, periodicals, and topics.

15. Identify the primary and foreign keys for the entity-relationship diagram created in Problem 14.

GROUP PROJECT
1. Gregg Baker orders tickets for two concerts over the Web. His orders are processed, exact seat

locations are assigned, and the tickets are mailed separately. One of the sets of tickets gets lost in the
mail. When he calls the service number, he does not remember the date or the seat numbers, but the
ticket agency was able to locate his tickets quickly because the agency denormalized the relation.
Describe the ticket ordering system by listing the data elements that are kept on the order form and
the shipping form. What information did Gregg give the ticket agency to retrieve the information?

SELECTED BIBLIOGRAPHY
Agrawal, R., A. Ailamaki, P. A. Bernstein, E. A. Brewer, M. J. Carey, S. Chaudhuri, et al. “The Claremont

Report on Database Research.” Communications of the ACM, Vol. 52, No. 6, 2009, pp. 56–65.
Avison, D. E. Information Systems Development: A Database Approach, 2d ed. London: Blackwell Scien-

tific, 1992.
Codd, E. F. “A Relational Model of Data for Large Shared Data Banks.” Communications of the ACM,

Vol. 13, No. 6, 1970, pp. 377–387.
Dietel, H. M., P. J. Dietel, and T. R. Nieto. E-Business and E-Commerce: How to Program. Upper Saddle

River, NJ: Prentice Hall, 2001.
Gane, C., and T. Sarson. Structured Systems Analysis: Tools and Techniques. Englewood Cliffs, NJ: Pren-

tice Hall, 1979.
Gray, P. “Data Warehousing: Three Major Applications and Their Significance.” In Emerging Information

Technologies, Improving Decision, Cooperation, and Infrastructure. Edited by K. E. Kendall. Thou-
sand Oaks, CA: Sage Publications, 1999.

Hoffer, J., A. Prescott, and H. Topi. Modern Database Management, 9th ed. Upper Saddle River, NJ: Pren-
tice Hall, 2009.

Sanders, G. L. Data Modeling. New York: International Thomson Publishing, 1995.
Shin, S. K., and G. L. Sanders. “Denormalization Strategies for Data Retrieval from Data Warehouses.”

Decision Support Systems, Vol. 42, No. 1, 2006, pp. 267–282.

CHAPTER 13 • DESIGNING DATABASES 437

Contains

Installed On

Hardware Inventory Number +
Brand Name +
Model +
Serial Number +
Date Purchased +
Purchase Cost +
Replacement Cost +
Memory Size +
Hard Drive Capacity +
Second Hard Drive Capacity +
Optical Drive +
Operating System +
Refresh Interval +
Warranty Length +
Campus Description +
Room Location +
{Software Inventory Number}

Software Inventory Number +
Title +
Operating System Name +
Version Number +
Publisher +
Software Category Description +
Computer Brand +
Computer Model +
Memory Required +
Site License +
Number of Copies +
Expert Last Name +
Expert First Name +
Office Phone

SoftwareComputer

FIGURE E13.1
Unnormalized entity-relationship
diagram for the computer system.
The many-to-many relationship
will have to be defined as an
associative entity.

E P I S O D E 13
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Back to Data Basics
After numerous interviews, prototypes, data flow diagrams, data dictionary entries, and UML diagrams
have been completed, Anna and Chip both start work on the entity-relationship model. “I’ll be responsi-
ble for creating the Microsoft Access table relationships,” Anna promises. Chip volunteers to complete
an entity-relationship diagram. “Let’s compare the two diagrams for accuracy and consistency when
we’re done,” Anna suggests, and so they do.

Figure E13.1 shows the entity-relationship diagram for the computer inventory system. Visible Analyst
calls each of the rectangles an entity. Each entity represents a database table of information stored in the sys-
tem, corresponding to a data store on the data flow diagram or an entity class on a sequence or class dia-
gram. Each of the diamond rectangles represents an associative entity representing a relationship between
the data entities. A rectangle with an oval in it represents an associative entity that cannot exist without the
connecting entity. These are usually repeating elements. Microsoft Visio uses rectangles to represent both
an associative and an attributive entity.

“I’ve created the entity-relationship diagram, starting with the simplest portions of the system,” Chip
tells Anna. “The first data entities created are SOFTWARE and COMPUTER. The relationship is that soft-
ware is installed on the computer. Next I determined the cardinality of the relationship. Because one soft-
ware package could be installed on many computers, this relationship is one-to-many. Each computer may
also have many different software packages installed on it so that it also provides a one-to-many relation-
ship. Because there is a one-to-many relationship for each of the data entities, the full relationship between
them becomes many-to-many.”

Chip continues by saying, “This first view is far from normalized. Notice that the SOFTWARE IN-
VENTORY NUMBER is a repeating element on the HARDWARE entity. I will have to create several enti-
ties for each of them.” A bit later Chip reviews his work with Anna. The SOFTWARE INVENTORY
NUMBER has been removed and placed in a relational entity. Refer to the entity-relationship diagram illus-
trated in Figure E13.2. “This places the data in the first normal form,” remarks Chip. “Also, there are no el-
ements that are dependent on only a part of the key, so the data are also in the second normal form. There
are, however, elements that are not part of the entity that is represented on the diagram, and they will have
to be removed. For example, look at the OPERATING SYSTEM and CAMPUS BUILDING. These ele-
ments are not a part of the computer hardware but are installed on the computer or the computer is installed
in a campus room. They should have their own entity. That makes it easier to change the version of an op-
erating system. Rather than having to change the version of the operating system on many of the COM-
PUTER records, it would only have to be changed once.”

438 PART IV • THE ESSENTIALS OF DESIGN

Campus Building

Computer

Operating System

Campus Code +
Campus Description

Operating System Code +
Operating System Name

Hardware Inventory Number +
Brand Name +
Model +
Refresh Interval +
Warranty Length +
Campus Code

has
computers
within

are
located
in

has
an

provides
solutions
for

gets
help
from

Employee Number +
Expert Last Name +
Expert First Name +
Office Phone +
Email Address +
Department Code +
Teach Course

Software Inventory Number +
Title +
Operating System Name +
Version Number +
Publisher +
Software Category Code +
Employee Numberbelongs

to
described
by

relate to

can have

has

relate to

Hardware Inventory Number +
Software Inventory Number

Software Category Code +
Software Category Description

Software Expert

Software

Software Category

Hardware
Software

FIGURE E13.3
Final entity-relationship diagram
for the computer system.

Anna agrees, remarking, “That’s really a good assessment of the situation. It will make implementing
the Microsoft Access tables easier.”

Chip continues to work on the entity-relationship diagram. After a few hours he exclaims, “I think it’s
done. Would you take a look at the final version?” The final version is shown in Figure E13.3. All the enti-
ties and relationships have been described in the repository.

Anna reviews the final version and exclaims, “It looks great! You are right in moving the OPERATING
SYSTEM and CAMPUS BUILDING to their own entities. Good idea, as the building is not a part of the
computer. Also, the SOFTWARE EXPERT is definitely not a part of the SOFTWARE entity. How about the
SOFTWARE CATEGORY?”

“I moved the SOFTWARE CATEGORY into its own entity to save room on the master files when they
are constructed,” Chip answers. “It is really a table of codes, and it makes it easy to change the category
without changing all of the software records. Also, we are storing a small code, rather than a lengthy descrip-
tion on each software record. Why don’t you double check the various keys on the diagram? Each related
entity, on the many end, should have a foreign key that matches the primary key of the entity on the one end.”

Anna examines the diagram for a while and remarks, “It looks good to me. Perhaps we should define
the repository entries.”

“Take a look at this repository entry.” Chip opens the entity-relationship diagram, Figure E13.4, and
double clicks on the COMPUTERS entity, displaying its repository entry. The primary key (the Microsoft

can have

has

Hardware Inventory Number +
Software Inventory Number

Hardware Inventory Number +
Brand Name +
Model +
Serial Number +
Date Purchased +
Purchase Cost +
Replacement Cost +
Memory Size +
Hard Drive Capacity +
Second Hard Drive Capacity +
Optical Drive +
Operating System+
Refresh Interval +
Warranty Length +
Campus Description +
Room Location

Software Inventory Number +
Title +
Operating System Name +
Version Number +
Publisher +
Software Category Description +
Computer Brand +
Computer Model +
Memory Required +
Site License +
Number of Copies +
Expert Last Name +
Expert First Name +
Office Phone

Computer Software
Hardware
Software

FIGURE E13.2
The computer system’s entity-
relationship diagram in the first
normal form.

CHAPTER 13 • DESIGNING DATABASES 439

FIGURE E13.4
The CPU normalized entity-
relationship diagram displayed in
Microsoft Visio with the Software
repository definition.

FIGURE E13.5
A Microsoft Access
RELATIONSHIPS diagram. Note
the infinity symbols representing
the many end of a relationship.

Visio and Visible Analyst [pk] notation in front of the HARDWARE INVENTORY NUMBER element in
the composition area), foreign keys (the FK1, FK2, and so on), and several alternate keys ([Ak1], [Ak2], and
[Ak3]) have been defined. After spending time examining the diagram as well as the repository entries and
analysis reports, both Anna and Chip are satisfied that the relationships between the data have been accu-
rately portrayed. Next they decide how to design the database from the diagrams.

The HARDWARE/SOFTWARE relation is analyzed first. Because there is a many-to-many relation-
ship between these two data entities, it may be implemented by using three database tables:

1. A HARDWARE MASTER table.
2. A SOFTWARE MASTER table.
3. A HARDWARE/SOFTWARE RELATIONSHIP table, which would contain the key fields for the

HARDWARE and SOFTWARE master tables for all software installed on all machines. An autose-
quence primary key would work as well, as long as the foreign keys were also included in the table.

“I guess it’s my turn to work on the relationships,” says Anna as she takes a copy of the entity-relationship
diagram. “I’ll modify the Microsoft Access tables from the prototyping sessions.”

Anna starts by setting up the primary keys for each of the tables. When the tables are in their final form,
she creates the relationships between them. The Microsoft Access relationships diagram is illustrated in
Figure E13.5. Rectangles on the diagram represent the database tables and correspond to the various entity

440 PART IV • THE ESSENTIALS OF DESIGN

types found on the entity-relationships diagram. Notice that the cardinality is represented by “1” and the in-
finity symbol. The primary key fields are listed as the first field of each rectangle; they are also displayed in
boldface type. Foreign keys are shown attached to the other end of the relationship line, if the foreign key is
visible in the table rectangle. Keys are dragged from one table to another to establish a relationship, and a
dialog box appears to determine properties of the relationship.

EXERCISES
E-1. Use Microsoft Visio or Visible Analyst to view the unnormalized and first normal form entity-

relationship diagrams for the computer system. Double click on the entities to view the repository
information (in both Microsoft Visio and Visible Analyst. In Microsoft Visio the repository entry
is in an area on the bottom of the display. You may have to drag the border separating the diagram from
the repository upward. Click the Columns entry in the Categories area on the left side of the repository to
view the entity attributes). The diagram name is COMPUTER SYSTEM – UNNORMALIZED.

E-2. Use Microsoft Visio or Visible Analyst to view the entity-relationship diagram for the computer sys-
tem. Double click on the entities to view the repository information (in both Microsoft Visio and Vis-
ible Analyst). The diagram name is COMPUTER.

E-3. Add the VENDOR entity to the diagram. The vendor warrants the computers, and the relationship be-
tween VENDOR and COMPUTER is that one VENDOR can warrant many COMPUTER(s). Add
primary keys. Microsoft Visio will automatically create foreign keys. In Visible Analyst, select Key
Synchronization from the Repository menu.

E-4. Add the MAINTENANCE entity to the diagram. Maintenance repairs are performed on computers,
and the relationship between MAINTENANCE and COMPUTER(s) is such that one COMPUTER
may have many MAINTENANCE records. Use the repository to define MAINTENANCE ORDER
NUMBER. Set this attribute as the primary key for MAINTENANCE entity and generate the for-
eign key.

E-5. Describe the SOFTWARE CATEGORY entity in the repository. Include the elements found on the
entity-relationship diagram below SOFTWARE CATEGORY in the Composition area.

E-6. Describe the MAINTENANCE entity in the repository. The elements are as follows:
a. MAINTENANCE ORDER NUMBER.
b. HARDWARE INVENTORY NUMBER.
c. MAINTENANCE DATE.
d. TYPE OF MAINTENANCE.
e. COST OF MAINTENANCE.
f. MAINTENANCE COVERED BY WARRANTY.

E-7. Describe the VENDOR entity. The elements are as follows:
a. VENDOR NUMBER.
b. VENDOR NAME.
c. STREET.
d. CITY.
e. STATE.
f. ZIP CODE.
g. TELEPHONE NUMBER.
h. DATE LAST ORDER SENT.
i. TOTAL AMOUNT PURCHASED FROM VENDOR.
j. TOTAL NUMBER OF ORDERS SENT TO VENDOR.

E-8. Each computer may have more than one operating system, and each operating system may be in-
stalled on more than one computer. Add an associative entity called COMPUTER OPERATING
SYSTEM between COMPUTER and OPERATING SYSTEM. Include the primary and foreign keys
in the repository in either Microsoft Visio or Visible Analyst.

E-9. Explain in a paragraph the relationship between a foreign key and a primary key, and why it is nec-
essary to have them on separate entities when there is a relationship between the entities.

The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft Project, or
a Microsoft Access file that can be used to complete the exercises.

www.pearsonhighered.com/kendall

441

C H A P T E R 1 4

Human–Computer
Interaction

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Understand human–computer interaction (HCI).

2. Design a variety of user interfaces.

3. Design effective dialog for HCI.

4. Understand the importance of user feedback.

5. Articulate HCI implications for designing ecommerce Web sites.

6. Formulate queries that permit users to search the Web.

Throughout the book your awareness of human–computer interaction
(HCI) and its importance to your task as a systems analyst has grown.
While awareness is important, by now you recognize that you need to mas-
ter the concepts surrounding HCI as well as become proficient at assess-
ing human information requirements and incorporating your findings into

your designs. Furthermore, the European Union (EU) and the United States have come forth
with specific guidelines for usability.These guidelines mandate making Web sites and electronic
services accessible to the able-bodied and disabled alike.

This chapter fills in some of the details about HCI and working with users. It also gives you
some experience in applying HCI concepts that you have been learning to help in your design
of human–computer interfaces; feedback, ecommerce Web sites, and Web queries.

UNDERSTANDING HUMAN–COMPUTER INTERACTION
Designing for HCI means “Ensuring system functionality and usability, providing effective user
interaction support, and enhancing a pleasant user experience.” Furthermore, “The overarching
goal is to achieve both organizational and individual user effectiveness and efficiency. To reach
these goals, managers and developers need to be knowledgeable about the interplay among users,
tasks, task contexts, information technology (IT), and the environments in which systems are
used” (Carey et al., 2004, p. 358).

We can ensure that our systems are user centered, so that they appropriately include users’
needs as well as organizational needs by understanding HCI concepts, considering interfaces in
the light of HCI issues, and applying standard design concepts to computers in new ways because
of an HCI approach.

Knowledge about the interplay among users, tasks, task contexts, IT, and the environments in
which the systems are used comprises the basis of HCI. The main tactic of HCI in systems analysis
and design is to repeatedly elicit feedback from users about their experiences with prototyped designs

442 PART IV • THE ESSENTIALS OF DESIGN

Na
tur

e
of

W
or

k

Environment
W

orkspace

Human

Computer

Task

Fit

Performance
and well-being

FIGURE 14.1
The “fit” among the human,
computer, and task affects
performance and well-being.

(which could be screens, forms, interfaces, and the like), refining the design based on the sug-
gested changes, and trying them with users again until the design is acceptable and until it is
frozen by the analyst.

How Fit Affects Performance and Well-Being
Let’s begin our exploration of HCI with some useful definitions that are commonly shared among
those working in the field.

FIT. A good fit between the HCI elements of the human, the computer, and the task that needs to
be performed leads to performance and well-being, as shown in Figure 14.1. Just as it is important
that new shoes comfortably fit the shape of your foot, hold up during the activity you will be doing
(such as running), and are made of a material (such as leather) that is durable and cost-effective,
so too is it important that the fit among the user, computer, and task all correspond.

Analysts want the best fit in their design. You want to make the best possible use of people in
designing a computerized task that is intended to meet an organizational objective. Better fit is meant
to result in better performance and greater overall well-being for the human involved in the system.

Fortunately, humans’ capacity to learn better ways to work also influences the fit. We would
never try running a marathon with a shoe right out of the box, without first getting our foot used
to it by breaking it in. By the same token, users can be trained to develop a better fit by learning
their tasks and computers thoroughly. Training continues to be an important way to improve fit.

TASK. In the foregoing chapters you have learned many methods to help you understand,
document, and graphically depict the tasks that people currently perform in the organization. You
have also learned methods to help you design new tasks that will help people reach their
objectives with the new systems you are creating. As you recall, tasks can be structured and
routine, or they can be ill defined and without apparent structure. Complex tasks that require

CHAPTER 14 • HUMAN–COMPUTER INTERACTION 443

human, system, and task interaction are supported by ecommerce and Web systems, ERP systems,
and wireless systems inside and outside the organization.

PERFORMANCE. The definition of the word performance in the HCI context is also key. In this
case, the term performance refers to a combination of the efficiency involved in performing a task
and the quality of the work that is produced by the task. For example, if analysts are using high-
level software or a CASE tool to create data flow diagrams in which they are proficient, we would
predict that the quality of the data flow diagrams produced would be high. The performance is
also efficient, because the analysts are using an automated tool with which they are familiar. They
can work rapidly, with good results. The task fits the objective, which is to create high-quality
data flow diagrams to document a system. The efficiency of producing such diagrams with a
CASE tool, which can then be used to store, retrieve, communicate, and modify the UML
diagrams, is excellent, compared to alternatives such as using a drawing tool unrelated to a data
dictionary or drafting diagrams by hand, neither of which offer such features.

WELL-BEING. At this point, we can introduce the concept of well-being, which is a concern for a
human’s overall comfort, safety, and health; in sum, it is their physical as well as psychological state.
Does using a CASE tool for producing UML diagrams or DFDs on a computer serve the analyst’s
well-being? Yes, because the task fits well with the analyst, the software, the objective, and the
computer. Notice that the analysts are working in an environment where they are physically
comfortable, are psychologically stimulated to be creative, and can be productive; also, each analyst’s
work is valued by peers and clients, as well as valued monetarily by the employing organization.

Psychological attitudes (the affective component) are also important. How users feel about
themselves, their identities, their work life, and performance can all be gauged through assessing
their attitudes. As an analyst taking an HCI perspective, you are concerned about how humans’
attitudes color the way they feel about technology and their tasks, and whether their attitudes hin-
der or enhance their experience.

The Technology Acceptance Model and Attitude
The technology acceptance model (TAM), as proposed by Davis in 1989 and later refined and im-
proved by Davis and others, basically is a way for analysts to organize their thinking about
whether users will accept and use information technology. It can be used to shape training follow-
ing system development, but it can also be used early on in the development process to gather
user reactions to prototypes. Changing systems early in the development process increases the
likelihood of their adoption and use.

There are many theoretical components and a good deal of research to argue the intricacies
of TAM. Practically speaking, you need to be aware that there is a large body of research on the
acceptance and use of technology in the information systems field and that TAM is one of the
most popular subjects. TAM draws its power from examining the perceived usefulness of the sys-
tem to increase one’s job performance and the belief about how easy the system will be to use
when a user sits down to accomplish a task. So we have the two keys: perceived usefulness and
perceived ease of use. Both can be used to understand how users intend to interact with a pro-
posed system. Some researchers add an explicit attitude dimension to their idea of the technology
acceptance model that helps them think more specifically about what psychological states will
shape the way users accept or reject the use of the information systems they design.

Attitudes toward computers include user satisfaction with HCI, as well as users’ overall satis-
faction with the system. These are generally ascertained through special user satisfaction surveys
and are often used following implementation to estimate the overall success or failure of a systems
project. When you attempt to characterize attitudes toward computers, you may be surprised by all
the possible human responses that are conveyed. Most of the HCI research looks at a variety of user
attitudes, including satisfaction, anxiety, enjoyment, and playfulness in approaching technology.

The technology acceptance model also points out the importance of whether users find a
system useful and are thus motivated to use it. Since this is an important HCI concern, we can
measure whether the information technology is found to be useful by examining whether the sys-
tem provides support for an organizational member’s individual tasks. We can also measure
whether there are important tasks that a user of the new system could not perform prior to its im-
plementation. Our measurements can also determine whether the system extends a user’s capa-
bilities (for example, increasing the ability to perform higher-level analysis quickly or

444 PART IV • THE ESSENTIALS OF DESIGN

performing an on-the-spot translation of a financial report into another language complete with
currency conversions). Part of the usefulness criterion in HCI can also be measured by ascer-
taining whether users find it rewarding to use the system by conducting postimplementation in-
terviews and observations.

USABILITY
Usability is a term that is defined differently depending on which branch of science you are in-
vestigating. For our purposes in exploring usability through an HCI lens, we will try to focus on
usability as a way for designers to evaluate the systems and interfaces they create with an eye to-
ward addressing as many HCI concerns as we can as thoroughly as possible. Usability studies
(according to www.useit.com) are all about finding out what works in the world and what
doesn’t. The ISO has created usability standards that you can explore on www.usabilitynet.org/
tools/r_international.htm. The standards cover the use of the product (effectiveness, efficiency,
and satisfaction in a particular context of use), the user interface and interaction, the process used
to develop the product, and the capability of an organization to apply user-centered design.

Nielsen and Mack (1994) and Nielsen, Molich, Snyder, and Farrell (2001) have published
usability heuristics (or rules of thumb) based on thousands of usability tests of interfaces and,
later, tests of ecommerce Web sites. They include visibility of system status, match between the
system and the real world, user control and freedom, consistency and standards, error prevention,
reconnection rather than recall, flexibility and efficiency of use, aesthetic and minimalist design,
help that users recognize, diagnosis and recovery from errors, and help and documentation. Some
of these are already familiar to you from the input and output design chapters.

Figure 14.2 shows a usability survey to administer directly to users who have personally in-
teracted with a prototype. It asks users outright about some important usability and ergonomic di-
mensions. Another approach is to write up use case scenarios for the system. These are helpful in
examining usability concerns.

Designing for the Cognitive Styles of Individual Users
One important consideration is that data, particularly data used for decision making, are made
available in different forms so that users with different cognitive abilities can make sense of them.
Some users may prefer to examine tables and make decisions, some prefer graphs, and others
want to read narrative text.

It is also imaginable that the same person wants different types of presentations at different
times. For example, suppose a manager wants to compare inventory held at different stores in a
region. A graph can present the data very effectively. A column chart can use colors to show when
a store is near its stockout level, and it can also show the relative amount of stock by allowing the
user to visually compare the height of the bars directly.

Suppose now that the same decision maker wants information about a particular store in a
given month. The graphical depiction may have been set up to show the stores from highest to
lowest inventory on a month-by-month basis. The user may prefer to return to the table that lists
stores alphabetically, with the months listed chronologically. As you can see, the same person may
want to see the same data in very different ways.

PIVOT TABLES. Pivot tables allow users to arrange data in a table in any way they choose. An
example of a pivot table template created in Microsoft Excel is shown in Figure 14.3. The user
would take an item from the pop-up box called “Pivot Table Field List,” such as Product, drag it
over to the table template, and drop it in one of the blank areas. In this example, the user drags
and drops Product into the area on the left entitled “Drop Row Fields Here.” The user drops Sales
into the largest area that says “Drop Data Items Here.”

Finally the user takes the item called Quarter and drops it into the area called “Drop Col-
umn Fields Here.” The result is a table that shows each of the products in alphabetical order and
its sales for each of the four quarters we have data for, followed by the grand total for the year.
This table is shown in Figure 14.4.

Of course, the user could have done the opposite, that is, drag the item Quarter to the leftmost
column and the Product to the area that says “Drop Column Fields Here.” That operation, how-
ever, would have produced a table with many columns (one for each product) and only five rows
(one for each quarter plus a row for the total). The resulting table would have been difficult to read.

www.useit.com
www.usabilitynet.org/tools/r_international.htm
www.usabilitynet.org/tools/r_international.htm

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 445

Please fill this out after you complete your interaction with the prototype. Circle a number as you respond to each question.

Please hand your survey to the analyst when you have completed it. Thank you for this important feedback.

1. How well were you able to read the display or form?
2. If audio was used, were you able to hear it?3. Did you consider the system safe to use?

1
1
1

2
2
2

4
4
4

5
5
5

3
3
3

1
1
1
1
1

2
2
2
2
2

4
4
4
4
4

5
5
5
5
5

3
3
3
3
3

1
1
1
1
1

2
2
2
2
2

4
4
4
4
4

5
5
5
5
5

3
3
3
3
3

1
1
1
1
1
1
1

2
2
2
2
2
2
2

4
4
4
4
4
4
4

5
5
5
5
5
5
5

3
3
3
3
3
3
3

Prototype being evaluated ________________ Version ___________________ Date ____/____/______

Usability Survey

Human–Computer Interaction FactorsPhysical/Safety Concerns

4. Help you cut down on making errors?5. Allow you to recover from an error if you made one?
6. Help you use it easily?7. Help you remember how to use it?8. Make it easy to learn how to use it?

Usability Concerns How well did the system:

 9. Was the system attractive?10. Was the system engaging (you wanted to use it)?
11. Do you trust it as a system?12. Was it satisfying to use?13. Was it enjoyable to use?14. Was the system entertaining?15. Was the system fun to use?

Pleasing and Enjoyable Attributes

16. Support your individual task or tasks?17. Help you to extend your capabilities?18. Make itself rewarding to use?19. Permit you to do tasks that the other system would
 not allow you to do?

Usefulness Attributes How well did the system:

Very
Poor Very

Good
Average

FIGURE 14.2
A form may be used to survey
users of prototypes on key
usability and ergonomic factors.
(Categories based on Zhang,
Carey, Te’eni, and Tremaine,
2005, table of HCI concerns,
p. 522.)

Many different tables are possible just by rearranging these four variables. If the user
dragged the variable Category over to the area that says “Drop Column Fields Here,” the
columns would have been categories of products, rather than the quarters, and the resulting table
would have clearly shown which of the items belonged in each category and produced subtotals
for each category. If Category was dragged to the area at the very top of the template that says
“Drop Page Fields Here,” then each category would have its own table beginning on a separate
page.

Pivot tables are useful because they grant users greater control over how they look at data in
different ways within a table. We can examine this same concept for graphs in the next section.

FIGURE 14.3
A pivot table template can make it
easier for users to see information
displayed in different ways.

FIGURE 14.4
After the user drags the items
Product, Quarter, and Sales to the
template, the table looks like this.

446 PART IV • THE ESSENTIALS OF DESIGN

VISUAL ANALYSIS OF DATABASES. Innovative visual displays of data have existed for quite some
time, even as early as the eighteenth century. Barriers to widespread use of visual displays
included lack of imagination, the inability to draw graphs and charts in a cost-effective manner,
and a lack of appreciation for such displays. The consumer of information must be able to
interpret the information in the diagram or it adds little value.

Software that enables the user to visually examine a database or spreadsheet is available. One
example is Tableau Software’s product (www.tableausoftware.com). Using an approach similar
to the pivot tables we saw in Microsoft Excel, Tableau allows the user to drag and drop variables
onto either a row or a column, and they appear on a graph. In Figure 14.5, the Region and
Weekday were designated as columns and the SUM (Sales Total) was designated as a row. Each

www.tableausoftware.com

Product Category was then graphed (with “furniture” in blue, “office supplies” in orange, and
“technology” in green).

The graph demonstrates that technology sales were higher than the other categories, but in
particular technology sales were much higher than either furniture or office supplies in the East.
The user was easily able to see this because the Region was singled out as one of the separators
by dragging it to the area as a column.

Tableau is a well-designed software package because it goes much further than other appli-
cations in extending user capabilities to perform their tasks through the use of pivot table tech-
niques. The developers also realized that users might want to cluster the data into what they
consider a meaningful group. Users may then continue analysis by examining one of the groups
further.

Figure 14.6 examines the SUM (Gross Profit) from each Product Category from our ex-
ample. This graph uses color to indicate a profit (green) or a loss (red). In fact, the intensity of the
color indicates the amount of profit or loss.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 447

FIGURE 14.5
This table, showing the daily sales
by category and by region, was
produced using Tableau.

Source: Courtesy of
www.tableausoftware.com.

FIGURE 14.6
Products yielding losses are
highlighted in bright red on this
scatter plot, created using Tableau.

Source: Courtesy of
www.tableausoftware.com.

www.tableausoftware.com
www.tableausoftware.com

448 PART IV • THE ESSENTIALS OF DESIGN

FIGURE 14.7
When different graphs or tables
can be displayed on the same
page, the page resembles a
dashboard.

Source: Courtesy of
www.tableausoftware.com.

This graph can be used to explore the situation more deeply by selecting the three clusters of
circles that are bright red, isolating them, and then looking at the data for those observations in more
detail. Users can examine graphs or simply look at the observations in a table. Once again, they
have control over how the information is presented and thus control their task for best cognitive fit.

Another example from Tableau, presented in Figure 14.7, shows that this software can also
create a dashboard (explained in Chapter 11). Here a table, a scatter plot, and a column chart are
all shown on the same page. Visual analysis tools like this support visual thinking and extend the
user’s cognitive capabilities to do so. An appropriate visual display will increase the chances of
making an appropriate decision.

Physical Considerations in HCI Design
In Chapters 11, 12, and 13 you learned the basis for sound design of screens, forms, Web sites,
and databases. This included the special use of fonts, color, and layout design to communicate to
users and to help them do the right thing with the input and output they encountered. To examine
the underlying reasons for much of the design you learned, it is useful to look at human sensory
capabilities and limitations that will inform our design. In keeping with the HCI philosophy, an
analyst should be able to compensate, overcome, or replace human senses to a varying extent.

VISION. As you become a systems analyst, you are becoming accustomed to designing screens
and reports for sighted people. The use of color, fonts, graphics, software, and PowerPoint
presentations for displays and printed reports as input and output were detailed in Chapters 11 and
12. However, from an HCI perspective, you will also want to think in terms of limitations on
human vision. Factors such as length of the distance from display to the person performing a task;
the angle of the display in relation to the person viewing it; the size and uniformity of the
characters; the brightness, contrast, balance, and glare of the screen; and whether a display is
blinking or stable can all be designed to standards established through ISO and other national and
international groups.

HEARING. Humans also have limits to the amount of stress their senses can withstand. Noisy laser
printers, phone conversations, and shredders can lead to overload on human hearing. Office
workers can wear noise-canceling headphones or get a personal music player like an iPod, but
these solutions may have the effect of isolating a person from the organizational setting and may
even diminish their capability to perform the task at hand. As an analyst you will need to consider
noise when you design office systems.

TOUCH. When using an HCI perspective to evaluate the usefulness of keyboards and other input
devices, we can rate the human–computer fit as well as the dimensions examining the

www.tableausoftware.com

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 449

human–computer–task fit. Keyboards have been ergonomically designed to provide the correct
feedback for the person doing data entry. Users know by the firmness of the key under their finger
that the keystroke has been entered. Although keyboards can be silenced, they are often designed
with a click of feedback that is emitted when a key is hit. Keyboards also include slightly raised
bumps on what are called home keys, often the f and the j keys, which orients users to where their
fingers are positioned on the keyboard, enabling them to look at the screen or type from a printed
page on their desk without continually glancing at the keyboard.

Although the popular QWERTY keyboard that we most often use with computers today was
originally designed to slow down typists so that mechanical keys of the day would not become
entangled, this layout has proved to be quite an efficient way to enter data. In fact, since users do
so well with this familiar interface, it is difficult to conduct experiments comparing the efficiency
of QWERTY keyboards with other innovative keyboards.

Designing for data entry using numeric keypads as the human entry device also provides a
decision point for designers. Notice that numbers on your mobile phone are ordered differently
than numbers on a numeric keypad or calculator. Your phone may be arranged with the numbers
1, 2, and 3 on the top row. When you look at a calculator layout or a numeric keypad on your key-
board, you will see 7, 8, and 9 on the top row instead. Research now points to the superiority of
the calculator layout when the user is doing a lot of data entry. However, the phone digit layout
is supposed to be better for locating a number. As a designer, you are constantly examining the fit
between the human, the computer, and the tasks set by the organization.

Considering Human Limitations, Disabilities, and Design
All humans have limitations in their physical capabilities. Some are immediately visible, others
are not. When designing from an HCI perspective, you start realizing that limitations are often
discussed in terms of disabilities. The application of HCI to supporting and enhancing the phys-
ical capabilities of humans is one of the most promising application areas. Strides in biomedical
engineering mean that there is research to support the blind or those with low vision, those who
are deaf or have impaired hearing, and people with limited mobility.

There are also improvements in the technical supports available to those who face difficul-
ties in cognitive processing, including persons suffering with symptoms of autism, dyslexia, and
attention deficit disorder. As a systems analyst you will be subject to the legal provisions of the
country in which you are working. For instance, if you are designing for workplaces in the United
States, you may want to access the obligations of an employer under the Americans with Disabil-
ities Act at www.eeoc.gov/types/ada.html. There you will find definitions of who is considered
disabled, which states in part, “An individual with a disability is a person who: has a physical or
mental impairment that substantially limits one or more major life activities; has a record of such
impairment; or is regarded as having such an impairment.”

An employer in the United States is expected to make reasonable accommodation to employ a
disabled person, which includes “Making existing facilities used by employees readily accessible
to and usable by persons with disabilities; job restructuring, modifying work schedules, reassign-
ment to a vacant position; acquiring or modifying equipment or devices, adjusting or modifying ex-
aminations, training materials, or policies, and providing qualified readers or interpreters.”

A qualified employee or application is an individual who, “with or without reasonable ac-
commodation, can perform the essential functions of the job in question.” An employer is re-
quired to make reasonable accommodation to the known disability of a qualified applicant or
employee if it would not impose an undue hardship on the operation of the business. Undue
hardship is defined as “an action requiring significant difficulty or expense when considered in
light of factors such as an employer’s size, financial resources, and the nature and structure of
its operation. An employer is not required to lower quality or production standards to make an
accommodation.”

One of the best ways to ensure the broadest possible accommodation is to begin designing from
an HCI perspective. That way, your foremost concern will always be assisting a user in accomplish-
ing a task, set by the organization, with the use of technology. When accommodations for disabled
people are necessary, there are many sources to examine and many assistive devices to consider.

For people who are blind or who have low vision, there are braille keyboards as well as spe-
cial speech software that reads Web pages and other documents aloud. There are also screen mag-
nifiers that fit over a display to magnify the entire screen.

www.eeoc.gov/types/ada.html

450 PART IV • THE ESSENTIALS OF DESIGN

For people who lack certain perceptual sensitivity (incorrectly called color blindness), you
can work at testing the colors you are choosing for screens or forms to make certain that they can
be easily distinguished from each other. Particular problems occur telling the difference between
red and green, for instance. Always design the screen or form with alternative cues, such as icons,
written text, or audio cues that reinforce the content. For instance, if a hyperlink that has been
clicked on turns blue to show it has been followed, you can also add another icon to the display to
indicate that it has been followed or create a separate sidebar list that shows which Web sites have
been visited. These are better alternatives than relying solely on color to convey your message.

For users who experience impaired hearing, you can make sure that the documents and
screens you design include access to written versions of the audio material. Alternatively, you
might design tasks where headphones can be successfully used.

If you are designing computer tasks for those with limited mobility, you can think of speech in-
put rather than keyboarding. Additionally, new advances in biomedical engineering permit mobility-
impaired users to move the cursor on the screen by breathing into a tube or by directing the cursor to
the desired spot on the screen by looking at that spot or even, in some highly specialized interfaces,
by thinking about where the cursor should move.

Implementing Good HCI Practices
The ideal is to invite a usability specialist to serve on the systems development team with the other
team members. However, many systems groups are quite small, and not many professionals are

C O N S U L T I N G O P P O R T U N I T Y 1 4 . 1

School Spirit Comes in Many Sizes

Matt Scott manages the student-alumni clothing department for
a large bookstore in Saratoga Springs.

“Our clothing sales depend not only on whether our sports
teams win or lose, but the overall well-being of our students and
alums. If they are proud of their university, and want to show their
school spirit, they’ll buy up everything on our racks,” exclaims
Matt. “But don’t underestimate the weather as a factor,” he adds. “If
the weather turns cold in October, you’ll see a surge in people buy-
ing warm sweaters, pullovers, and gloves.”

“Our store serves the major three universities in our area,”
Matt goes on to state. “First, there is Hyde Park, what we call ‘the
football school.’They have about 17,000 students going there. They
have high demand for school-branded clothing, particularly in the
fall. Then, of course, there’s Pierce University. Pierce thinks it’s
part of the Ivy League, so the students like to buy crew and Lacrosse
shirts. They have about 7,500 students. Then there is St. David’s,
with about 3,000 students. They are devoted to their basketball
team. They really have faith in them. You’ll see sales pick up in the
second semester, particularly during ‘March Madness.’”

Mr. Scott continues, admitting, “I thought about asking the stu-
dents what to stock, but an email survey is out of the question. I get
spammed a lot, so I mostly don’t bother with email. Unfortunately,
the lead time for getting official branded sportswear into the store
is really long, and we run the risk of stocking out. But we try to
never run out.”

You’ve been asked to design a set of tables and graphs that will
help analyze the sales of Matt Scott’s school clothing. Start by list-

ing about 20 different items of school-branded clothing for men and
women fans, including items such as hooded sweatshirts, T-shirts,
baseball caps, sweatbands, running shorts, and so on. Many of them
feature fanciful embroidered designs depicting their mascots in
menacing or endearing poses. Hyde Park has their Golden Retriev-
ers; Pierce has their much beloved bird, the Puffins; and St. David’s
cheers with their Dragons.

Put the items into categories. Then think about what the data
would look like. Does it make sense for Matt to look at the data
weekly, monthly, or by semester? Will he want to look back five
years to see if there were any trends? Set up tables identifying the
rows and columns and the content of the main cells. Suggest sev-
eral tables so that Matt can analyze them in different ways.

Now construct graphs that analyze the same data. Using some
of the examples found in this book, suggest the type of graphs and
show the data so that different users with different styles can make
some decisions regarding the trend of sales over the last few years.
Remember to compare the schools as well. Suggest the appropriate
graphs from column, line, scatter plots, or even pie charts.

Also suggest three or four specific changes you would make to
allow someone who has low vision to be able to read the graphs
more easily. Magnification is one way to change a graph, but may
not be the best approach.

Consider the size of the schools since this may become the
most important factor when determining how Matt Scott should ad-
just his ordering for David’s, Hyde, and Pierce.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 451

Guidelines for the HCI Approach to Systems Design

• Examine the task to be done and consider the fit among the human, computer, and task.
• Identify what obstacles exist for users in their attempts to accomplish their assigned tasks.
• Keep in mind the perceived usefulness and perceived ease of use from TAM.
• Consider usability. Examine the usage environment by creating use case scenarios that
 depict what is going on between users and the technology.
• Use the information you have gained beforehand to figure out the physical and
 organizational environmental characteristics. Design with prototyping to accommodate
 diverse users and users with disabilities.

FIGURE 14.8
The HCI approach to systems
design emphasizes the fit among
the human, computer, and task.

available who are involved in the practice of usability per se; so even if you make this recommended
change to your project, the odds are that the position will go unstaffed or understaffed. However,
don’t let that discourage you. You can take some simple steps that will positively influence the
outcome of your systems project. Figure 14.8 provides a list of guidelines for taking an HCI
approach to systems design.

Although we have been discussing the system in the abstract, it is important to recognize
that the interface is the system for most users. However well or poorly designed, it stands as
the representation of the system and, by reflection, your competence as a systems analyst. A
well-designed interface improves the fit among the task, the technology, and the user.

Your goal must be to design interfaces that help users and businesses get the information they
need in and out of the system by addressing the following objectives:

1. Matching the user interface to the task.
2. Making the user interface efficient.
3. Providing appropriate feedback to users.
4. Generating usable queries.
5. Improving the productivity of computer users.

TYPES OF USER INTERFACE
In this section, several different kinds of user interfaces are described, including natural-
language interfaces, question-and-answer interfaces, menus, form-fill interfaces, command-
language interfaces, graphical user interfaces (GUIs), and a variety of Web interfaces for use
on the Internet. The user interface has two main components: presentation language, which
is the computer-to-human part of the transaction, and action language, which characterizes
the human-to-computer portion. Together, both concepts cover the form and content of the
term user interface.

Natural-Language Interfaces
Natural-language interfaces are perhaps the dream and ideal of inexperienced users, because they
permit them to interact with the computer in their everyday, or natural, language. No special skills
are required of the user, who interfaces with the computer using natural language.

The display depicted in Figure 14.9 lists three natural-language questions from three differ-
ent applications. Notice that interaction with each seems very easy. For instance, the first sentence
seems straightforward: “List all of the salespeople who met their quotas this month.”

The subtleties and irregularities residing in the ambiguities of English produce an extremely
exacting and complex programming problem. Attempts at natural-language interfacing for par-
ticular applications in which any other type of interface is infeasible (say, in the case of a user
who is disabled) are meeting with some success; however, these interfaces are typically expen-
sive. Implementation problems and extraordinary demand on computing resources have so far
kept natural-language interfaces to a minimum. The demand exists, though, and many program-
mers and researchers are working diligently on such interfaces. It is a growth area, and it there-
fore merits continued monitoring.

452 PART IV • THE ESSENTIALS OF DESIGN

Question-and-Answer Interfaces
In a question-and-answer interface, the computer displays a question to the user on the display.
To interact, the user enters an answer (via a keyboard stroke or a mouse click), and the computer
then acts on that input information in a preprogrammed manner, typically by moving to the next
question.

A type of question-and-answer interface called a dialog box is shown in Figure 14.10. A di-
alog box acts as a question-and-answer interface within another application, in this case a PERT

> List all of the salespeople who met their quotas this month.

> Compare the percentage of produce spoiled in each of our three stores.

> Graph the sale of DVD drives on a monthly basis for the last three years.

Tom Otto
Roz Berry
Spin Etch

Fair Oaks 4%
Tyson’s 5%
Metro Center 3%

 Press any key to continue.

FIGURE 14.9
Natural-language interfaces.

9/24

10/22

10/22

10/22

10/22

Administer
Questionnaire

Interview
B. Crieghton

Build Input
Prototype

Develop
Database

Build Output
Prototype

Resolve
Conflicting
Information

Save changes before quitting?

Yes

CancelNo

Bakerloo Bros. Project

File Edit Chart Task Layout Dates Fonts Style

FIGURE 14.10
A dialog box: one type of
question-and-answer interface.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 453

chart for a systems analysis project for the Bakerloo Brothers. Notice that the rounded rectangle
for “Yes” is highlighted, indicating that it is the most likely answer for this situation. The main
interface for this application need not necessarily be question and answer. Rather, by incorporat-
ing a dialog box, the programmer has included an easy-to-use interface within a more compli-
cated one.

Wizards used to install software are a common example of a question-and-answer interface.
The user responds to questions about the installation process, such as where to install the soft-
ware or features. The wizard can also ask questions and respond to the user’s answers with more
questions designed to narrow the scope of the problem. This is a typical way of setting up a tech-
nical support interface in order to winnow down problems and do more accurate troubleshooting.

Menus
A menu interface appropriately borrows its name from the list of dishes that can be selected in a
restaurant. Similarly, a menu interface provides the user with an onscreen list of available selections.

In responding to the menu, a user is limited to the options displayed. The user need not know
the system but does need to know what task should be accomplished. For example, with a typi-
cal word processing menu, users can choose from the Edit, Copy, or Print options. To utilize the
menu best, however, users must know which task they desire to perform.

Menus are not hardware dependent. Variations abound. Menus can be set up to use keyboard
entry, light pen, touch screen, or mouse. Selections can be identified with a number, letter, or key-
word, or users can click on a selection with a mouse. Consistency is important in designing a
menu interface.

Menus can also be put aside until the user needs them. Figure 14.11 shows how a pull-down
menu is used while constructing a PERT diagram for a systems analysis project being completed
for the Bakerloo Brothers. The user puts the pointer on Dates and pulls it down. Then the user
puts the pointer on Calendar, selecting the option to display the project on a conventional
monthly calendar.

Menus can be nested within one another to lead a user through options in a program. Nested
menus allow the screen to appear less cluttered, which is consistent with good design. They also
allow users to avoid seeing menu options in which they have no interest. Nested menus can also
move users quickly through the program.

9/24

10/22

10/22

10/22

10/22

Administer
Questionnaire

Interview
B. Crieghton

Build Input
Prototype

Develop
Database

Build Output
Prototype

Resolve
Conflicting
Information

Show Dates S
Set Earliest Start E
Set Latest Finish L

Duration Scale D
Timeline Scale T
Calendar C

File Edit Chart Task Layout Fonts StyleDates

FIGURE 14.11
A pull-down menu is there when
the user needs it.

454 PART IV • THE ESSENTIALS OF DESIGN

C O N S U L T I N G O P P O R T U N I T Y 1 4 . 2

I’d Rather Do It Myself

“ I can get Mickey to download any data I need from the Web or
our server to my PC,” DeWitt Miwaye, an upper-level manager for
Yumtime Foods (a Midwest food wholesaler), tells you. “Getting
data is no problem. What I don’t want are a lot of reports. I’d rather
get into the data myself.”

Miwaye goes on to tell you that as an executive, he doesn’t use
his PC as often as he’d like, maybe only three times a month, but he
has some very specific ideas about what he’d like to do with it.

“I’d like to be able to make some comparisons myself. I could
compare the turnover rate for all 12 of our warehouses. I’d also like
to see how effectively the capacity of each of our warehouses is be-
ing used. Sometimes I’d like to be able to graph the comparisons or
see a chart of them over time.”

In three paragraphs, compare three different types of interfaces
that Miwaye could use. Then recommend one interface for his use
that takes into account his infrequent use of the PC, his enjoyment
of working with raw data, and his desire to see data displayed in a
variety of ways.

GUI menus are used to control PC software and have the following guidelines:

1. The main menu bar is always displayed.
2. The main menu uses single words for menu items. Main menu options always display

secondary drop-down menus.
3. The main menu should have secondary options grouped into similar sets of features.
4. The drop-down menus that display when a main menu item is clicked often consist of more

than one word.
5. Secondary options perform actions or display additional menu items.
6. Menu items in gray are unavailable for the current activity.

An object menu, also called a pop-up menu, is displayed when the user clicks on a GUI ob-
ject with the right mouse button. These menus contain items specific for the current activity, and
most are duplicate functions of main menu items.

Experienced users may be irritated by nested menus. They may prefer to use a single-line
command entry to speed things up. Other users might use the shortcut abbreviations or key com-
binations such as Alt �. I �. P � C, which inserts a picture that is clip art in a Microsoft Office
document.

Form-Fill Interfaces (Input/Output Forms)
Form-fill interfaces consist of onscreen forms or Web-based forms displaying fields containing
data items or parameters that need to be communicated to the user. The form often is a facsimile
of a paper form already familiar to the user. This interface technique is also known as a form-
based method and input/output forms.

Figure 14.12 shows a form-fill interface. A pull-down menu for Part No. automatically en-
ters a Description and Unit Price for the item. When the user tabs to the Quantity field and en-
ters the number of items being purchased, the software automatically calculates the Extended
Price by multiplying Quantity by Unit Price.

Forms for display screens are set up to show what information should be input and where.
Blank fields requiring information can be highlighted with inverse or flashing characters. The cur-
sor is moved by the user from field to field by a single stroke of an arrow key. This arrangement
allows movement one field backward or one field forward by clicking the appropriate arrow key.
It provides the user good control over data entry. Web-based forms afford the opportunity to in-
clude hyperlinks to examples of correctly filled-out forms or to further help and provide examples.

Form input for displays can be simplified by supplying default values for fields and then
allowing users to modify default information if necessary. For example, a database management
system designed to show a form for inputting checks may supply the next sequential check

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 455

FIGURE 14.12
An example of the form-fill
interface.

number as a default when a new check form is exhibited. If checks are missing, the user changes
the check number to reflect the actual check being input.

Input for display screen fields can be alphanumerically restricted so that, for example, users
can enter only numbers in a field requesting a Social Security number, or they can input only let-
ters where a person’s name is required. If numbers are input where only letters are allowed, the
computer may alert the user via audio output that the field was filled out incorrectly.

The chief advantage of the input/output form interface is that the printed version of the filled-
in form provides excellent documentation. It shows field labels as well as the context for entries.
In addition, Web forms can return incomplete forms to the user with an explanation of what data
must be entered to complete the transaction. Often, fields with missing data are marked with a red
asterisk. Web-based documents can be sent directly to billing if a transaction is involved, or they
can go directly to a real-time database if a survey is being submitted. Web-based forms push the
responsibility for accuracy to the user and make the form available for completion and submis-
sion on a 24-hour, 7-day-a-week, worldwide basis.

There are few disadvantages to input/output forms. The main drawback is that users experi-
enced with the system or application might become impatient with input/output forms and might
want more efficient ways to enter data.

Command-Language Interfaces
A command-language interface allows the user to control the application with a series of key-
strokes, commands, phrases, or some sequence of these three methods. The simple syntaxes of
command languages are considered to be close to natural language.

Two application examples of command language are shown in Figure 14.13. The first shows
a user who asks to use a file containing data on all salespeople, then asks the computer to display
all last names and first names for all salespeople whose current sales (CURSALES) are greater
than their quotas. In the second example, a user asks to use a file called GROCER, and then di-
rects the computer to calculate the spoilage (SPOILS) by subtracting produce sold from produce
bought. After that is done, the user asks to go back to the top of the file and to print out (LIST)
the file.

The command language has no inherent meaning for the user, and that fact makes it dissim-
ilar to the other interfaces discussed so far. Command languages manipulate the computer as a
tool by allowing the user to control the dialog. Command language affords the user more overall
flexibility and control. When the user employs command language, the command is executed by
the system immediately. Then the user may proceed to give it another command.

Command languages require memorization of syntax rules that may prove to be obstacles for
inexperienced users. Experienced users tend to prefer command languages, possibly because of
their faster completion time.

456 PART IV • THE ESSENTIALS OF DESIGN

Graphical User Interfaces
The key to graphical user interfaces (GUIs) is the constant feedback on task accomplishment that
they provide to users. Continuous feedback on the manipulated object means that changes or re-
versals in operations can be made quickly, without incurring error messages.

The creation of GUIs poses a challenge, because an appropriate model of reality or an ac-
ceptable conceptual model of the representation must be invented. Designing GUIs for use on in-
tranets, extranets, and on the Web requires even more careful planning. Most users of Web sites
are unknown to the developer, so design must be clear-cut. The choice of icons, language, and hy-

C O N S U L T I N G O P P O R T U N I T Y 1 4 . 3

Don’t Slow Me Down

“ I’ve seen ’em all,” Carrie Moore tells you. “I was here when
they got their first computer system. I guess I’ve sort of made a ca-
reer of this,” she says cheerfully, pointing to the large stack of med-
ical insurance claim forms she has been entering into the computer
system. As a systems analyst, you are interviewing Carrie, a data
entry operator for AbundaCare (a large medical insurance com-
pany), about changes being contemplated in the computer system.

“I’m really fast compared with the others,” she states as she
nods toward the six other operators in the room. “I know, because
we have little contests all the time to see who’s the fastest, with the
fewest errors. See that chart on the wall? That shows how much we
enter and how quickly. The gold stars show who’s the best each
week. Performance measures are my friends.”

“I don’t really mind if you change computers. Like I say, ‘I’ve
seen ‘em all.’” She resumes typing on her keyboard as she contin-

ues the interview. “Whatever you do, though, don’t slow me down.
One of the things I’m most proud of is that I can still beat the other
operators. They’re good too, though,” Carrie adds.

Based on this partial interview with Carrie Moore, what type
of user interface will you design for her and the other operators? As-
sume that even though the new system is improved, it will still re-
quire massive amounts of data entry from a variety of medical
insurance forms sent in by claimants.

Compare and contrast interfaces such as natural language,
question and answer, menus, input/output forms, and Web-based
form-fill documents in two paragraphs. Then choose and defend
one alternative. What qualities possessed by Carrie and the other
operators—and the data they will be entering—shaped your
choice? Make a list of them. Is there more than one feasible choice?
Why or why not? Respond in a paragraph.

USE SALESPPL

DISPLAY ALL LNAME, FNAME FOR CURSALES > QUOTA

USE GROCER

REPLACE ALL SPOILS WITH PBOUGHT - PSOLD

GOTO TOP

LIST

FIGURE 14.13
Command-language interfaces.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 457

perlinks becomes an entire set of decisions and assumptions about what kinds of users the Web
site is hoping to attract. The designer must also adhere to conventions that users now expect to
encounter on Web sites.

Other User Interfaces
Other less common user interfaces are growing in popularity. They include pointing devices such
as the stylus, touch-sensitive screens, and speech recognition and synthesis. Each of these inter-
faces has its own special attributes that uniquely suit it to particular applications.

The stylus (a small pointed stick that resembles a pen) is used with handwriting recognition
software for mobile phones (acting as PDAs—personal digital assistants) and PC devices. They
have been a success because they integrate many functions and are easy to use. Additionally, they
are portable and sell for a comparatively low price. There has been an explosion of fun and use-
ful applications written for these mobile devices, including popular programs for restaurant re-
views such as Zagat, popular utilities such as “To Do” lists for work and personal use, and for
popular games such as Sudoku. Data entry is also facilitated with a docking cradle so that data
can be synchronized with your PC.

A tablet PC is a notebook computer with a stylus or touch-sensitive display. It can be
equipped with built-in Wi-Fi or Bluetooth communication. Touch-sensitive displays allow a user
to use a finger to activate the display. Touch-sensitive displays are useful in public information
displays, such as maps of cities and their sights posted in hotel lobbies or car rental facilities. They
can also be used to explain dioramas in museums and to locate camping facilities in state parks.
Touch-sensitive displays require no special expertise from users, and the screen is self-contained,
requiring no special input device that might be broken or stolen. Touch sensitive screens (also

C O N S U L T I N G O P P O R T U N I T Y 1 4 . 4

That’s Not a Lightbulb

From your preliminary analysis, it appears that a substantial re-
duction in errors will be realized if salesclerks at Bright’s Electric
(which sells electrical parts, bulbs, and fixtures to wholesale cus-
tomers) adopt an online system. The new system would allow sales-
clerks to withdraw a part from inventory (and thereby update
inventory), return a part to inventory, check on the inventory status,
and check on whether a part is backordered. Currently, to update in-
ventory, sales clerks fill out a three-part form by hand. The cus-
tomer gets one, inventory keeps one, and at the end of the day the
originals are deposited in the front office.

The next morning, the first thing the lone office worker does is
enter the data from the forms into the computer. Errors occur when
she enters the wrong part numbers or quantities. Additional time is
consumed when inventory workers hunt for a part they think might
be in stock but is not. Updated inventory sheets are available to the
salesclerks around noon, but by that time they have already taken
from inventory twice the number of parts that will be taken out af-
ter noon. Clearly, a well-designed online system would help reduce
these errors and also help with inventory control.

The owner, Luis Bright, has entertained the idea of an online
system and dropped it several times over the last five years. The
chief reason is that the salesclerks, who would be the heaviest users
of the system, do not think the systems analysts they’ve talked to
can create a really useful system.

M. T. Sockette, the salesclerk who has been with Bright’s the
longest, is the most vocal, telling you, “We know the parts, we know
our customers. What we could do with a computer here would be
great. The guys they’ve brought in here to get it going, though . . .
I mean, they say things like, ‘You can step right up and type one 60-
watt General Electric CFL lightbulb into the computer.’

“To us, that’s not a lightbulb, it’s a GE60WCFL. All of us
know the part numbers here. We pride ourselves on it. Typing in all
that junk will take all day.”

After talking to Mr. Bright, you decide to implement an online
system. You have talked to M. T. and the others and reassured them
that the system will use the part numbers they’re familiar with and
will save them time. Although they’re skeptical, you’ve persuaded
them to give it a try.

What type of user interface will you design for the sales clerks?
Before you come to your solution, do a careful analysis in three para-
graphs that compares and contrasts various user interfaces—natural
language, question and answer, menus, input/output forms, command
language, and Web-based form-fill documents—for their suitability at
Bright’s. Then choose one interface and explain in a paragraph why
you find this one the most appropriate based on what you know about
Bright’s salesclerks and their current system. Draw a prototype of a
display that will be part of your solution. Describe in a paragraph how
you will test its usability with the sales clerks.

458 PART IV • THE ESSENTIALS OF DESIGN

called simply touch screens or touch pads) for mobile phones such as the iPhone and the Black-
Berry are making this alternative user interface familiar to users and widely used. Current re-
search is examining how to make pressure-sensitive touch pads commercially viable. These
interfaces can be used with both large and small touch screens and are practical for applications
such as virtual painting or sculpting, a simulated mouse, and for musical instruments such as a pi-
ano keyboard where the intensity of the pressure applied is critical to the output.

With voice recognition, the user speaks to the computer, and the system is able to recognize
an individual’s vocal signals, convert them, and store the input. Voice recognition inventory sys-
tems are already in operation, and automobiles now feature voice input systems that respond to a
driver’s voice commands to navigate, change the radio station, or use the Bluetooth phone that
has been paired with the vehicle.

An advantage of voice recognition systems is that they can speed data entry enormously, and
free the user’s hands for other tasks (for example, driving). Speech input adds still another dimension
to the PC. It is now possible to add equipment and software that allows a PC user to speak commands
such as “open file” or “save file” to avoid using the keyboard or mouse. Users with limited mobility
or impaired sight can benefit from voice recognition systems. In the example shown in Figure 14.14,
the user corrects a word by pulling down a menu of alternative words that sound the same.

When evaluating interfaces, keep some standards in mind:

1. The necessary training period for users should be acceptably short.
2. Early in their training, users should be able to enter commands without thinking about

them or without referring to a help menu or manual. Keeping interfaces consistent
throughout applications can help in this regard.

3. The interface should be seamless so that errors are few and those that do occur are not
occurring because of poor design.

4. The time that users and the system need to bounce back from errors should be short.
5. Infrequent users should be able to relearn the system quickly.

Many different interfaces are available, and it is important to realize that an effective inter-
face goes a long way toward addressing key HCI concerns. Users should want to use the system,
and they should find it attractive, effective, and pleasing to use.

GUIDELINES FOR DIALOG DESIGN
Dialog is the communication between the computer and a person. Well-designed dialog makes
it easier for people to use a computer and lessens their frustration with the computer system.

FIGURE 14.14
Using software such as Dragon
NaturallySpeaking by Nuance, a
user can speak commands to their
computer. In this example, the
user corrects a word by pulling up
a menu of alternative words that
sound the same.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 459

Recall the elements of the TAM (technology acceptance model) indicating that perceived use-
fulness and perceived ease of use will lead first to an intention to use the system and eventu-
ally to using it. There are several key points for designing good dialog. They include the
following:

1. Meaningful communication, so that the computer understands what people are entering and
people understand what the computer is presenting or requesting.

2. Minimal user action.
3. Standard operation and consistency.

Meaningful Communication
The system should present information clearly to the user. This means having an appropriate ti-
tle for each display, minimizing the use of abbreviations, and providing clear user feedback. In-
quiry programs should display code meanings as well as data in an edited format, such as
displaying slashes between the month, day, and year in a date field or commas and decimal points
in an amount field. User instructions should be supplied regarding details, such as available func-
tion key assignments. In a graphical user interface, the cursor may change shape depending on
the work being performed.

Users with less skill in using the computer or doing their tasks with a computer require more
communication. Web sites must display more text and instructions to guide the user through the
site. Intranet sites may have less dialog, because there is a measure of control over how well
trained users are. Internet graphics should have pop-up text or roll-over descriptions when images
are used as hyperlinks, because there may be uncertainty in interpreting their meaning, especially
if the site is used internationally. Notice that EU guidelines for the display of Web graphics re-
quires that all images be labeled, so that visually impaired users will be able to hear written de-
scriptions announced through special software. Status line information for GUI screens is another
way of providing instructions for users.

Easy-to-use help screens should be provided. Many PC help screens have additional topics
that may be directly selected using highlighted text displayed on the first help screen. These hy-
perlinks are usually in a different color, which makes them stand out in contrast to the rest of the
help text. Remember to use icons or text in addition to color coding in order to reach the largest
number of users. Many GUIs incorporate tool tip help, displaying a small help message identify-
ing the function of a command button when the cursor is placed over it. The other side of com-
munication is that the computer should understand what the user has entered. Hence, all data
entered on the screen should be edited for validity.

Minimal User Action
Keying is often the slowest part of a computer system, and good dialog will minimize the num-
ber of keystrokes required. You can accomplish this goal in a number of different ways:

1. Keying codes, such as airport codes when making a flight reservation, instead of whole
words on entry screens. Codes are also keyed when using a command-language interface,
such as a two-letter state postal abbreviation. On a GUI screen, the codes may be entered
by selecting descriptions of the codes from a pull-down list of available options. This helps
to ensure accuracy, since the code is stored as a value of the drop-down list, as well as
helping to provide meaningful communication since descriptions that are familiar to the
user are selected. An example would be selecting a Canadian province and having the two-
character postal code stored.

2. Entering only data that are not already stored on files. For example, when changing or
deleting item records, only the item number should be entered. The computer responds by
displaying descriptive information that is currently stored on the item file. Another
example is when a user logs on to a Web site, the user ID is used to find related records,
such as a customer record, outstanding bills, orders, and so on.

3. Supplying the editing characters (for example, slashes as date field separators). Users
should not have to enter formatting characters such as leading zeros, commas, or a decimal
point when entering a dollar amount; nor should they have to enter slashes or hyphens
when entering a date. In general, Web sites are an exception to this rule, since Web forms

460 PART IV • THE ESSENTIALS OF DESIGN

do not include slashes or decimal points. Some Web forms use a series of entry fields with
editing characters between them, such as parentheses around an area code.

4. Using default values for fields on entry screens. Defaults are used when a user enters the
same value in a screen field for the majority of the records being processed. The value is
displayed, and the user may press the Enter key to accept the default or overtype the
default value with a new one. GUIs may contain check boxes and radio buttons that are
selected when a Web form or dialog box opens. Context-sensitive menus appear when an
object is clicked with the right mouse button. These menus contain options specific to the
object under the mouse.

5. Designing an inquiry (or change or delete) program so that the user needs to enter only
the first few characters of a name or item description. The program displays a list of all
matching names, and, when the user chooses one, the matching record is displayed.

6. Providing keystrokes for selecting pull-down menu options. Often, these options are
selected using a mouse, followed by keying. Users must move their hands from the
keyboard to the mouse and back. As users become familiar with the system, shortcut
keystrokes provide a faster method for manipulating the pull-down menus, because both
hands remain on the keyboard. This helps users become efficient at their tasks. On a PC or
Mac, keystrokes usually involve pressing a function key or the Alt key followed by a letter.
Figure 14.15 is an example of nested pull-down menus.

7. Use radio buttons and drop-down lists to control displays of new Web pages or to
change Web forms. For example, when a radio button is clicked, a drop-down list may
change to reflect the radio button choice. A radio button may be clicked and a form may
change according to the choice. A drop-down list may change or a radio button may be
clicked to move to a new Web page. Drop-down lists are often provided on a Web page for
quick navigation; selecting a new Web page from the drop-down list takes the viewer to
that page.

8. Provide cursor control for Web forms and other displays so that the cursor moves to the
next field when the right number of characters has been entered. An example would be
when a user enters an area code for a U.S. telephone number, and, following the entry of
three characters, the cursor then moves to the local phone number field. Entering software
registration key codes is another example. The codes are often in groups of four or five
letters and, when the first field is filled, the cursor moves to the next field and so on. The
analyst should examine every field to see whether automatic cursor control should occur.

Any combination of these eight approaches can help the analyst decrease the number of key-
strokes required by the user, thereby speeding up data entry and minimizing errors.

FIGURE 14.15
Example of nested pull-down
menus with shortcut keys from
Microsoft Visio Professional.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 461

Standard Operation and Consistency
The system should be consistent throughout its set of different displays and in the mechanisms
for controlling the operation of the displays throughout different applications. Consistency makes
it easier for users to learn how to use new portions of the system once they are familiar with one
component. You can achieve consistency by:

1. Locating titles, date, time, and operator and feedback messages in the same places on all
displays.

2. Exiting each program by the same key or menu option.
3. Canceling a transaction in a consistent way, such as using the esc key.
4. Obtaining help in a standardized way, such as using a function key.
5. Standardizing the colors used for all displays or Web pages.
6. Standardizing the use of icons for similar operations when using a graphical user interface.
7. Using consistent terminology in a display screen or Web site.
8. Providing a consistent way to navigate through the dialog.
9. Using consistent font alignment, size, and color on Web pages.

FEEDBACK FOR USERS
All systems require feedback to monitor and change behavior. Feedback usually compares cur-
rent behavior with predetermined goals and gives back information describing the gap between
actual and intended performance.

Because humans themselves are complex systems, they require feedback from others to meet
psychological and cognitive processing needs discussed earlier in this chapter. Feedback also in-
creases human confidence. How much feedback is required is an individual characteristic.

When users interface with machines, they still need feedback about how their work is pro-
gressing. As designers of user interfaces, systems analysts need to be aware of the human need
for feedback and build it into the system. In addition to text messages, icons can often be used.
For example, displaying an hourglass while the system is processing encourages the user to wait
a while rather than repeatedly hitting keys to get a response.

Feedback to the user from the system is necessary in seven distinct situations. Feedback that
is ill timed or too plentiful is not helpful, because humans possess a limited capacity to process
information. Web sites should display a status message or some other way of notifying the user
that the site is responding and that input is either correct or in need of further information.

C O N S U L T I N G O P P O R T U N I T Y 1 4 . 5

Waiting to Be Fed

“ Yeah, we were sold a package all right. This one right here.
Don’t get me wrong, it gets the work done. We just don’t know
when.”

You are talking with Owen Itt, who is telling you about the
sales unit’s recent purchase of new software for its networked PCs
that allows the input of sales data for each of its 16 salespeople, pro-
vides output showing comparison data for them, and projects future
sales based on past sales records.

“We’ve had some odd experiences with this program, though,”
Owen continues. “It seems slow or something. For instance, we’re
never sure when it’s done. I type in a command to get a file and
nothing happens. About half a minute later, if I’m lucky, the display
I want might come up, but I’m never sure. If I ask it to save sales
data, I just get a whirring sound. If it works, I’m returned to where

I was before. If it doesn’t save data, I’m still returned to where I was
before. It’s confusing, and I never know what to do. There’s noth-
ing on the display screen that tells me what to do next. See the lit-
tle manual that came with it? It’s dog-eared because we have to
keep thumbing through it trying to figure out what to do next. Or we
go online to try to get some help, but their technical assistance is
just about nonexistent. It takes way too much time, too.”

Based on what you’ve heard in the interview, take this oppor-
tunity to supplement the software by designing some onscreen feed-
back for Owen and his sales team. The feedback should address all
of Owen’s concerns, and follow the guidelines for giving feedback
to users, and the guidelines for designing good displays. Draw a
prototype of the displays you think are necessary to address the
problems Owen lists.

462 PART IV • THE ESSENTIALS OF DESIGN

Types of Feedback
ACKNOWLEDGING ACCEPTANCE OF INPUT. The first situation in which users need feedback is to
learn that the computer has accepted the input. For example, when a user enters a name on a line,
the computer provides feedback to the user by advancing the cursor one character at a time when
the letters are entered correctly. A Web example would be a Web page displaying a message that
“Your payment has been processed. Your confirmation number is 1234567. Thank you for using
our services.”

RECOGNIZING THAT INPUT IS IN THE CORRECT FORM. Users need feedback to tell them that the
input is in the correct form. For example, a user inputs a command, and the feedback states
“READY” as the program progresses to a new point. A poor example of feedback that tells the
user that input is in the correct form is the message “INPUT OK,” because that message takes
extra space, is cryptic, and does nothing to encourage the input of more data. When placing an
order on the Web or making a payment, a confirmation page often displays, requesting that the
user review the information and click a button or image to confirm the order or payment.

NOTIFYING THAT INPUT IS NOT IN THE CORRECT FORM. Feedback is necessary to warn users that
input is not in the correct form. When data are incorrect, one way to inform the user is to generate
a window that briefly describes the problem with the input and explains how the user can correct
it, as shown in Figure 14.16.

Notice that the message concerning an error in inputting the subscription length is polite and
concise but not cryptic, so that even inexperienced users will be able to understand it. The sub-
scription length for the online newsletter is entered incorrectly, but the feedback does not dwell
on the user’s mistake. Rather, it offers options (13, 26, or 52 weeks) so that the error can be cor-
rected easily. On a GUI screen, feedback is often in the form of a message box with an OK but-
ton on it.

Web messages have a variety of formats. One method is to return a new page with the mes-
sage on the side of the field containing the error. The new Web page may have a link for addi-
tional help. This method works for all Web sites, and the error detection and formatting of the new
page are controlled by the server. Another method uses JavaScript to detect the error and display
a message box on the current screen with details about the specific error. An advantage of this
method is that the Web page does not have to be sent to the server, and the page is more respon-
sive. Disadvantages are that, if JavaScript is turned off, the error will not be detected, and only

SOA Online Newsletter Subscription List

First Initial Middle Initial Last Name

Number Street Apartment

City State Zip Code

Subscription Length in Weeks Method of Payment

The subscription length you entered is
not currently being offered. Please
choose either 13, 26, or 52 weeks.

M C HURST

68506

CHK14

LINCOLN NE

3349 SOUTH STREET

FIGURE 14.16
Feedback informs the user that
input was not in the correct form
and lists options.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 463

one error is displayed at a time. There must also be a way of detecting the error on the server. A
second disadvantage is that JavaScript may not detect errors that involve reading database tables,
such as verifying a credit card number. This may be offset by using Ajax, which can send the num-
ber to the server and return an error to the Web page. Remember, however, that some users inten-
tionally turn off their JavaScript capability; so analysts need to follow a variety of tactics when
communicating errors.

Web pages may also use JavaScript to detect multiple errors and display text messages on the
page. Caution must be used so that the error messages are bold enough for the user to notice. A
small red line of text may go unnoticed. A message box or audible beeps may be used to alert the
users that one or more errors have occurred.

The analyst must decide whether to detect and report errors when a Submit button or link is
clicked, called batch validation, or detect errors one at a time, such as when a user enters a month
of 14 and leaves the field. The second method is a riskier approach since poor coding may put the
browser into a loop, and the user will have to shut down the browser.

So far, we have discussed visual feedback in text or iconic form, but many systems have au-
dio feedback capabilities as well. When a user inputs data in the incorrect form, the system might
beep instead of providing a window. But audio feedback alone is not descriptive, so it is not as
helpful to users as onscreen instructions. Use audio feedback sparingly, perhaps to denote urgent
situations. The same advice also applies to the design of Web sites, which may be viewed in an
open office, where sounds carry and a coworker’s desktop speakers are within earshot of several
other people.

EXPLAINING A DELAY IN PROCESSING. One of the most important kinds of feedback informs the
user that there will be a delay in processing his or her request. Delays longer than 10 seconds or
so require feedback so that the user knows the system is still working.

Figure 14.17 shows a display providing feedback in a window for a user who has just re-
quested a printout of the electronic newsletter’s subscription list. The display shows a sentence
reassuring the user that the request is being processed, as well as a sign in the upper right corner
instructing the user to “WAIT” until the current command has been executed. The display also
provides a way to stop the operation if necessary.

Sometimes during delays, while new software is being installed, a short tutorial on the new
application is run, which is meant to serve as a distraction rather than feedback about the instal-
lation. Often, a list of files that are being copied and a status bar are used to reassure the user that

SOA Online Newsletter Subscription List

First Initial Middle Initial Last Name

Number treet

City State

Subscription Length in weeks

ment

mode

M ethod of Payment

Printing is now in progress.

To halt printing just type P.

WAIT

FIGURE 14.17
Feedback tells the user that there
will be a delay during printing.

464 PART IV • THE ESSENTIALS OF DESIGN

the system is functioning properly. Web browsers usually display the Web pages that are being
loaded and the time remaining.

It is critical to include feedback when using Ajax to update Web forms. Because a new Web
page does not load, the user may not be aware that data are being retrieved from the server that
will change the current Web page. When a drop-down list is changing, a message, such as “Please
wait while the list is being populated,” informs the user that the Web page is changing.

Timing feedback of this sort is critical. Too slow a system response could cause the user to
input commands that impede or disrupt processing.

ACKNOWLEDGING THAT A REQUEST IS COMPLETED. Users need to know when their request has
been completed and new requests may be input. Often a specific feedback message is displayed
when an action has been completed by a user, such as “Employee record has been added,”
“Customer record has been changed,” or “Item number 12345 has been deleted.”

NOTIFYING THAT A REQUEST WAS NOT COMPLETED. Feedback is also needed to let the user
know that the computer is unable to complete a request. If the display reads “Unable to process
request. Check request again,” the user can then go back and check to see if the request has been
input correctly rather than continue to enter commands that cannot be executed.

OFFERING THE USER MORE DETAILED FEEDBACK. Users need to be reassured that more detailed
feedback is available, and they should be shown how they can get it. Commands such as Assist,
Instruct, Explain, and More may be employed. Or the user may type a question mark or click on
an appropriate icon to get more feedback. Using the command Help as a way to obtain further
information has been questioned, because users may feel helpless or caught in a trap from which
they must escape. This convention is in use, and its familiarity to users may overcome this
concern.

When designing Web interfaces, hyperlinks can be embedded to allow the user to jump to the
relevant help screens or to view more information. Hyperlinks are typically highlighted with un-
derlining, italics, or a different color. Hyperlinks can be graphics, text, or icons.

Including Feedback in Design
If used correctly, feedback can be a powerful reinforcer of users’ learning processes, serve to im-
prove user performance with the system, increase motivation to produce, and improve the fit
among the user, the task, and the technology.

A VARIETY OF HELP OPTIONS. Feedback on personal computers has developed over the years.
“Help” originally started as a response to the user who pressed a function key, such as F1; the
GUI alternative is the pull-down help menu. This approach was cumbersome, because end users
had to navigate through a table of contents or search via an index. Next came context-sensitive
help. Users could simply click on the right mouse button, and topics or explanations about the
current screen or area of the screen would be revealed. A third type of help on personal computers
occurs when the user places the arrow over an icon and leaves it there for a couple of seconds. At
this point, some programs pop up a balloon similar to those found in comic strips. This balloon
explains a little bit about the icon function.

The fourth type of help is a wizard, which asks the user a series of questions and then takes
action accordingly. Wizards help users through complicated or unfamiliar processes such as set-
ting up network connections or booking an airline seat online. Most users are familiar with wiz-
ards through creating a PowerPoint presentation or choosing a style for a word processing memo.

Besides building help into an application, software manufacturers offer online help (either
automated or personalized with live chat) or help lines (most customer service telephone lines are
not toll free, however). Some COTS software manufacturers offer a fax-back system. A user can
request a catalog of various help documents to be sent by fax, and then can order from the cata-
log by entering the item number with a touch-tone phone.

Finally, users can seek and find support from other users through software forums. This type
of support is, of course, unofficial, and the information thus obtained may be true, partially true,
or misleading. The principles regarding the use of software forums are the same for those men-
tioned later on in Chapter 16, where folklore and recommendation systems are discussed. Ap-
proach any software fixes posted on bulletin boards, blogs, discussion groups, or chat rooms with
wariness and skepticism.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 465

Besides informal help on software, vendor Web sites are extremely useful for updating dri-
vers, viewers, and the software itself. Most online computer publications have some sort of
“driver watch” or “bug report” that monitors the bulletin boards and Web sites for useful pro-
grams that can be downloaded. Programs will forage vendor Web sites for the latest updates,
inform the user of them, assist with downloads, and actually upgrade user applications.

SPECIAL DESIGN CONSIDERATIONS FOR ECOMMERCE
Many of the user interface design principles you have learned concerning feedback also extend
to designing ecommerce Web sites. A few extra considerations shown in this section can give your
Web interface designs improved functionality.

Soliciting Feedback from Ecommerce Web Site Customers
Not only do you need to give users feedback about what is happening with an order, but you need
to elicit feedback as well. Most ecommerce Web sites have a Feedback button. There are two
standard ways to design what users will experience when they click on the Feedback button.

The first way is to launch the user’s email program with the email address of the company’s
contact automatically entered into the To: field. This method prevents typing errors and facili-
tates ease in contacting the organization. The user does not need to leave the site to communicate
with it. These messages, however, raise expectations that they will be answered just as regular
mail or phone calls are. Research indicates that 60 percent of organizations with this type of email
contact feature on their sites do not have anyone assigned to reply to the email messages received.
Thus, the business is losing valuable feedback, allowing customers to harbor the impression that
they are communicating, and engendering ill will when no response is received. If you design this
type of feedback opportunity, you also need to design procedures for the organization to reply to
email from the Web site. Some designers handle this problem by creating systems to automati-
cally return an email reply, which generates a unique case or incident number, provides further
instructions on how to proceed (hyperlinks to FAQ pages perhaps), or offers phone numbers to
help lines that are unavailable to the general public.

The second type of design for garnering feedback from customers using an ecommerce Web
site is to take users to a blank message template when they click on Feedback. Some Web cre-
ation tools permit you to create and insert a feedback form into your site easily. This form might
begin with a header that states “Company X Feedback” and then “You can use the form below to
send suggestions, comments, and questions about the X site to our Customer Service team.”

Fields can include First Name, Last Name, Email Address, Regarding (a subject field that
supplies a drop-down menu of the company’s product or service selections, asking the user to
“Please make a selection”), an “Enter Your Message Here:” section (a free-form space where
users can type in their message), and the standard Submit and Clear buttons at the bottom of the
form. Using this type of form permits the analyst to have the user data already formatted correctly
for storage in a database. Consequently, it makes the data entered into a feedback form easier to
analyze in the aggregate.

Thus, the analyst does more than just design a response to individual email. The analyst helps
the organization capture, store, process, and analyze valuable customer information in a manner
that makes it more likely that the company will be capable of spotting important trends in cus-
tomer response, rather than simply reacting to individual queries.

Easy Navigation for Ecommerce Web Sites
Many authors speak of what is known as “intuitive navigation” for ecommerce Web sites. Users
need to know how to navigate the site without having to learn a new interface and without hav-
ing to explore every inch of the Web site before they can find what they want. The standard for
this type of navigational approach is called one-click navigation.

There are four ways to design easy, one-click navigation for an ecommerce site: (1) creating
a rollover menu, (2) building a collection of hierarchical links so that the home page becomes an
outline of the key topic headings associated with the Web site, (3) placing a site map on the home
page and emphasizing the link to it (this would also be placed on every other page on the site),
and (4) placing a navigational bar on every inside page (usually at the top or on the left side of
the page) that repeats the categories used on the entry screen.

466 PART IV • THE ESSENTIALS OF DESIGN

ROLLOVER MENUS. A rollover menu (or rollover button) can be created with cascading styles
with JavaScript and HTML divisions. The rollover menu appears when the customer using the
Web site moves the cursor over a link.

HIERARCHICAL LINKS. Creating an outline of the content of the site through the presentation of a
table of contents on the home page is another way to speed navigation of the site. This design,
however, imposes severe constraints on the designer’s creativity, and sometimes simply
presenting a list of topics does not adequately convey the strategic mission of the organization to
the user.

SITE MAP. Designing and then prominently displaying the link to a site map is a third way to
improve navigational efficiency. Remember to include the link to the site map on the home page
and on every other page as well.

C O N S U L T I N G O P P O R T U N I T Y 1 4 . 6

When You Run a Marathon,
It Helps to Know Where You’re Going

M arathon Vitamin Shops was successful in getting its Web site
up and running. The Web developers put the company’s entire cat-
alog online and included a choice of skins (or personas as they are
called in the Firefox browser) so that each type of customer would
enjoy using the Web site. (See Consulting Opportunities 1.1 and
12.3 for more details.)

The analysts are meeting with owner Bill Berry and some em-
ployees to evaluate customer feedback as well as give their own re-
actions to the new Web site. They are meeting in a large conference
room, where they have a computer with Internet access and a pro-
jector. As they sit down at the table, the entry screen for the Web site
is projected at the front of the room. “The Web site has attracted lots
of attention, but we want to give the customers even more so that
they keep coming back,” says Bill, gesturing to the screen.

He continues, “It’s not like we’re closing our retail stores or
anything. In fact, it’s just the opposite. When customers notice
we’re on the Web, they’re eager to locate the store in their commu-
nity. They want to be able to walk into a store and talk to a trained
expert rather than buying everything over the Internet. We need to
tell people how to get there.”

“We think we can improve the site by adding special enhance-
ments and features,” says Al Falfa, a member of the systems team
who originally developed and implemented the ecommerce Web site.

“Yes,” says Ginger Rute, one of the other members of the sys-
tems development team, as she nods in agreement. “The university
uses a mapping facility from MapQuest, and Home Depot uses
maps from Microsoft.”

Vita Ming, another member of the original systems develop-
ment team, speaks up enthusiastically, saying, “We know of a cou-
ple good message board services and chat rooms we can build into
our Web site. We think they can improve the stickiness of the site,
making people stay on the site longer and also making them want
to return.”

“That’s a great idea,” says Jin Singh, one of the technologi-
cally savvy Marathon employees. “We can let customers talk with

one another, tell each other about a product they liked, and so on.
We could even let them start their own blogs.”

Vita continues by moving to the computer keyboard and say-
ing, “Let me show you some good sites.” As she types in the first
URL, the group sees the site projected. “They use chat systems from
ichat and Multicity.com,” she continues.

“Customers also need to search for more information about a
product or manufacturer,” Al adds. “Let’s make it easier for them.
Let’s look at www.cincinnati.com for an example. They use Google
to search for information.”

After listening intently, Bill speaks up. “Medical information
could also be useful” he says. “I’ve noticed that www.medpool.com
has medical news from acquiremedia. I’ve seen people on the tread-
mills at my health and fitness center watching the financial chan-
nels while they exercise.”

“While we’re at it, why don’t we add news and financial infor-
mation to the Web site?” Ginger asks. “I notice that a company
called Moreover.com appears often as a provider.”

Think about the conversation between the systems develop-
ment team and the people from Marathon Vitamin shops. Some of
the enhancement suggestions involved taking advantage of free
services; others required payments ranging from $1,000 to $5,000
annually. Although some were good ideas, others may not be prac-
tical or feasible. Perhaps some of the ideas just do not make sense
for the company.

For each of the following, review what you know about the
mission and business activities of Marathon Vitamin Shops. Then
make a recommendation regarding each option the analysts and
clients have made and defend it:

� Mashups using Google Maps.
� Chat rooms and message boards.
� Blogs.
� Search engines.
� Medical information.
� News feeds and financial markets information.

www.cincinnati.com
www.medpool.com

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 467

NAVIGATION BAR. Finally, you can design navigation bars that are consistently displayed on the
home page as well as at the top and on the left of all other pages that comprise the site. Once you
have established (during the information requirements phase) the most useful and most used
categories (usually categories such as “Our Company,” “Our Products,” “Buy Now,” “Contact
Us,” “Site Map,” and “Search”), remember to include them on all pages.

OTHER NAVIGATION OPTIONS. Including a search function is another option. Include adding a
search engine such as Google to your site. Simple search functions work well for small,
manageable sites, but as a site grows large, advanced search functions that include Boolean logic
(discussed later in this chapter) are needed.

Creating flexibility in the way users navigate the Web is also important. An expert Web site
designer would try to incorporate many different ways to look up information on a particular sub-
ject. Figure 14.18 shows a Web page from DinoTech. For example, a user interested in an inter-
national IT career can find out information from the DinoTech Web site in three different ways.

M A C A P P E A L

Megasearch engines that obtain results from multiple search engines, aggregate the results, and dis-
play them in a more useful way than any single search engine can have been available for a long time.
There is a unique application on the Mac platform that goes one step further.

That application is DEVONagent, software that uses both general and specialized search engines
to get results, then gives the user the option to view the results in a graphical topic map. Another op-
tion is to view the results in a relevance-ranked list.

Analysts will find DEVONagent to be useful if they understand and make use of the graphical
topic map. It is also useful if complex searches are required (i.e., if standard searches do not dig
deep enough to find the exact information needed). It is also useful for searches that need to be
repeated often.

FIGURE 14.MAC
DEVONagent from DEVONtechnologies.

468 PART IV • THE ESSENTIALS OF DESIGN

If they are interested in working in Argentina, they can click on the Argentine flag, click on the
name of the country, or click on the map representing Argentina.

Designing a Web site with navigation for users with different cognitive processing or inter-
ests is desirable. It is even possible that the same user may use all three of these methods at dif-
ferent times. All of these add to the usability of a Web site.

The main priority in navigation is, however, that, whatever you do, you must make it ex-
tremely easy for users to return to a previous page and make it somewhat easy to return to the
place where they entered the client’s site. Your main concern is keeping customers on the Web
site. The longer customers are on the site, the greater the chance is that they will purchase some-
thing. So make sure that, if users navigate to a link in your client’s Web site, they can easily find
their way back. Doing these things will ensure the stickiness of the Web site. Do not create any
barriers to the customer who wants to return to the client’s Web site.

MASHUPS
An application programming interface (API) is a set of small programs and protocols used like
building blocks for building software applications. When two or more APIs are used together they
form a mashup. Many mashups are open source, so developers can use an API from a site like
Google Maps and combine it with an API that contains other data, resulting in a new Web site that
creates an entirely new application.

Bogozo Real Estate, for example, combines CraigsList real estate data with Google Maps.
This new application allows a user to see properties displayed on a map, view the location of
neighborhood schools, and in the specific case of New York City, see an overlay of a New York
City subway map to help buyers find a place convenient to the subway system.

A large corporation that has many retail outlets in a region may want to make it easier for
customers to find their retail stores. They may want to hire a company like Blipstar, which pro-
vides a service that allows companies to upload information about retail stores. Blipstar geocodes
them and places them on a Google map. The company then puts a link to this information on its
own Web site, so customers can simply enter their zip or postal code and let the mashup display
the location of the nearest retail store.

Mashups are becoming a new way to present information. Expect to see many useful mashup
applications soon. Look for them at www.programmableweb.com.

DESIGNING QUERIES
When users ask questions of or communicate with the database, they are said to query it. Six dif-
ferent types of queries are among the most common. Your careful attention to query design can

FIGURE 14.18
An example of a Web page that
allows users to navigate to the
desired page in different ways.

www.programmableweb.com

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 469

help reduce users’ time spent in querying the database, help them find the data they want, and re-
sult in a smoother user experience overall.

Query Types
The questions we pose concerning data from our database are referred to as queries. There are six
basic query types. Each query involves three items: an entity, an attribute, and a value. In each
case, two of these are given, and the intent of the query is to find the remaining item. Figure 14.19
will be used to illustrate all the query examples.

QUERY TYPE 1. The entity and one of the entity’s attributes are given. The purpose of the query
is to find the value. The query can be expressed as follows:

What is the value of a specified attribute for a particular entity?

Sometimes it is more convenient to use notation to formulate the query. This query can be written as

Vd (E, A)

where V stands for the value, E for entity, and A for attribute, and the variables in parentheses are
given.

The question

What did employee number 73712 make in year 2009?

can be stated more specifically as

What is the value of the attribute YEAR-2009 for the entity EMPLOYEE NUMBER 73712?

The record containing employee number 73712 will be found, and the answer to the query will
be $47,100.

QUERY TYPE 2. The intent of the second query type is to find an entity or entities when an attribute
and value are given. Query type 2 can be stated as follows:

What entity has a specified value for a particular attribute?

Because values can also be numeric, it is possible to search for a value equal to, greater than, less
than, not equal to, greater than or equal to, and so on. An example of this type of query is as follows:

What employee(s) earned more than $50,000 in 2009?

The notation for query type 2 is

Ed (V, A)

EMPLOYEE NAME DEPARTMENT S/H YEAR-2006 YEAR-2007 YEAR-2008 YEAR-2009
EMPLOYEE
NUMBER

EARNINGS-HISTORY

72845 Waters Outside Sales S 48,960 51,400 49,050 52,900
72888 Dryne Outside Sales S 42,200 44,700 48,020 50,580
73712 Fawcett Distribution H 43,500 45,500 46,780 47,100
80345 Well, Jr. Marketing S 65,000 71,000 75,000 78,000
84672 Piper Maintenance H 40,560 42,340 43,520 44,910
89760 Acquia Accounting H 38,755 40,040 41,380 42,540

The years
are the
attributes,

The salaries

are the values.

The employee

numbers are

the entities.

FIGURE 14.19
It is possible to perform six basic
types of queries on a table that
contains entities, attributes, and
values.

470 PART IV • THE ESSENTIALS OF DESIGN

In this case, three employees made more than $50,000, so the response will be a listing of the em-
ployee numbers for the three employees: 72845, 72888, and 80345.

QUERY TYPE 3. The purpose of this query type is to determine which attributes fit the description
provided when the entity and value are given. Query type 3 can be stated as follows:

What attribute(s) has a specified value for a particular entity?

This query is useful when many similar attributes have the same property. The following exam-
ple has similar attributes (specific years) that contain the annual salaries for the employees of the
company:

What years did employee number 72845 make over $50,000?

or, more precisely,

What attributes {YEAR-2006, YEAR-2007, YEAR-2008, YEAR-2009} have a value [gt]
50,000 for the entity EMPLOYEE-NUMBER � 72845?

where the optional list in braces ({ }) is the set of eligible attributes.
The notation for query type 3 is

Ad (V, E)

In this example, Waters (employee number 72845) made over $50,000 for two years. Therefore,
the response will be year 2007 and year 2009. Query type 3 is rarer than the preceding two types
due to the requirement of having similar attributes exhibiting the same properties.

QUERY TYPE 4. Query type 4 is similar to query type 1. The difference is that the values of all
attributes are desired. Query 4 can be expressed as follows:

List all the values for all the attributes for a particular entity.

An example of query type 4 is:

List all the details in the earnings history file for employee number 72888.

The notation for query type 4 is

all Vd (E, all A)

The response for this query will be the entire record for the employee named Dryne (employee
number 72888).

QUERY TYPE 5. The fifth type of query is another global query, but it is similar in form to query
type 2. Query type 5 can be stated as follows:

List all entities that have a specified value for all attributes.

An example of query type 5 is:

List all the employees whose earnings exceeded $50,000 in any of the years available.

The notation for query type 5 is

all Ed (V, all A)

The response to this query will be 72845, 72888, and 80345.

QUERY TYPE 6. The sixth query type is similar to query type 3. The difference is that query type
6 requests a listing of the attributes for all entities rather than a particular entity. Query type 6 can
be stated as follows:

List all the attributes that have a specified value for all entities.

The following is an example of query type 6:

List all the years for which earnings exceeded $40,000 for all employees in the company.

The notation for query type 6 is

all Ad (V, all E)

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 471

The response will be YEAR-2007, YEAR-2008, and YEAR-2009. As with query type 3,
query type 6 is not used as much as other types.

BUILDING MORE COMPLEX QUERIES. The preceding six query types are only building blocks for
more complex queries. Expressions, referred to as Boolean expressions, can be formed for
queries. An example of a Boolean expression is:

List all the customers who have zip codes greater than or equal to 60001 and less than
70000, and who have ordered more than $500 from our catalogs or have ordered at least
five times in the past year.

One difficulty with this statement is determining which operator (for example, AND) belongs
with which condition; it is also difficult to determine the sequence in which the parts of the ex-
pression should be carried out. The following may help to clarify this problem:

LIST ALL CUSTOMERS HAVING (ZIP-CODE GE 60001 AND ZIP-CODE LT 70000)
AND (AMOUNT-ORDERED GT 500 OR TIMES-ORDERED GE 5)

Now some of the confusion is eliminated. The first improvement is that the operators are ex-
pressed more clearly as GE, GT, and LT than as English phrases, such as “at least.” Second, the
attributes are given distinct names, such as AMOUNT-ORDERED and TIMES-ORDERED. In
the earlier sentence, these attributes were both referred to as “have ordered.” Finally, parentheses
are used to indicate the order in which the logic is to be performed. Whatever is in parentheses is
done first.

Operations are generally performed in a predetermined order of precedence. Arithmetic op-
erations are usually performed first (exponentiation, then either multiplication or division, and
then addition or subtraction). Next, comparative operations are performed. These operations are
GT (greater than), LT (less than), and others. Finally, the Boolean operations are performed (first
AND and then OR). Within the same level, the order generally goes from left to right. The prece-
dence is summarized in Figure 14.20.

Query Methods
Two popular query methods are query by example and structured query language.

QUERY BY EXAMPLE. Query by example (QBE) is a simple but powerful method for
implementing queries in database systems, such as Microsoft Access. The database fields are
selected and displayed in a grid, and the requested query values are either entered in the field area
or below the field. The query should be able to select both rows from the table that match
conditions as well as specific columns (fields). Complex conditions may be set to select records,
and the user may easily specify the columns to be sorted. Figure 14.21 is an example of a query
using Microsoft Access. The query design screen is divided into two portions. The top portion
contains the tables selected for the query and their relationships, and the bottom portion contains
the query selection grid. Fields from the database tables are dragged to the grid.

The first two rows contain the field and the table in which the field is located. The next row
contains sorting information. In this example, the results will be sorted by CUSTOMER NAME.
A check mark in the Show box (fourth row down) indicates that the field is to be displayed in the

Type

Arithmetic Operators 1 * *
 2 * /
 3 + –

Comparative Operators 4 GT LT
 EQ NE
 GE LE

Boolean Operators 5 AND
 6 OR

Level Symbol FIGURE 14.20
Arithmetic, comparative, and
Boolean operators are processed in
a hierarchical order of precedence
unless parentheses are used.

472 PART IV • THE ESSENTIALS OF DESIGN

results. Notice that the CUSTOMER NUMBER, CUSTOMER NAME, and STATUS CODE
MEANING are selected for the resulting display (other fields are displayed as well, but they do
not show in the display). Notice that the ACCOUNT STATUS CODE and ACCOUNT TYPE
CODE are not checked and therefore will not be in the final results. In the criteria rows, there is
a 1 in the ACCOUNT STATUS CODE (indicating an active record) and a C and D (selecting a
General Customer or a Discount Customer) in the ACCOUNT TYPE CODE columns. Two con-
ditions in the same row indicate an AND condition, and two conditions in different rows repre-

C O N S U L T I N G O P P O R T U N I T Y 1 4 . 7

Hey, Look Me Over (Reprise)

You have been called back to take another look at Merman’s Cos-
tume Rentals. Here is part of the database created for Annie Oaklea
of Merman’s (with whom you last worked in Consulting Opportu-
nities 7.1 and 8.1). The database contains information, such as the
cost of the rental, the date checked out, the date due back, and the
number of days the costume has been rented since the beginning of
the year (YTD DAYS OUT) (see Figure 14.C1).

Analyzing Annie’s typical day in the costume rental business,
you realize there are several requests she must make of the database
so that she can make decisions on when to replace frequently used
costumes or even when to buy more costumes of a particular type.

She also needs to remember to keep in the good graces of customers
she has previously turned down for a particular costume rental, to
know when to recall an overdue costume, and so on.

Formulate several queries that will help her get the informa-
tion she needs from the database. (Hint: Make any assumptions
necessary about the types of information she needs to make deci-
sions and use as many of the different query types discussed in this
chapter as you can.) In a paragraph, describe how Annie’s queries
would be different if she were working with a Web-based or hyper-
linked system.

REQUESTS
TURNED
DOWN

TYPE OF
COSTUME

YTD
DAYS
OUT

DUE
DATE

COST
OF

COSTUME
NUMBER

SUIT
NUMBER

COSTUME-RENTAL

0003 Lady MacBeth F, SM 01 Blue 15.00 10/15 11/30 150 Standard 2
1342 Bear F, MED 01 Dk. Brown 12.50 10/24 11/09 26 Standard 0
1344 Bear F, MED 02 Dk. Brown 12.50 10/24 11/09 115 Standard 0
1347 Bear F, LG 01 Black 12.50 10/24 11/09 22 Standard 0
1348 Bear F, LG 02 Black 12.50 11/01 11/08 10 Standard 0
1400 Goldilocks F, MED 01 Light Blue 7.00 10/24 11/09 140 Standard 0
1402 Goldilocks F, MED 02 Light Blue 7.00 10/28 11/09 10 Standard 0
1852 Hamlet M, MED 01 Dark Green 15.00 11/02 11/23 115 Standard 3
1853 Ophelia F, SM 01 Light Blue 15.00 11/02 11/23 22 Standard 0
4715 Prince M, LG 01 White/purple 10.00 11/04 11/21 145 Standard 5
4730 Frog M, SM 01 Green 7.00 11/04 11/21 175 Standard 2
7822 Jester M, MED 01 Multi 7.50 11/10 12/08 12 Standard 0
7824 Jester M, MED 02 Multi 7.50 11/09 11/15 10 Standard 0
7823 Executioner M, LG 01 Black 7.00 11/19 12/05 21 Standard 0
8645 Mr. Spock N, LG 01 Orange 18.00 09/07 09/12 150 Trendy 4
9000 Pantomime F, LG 01 Red 7.00 08/25 09/15 56 Standard 0
9001 Pantomime M, MED 01 Blue 7.00 08/25 09/15 72 Standard 0
9121 Juggler M, MED 01 Multi 7.00 11/05 11/19 14 Standard

Standard
0

9156 Napoleon M, SM 01 Blue/white 15.00 10/26 11/23 56 1

COLOR

DATE
CHECKED
OUTDESCRIPTION

FIGURE 14.C1
A portion of the database from Merman’s Costume Rental shop.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 473

sent an OR condition. This query specifies that the user should select both an Active Customer
and either a General or Discount Customer.

The results of a query are displayed in a table, illustrated in Figure 14.22. Notice that the AC-
COUNT STATUS CODE and ACCOUNT TYPE CODE do not display. They are not checked and
are included in the query for selection purposes only. Instead, the code meanings are displayed,
which are more useful to the user. The customer names are sequenced alphabetically.

STRUCTURED QUERY LANGUAGE. Structured query language (SQL) is another popular way to
implement queries. It uses a series of words and commands to select the rows and columns that
should be displayed in the resulting table. Figure 14.23 contains SQL code. The SELECT
DISTINCTROW keyword determines which rows are to be selected. The WHERE keyword
specifies the condition that the CUSTOMER NAME should be used to select the data entered in
the LIKE parameter.

FIGURE 14.21
Query by example using Microsoft
Access.

FIGURE 14.22
A query by example for
CUSTOMER STATUS yields
these results.

474 PART IV • THE ESSENTIALS OF DESIGN

SELECT DISTINCTROW
Customer.[Customer Number],Customer.[Customer Name],Customer.City,
Customer.TelephoneFROM Customer

WHERE (((Customer.[Customer Name])Like ([Enter a partial Customer Name] & “*”)));

FIGURE 14.23
Structured Query Language (SQL)
for the CUSTOMER NAME
parameter query.

SUMMARY
We examined human–computer interaction (HCI), a variety of interfaces, designing the user interface, de-
signing user feedback, and designing ecommerce Web site feedback and navigation. We focused on under-
standing HCI to ensure the functionality and usability of computer systems we design. When analysts create
a proper fit among the HCI elements of the human, the computer, and the task, it leads to improved perfor-
mance and overall psychological and physical well-being of the individual.

Designs focus on developing a proper fit. Analysts can use the TAM (Technology Acceptance Model)
to organize their thinking about whether users will accept technology and eventually use it, by examining
perceived usefulness and perceived ease of use from the users’ perspective.

Usability identifies what works for users and what does not. Physical considerations of HCI design in-
clude vision, hearing, and touch. Physical disabilities and limitations should be taken into consideration dur-
ing task and interface design. A variety of user interfaces and input devices are possible. Some interfaces are
particularly well suited to inexperienced users, whereas others are better suited to experienced users. Com-
bine interfaces such as drop-down menus and graphical interfaces for increased effectiveness. The Web has
posed new challenges for designers, because the user is not known.

Users’ need for feedback from the system is also an important consideration. Feedback is most often
visual, with text, graphics, or icons the most common. Audio feedback can also be effective.

Improve functionality of Web sites by eliciting customer feedback through automatic email feedback
buttons or by including blank feedback forms on the Web site. Four important navigation design strategies
improve the stickiness of ecommerce Web sites: (1) rollover menus, (2) hierarchical displays of links on the
entry screen, (3) site maps, and (4) navigation bars that provide one-click navigation.

Queries are designed to allow users to extract meaningful data from the database. There are six basic
types of queries, and they can be combined using Boolean logic to form more complex queries. Query by
example and SQL are two common ways to query database systems.

KEYWORDS AND PHRASES
application programming interface (API)
Boolean operators
cognitive considerations of HCI
command-language interface
continuous speech system
dialog box
disabilities and design
feedback
feedback for users
fit
form-fill (input/output form) interfaces
graphical user interface (GUI)
intuitive navigation
mashup
menu
natural-language interface
navigation bar
nested menus
one-click navigation
performance

physical considerations of HCI
psychological considerations of HCI
pull-down menu
query
query by example
question-and-answer interface
rollover menu
site map
speech recognition and synthesis
stickiness
structured query language (SQL)
stylus
task
technology acceptance model (TAM)
template
touch screen
touch-sensitive screen
usability
Web-based form-fill interface
wizard

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 475

H Y P E R C A S E ® E X P E R I E N C E 1 4

“ I have no problem with using a mouse or any other rodent you
throw my way. Really, though, whatever Snowden needs is what I
try to do. Everyone is different, however. I’ve seen people here go
out of their way to avoid using a computer altogether. Other people
would prefer not to talk with a human. In fact, they would be as
happy as a puppy chewing on a new bedroom slipper if they could
use command language to interact. Most of the folks we have here
are open to new things. Otherwise, they wouldn’t be here at MRE.
We do pride ourselves on our creativity. I have you signed up for
a meeting with people from the training group, including Tom
Ketchem, Melissa Smith, and Kathy Blandford. I’ve included
Ashley Heatherford who is our usability expert consultant.
Melanie Corazón might be there since she wants to see if what
you’re doing could be applicable to ecommerce systems. Snowden
may sit in as well, if he has time. They’ll be very curious to see what
kind of interface you are suggesting for them on the new project re-
porting system.”

HYPERCASE Questions
1. Write a short proposal describing what type of user interface

would be appropriate for the users of the project reporting

system who are in the training group. Include reasons for
your decision.

2. Design a user interface using a CASE tool, such as Visible
Analyst, a software package such as Microsoft Access, or
paper layout forms for the training group. What are the key
features that address the needs of the people in the training
group?

3. Write a short proposal describing what type of user interface
would be appropriate for the users of the B2B ecommerce
systems Melanie Corazón described in her interview. Include
reasons for your decision.

4. Design a user interface using a CASE tool, such as Visible
Analyst, a software package such as Microsoft Access, or
paper layout forms for the users of the B2B ecommerce
systems Melanie Corazón described. What are the key
features that address the needs of the people who use B2B
ecommerce systems on the Web?

5. Make a bulleted list of any usability concerns Ashley might
have with the interfaces you designed.

FIGURE 14.HC1
In HyperCase, you can see how users process information in order to create a more
effective user interface.

476 PART IV • THE ESSENTIALS OF DESIGN

REVIEW QUESTIONS
1. Define HCI.
2. Explain how fit among the HCI elements of the human, the computer, and the tasks to be performed

leads to performance and well-being.
3. What are the components of the term performance in the HCI context?
4. What is meant by the word well-being when used in an HCI approach?
5. What are the two variables of the Technology Acceptance Model (TAM)?
6. List five of the eleven usability heuristics for judging the usability of computer systems and

ecommerce Web sites provided by Nielsen and others.
7. Describe some of the ways that a pivot table allows a user to arrange data.
8. List three physical considerations that HCI design addresses.
9. List three ways that analysts can improve task or interface design to help, respectively, a person who

is visually impaired, hearing impaired, or mobility impaired.
10. What are the five objectives for designing user interfaces?
11. Define natural-language interfaces. What is their major drawback?
12. Explain what is meant by question-and-answer interfaces. To what kind of users are they best suited?
13. Describe how users use onscreen menus.
14. What is a nested menu? What are its advantages?
15. Define onscreen input/output forms. What is their chief advantage?
16. What are the advantages of Web-based fill-in forms?
17. What are the drawbacks of Web-based form-fill interfaces?
18. Explain what command-language interfaces are. To what types of users are they best suited?
19. Define graphical user interfaces. What is the key difficulty they present for programmers?
20. For what type of user is a GUI particularly effective?
21. What are the three guidelines for designing good screen dialog?
22. What are the roles of icons, graphics, and color in providing feedback?
23. List eight ways for achieving the goal of minimal operator action when designing a user interface.
24. List five standards that can aid in evaluating user interfaces.
25. What are the seven situations that require feedback for users?
26. What is an acceptable way of telling the user that input was accepted?
27. When a user is informed that his or her input is not in the correct form, what additional feedback

should be given at the same time?
28. List three ways to notify a Web user that the input is not in the correct form.
29. Why is it unacceptable to notify the user that input is not correct solely through the use of audible

beeping or buzzing?
30. When a request is not completed, what feedback should be provided to the user?
31. Describe two types of Web site designs for eliciting feedback from customers.
32. List four practical ways that an analyst can improve the ease of user navigation and the stickiness of

an ecommerce Web site.
33. What are hypertext links? Where should they be used?
34. Describe what a mashup is.
35. List in shorthand notation the six basic query types.

PROBLEMS
1. Manu Narayan owns several first-class hotels worldwide, including properties in Manhattan, Mumbai, and

even some in suburbia. He wants to make sure that the human–computer interface is appropriate to each
culture but also wants to be able to share the software among all of his hotel reservation departments. Design a
nested menus interface for a check-in and checkout hotel reservation system that can be used internationally.
Use numbers to select a menu item. Show how each menu would look on a standard PC display.

2. Stefan Lano needs displays that will show the musical instrument inventory in his chain of music
stores that caters to musicians playing in world-class symphony orchestras in Basel, Switzerland;
Buenos Aires, Argentina; Philadelphia, USA; and New York. Design a form-fill interface for the
inventory control of musical instruments in all four stores that could be used on a PC display screen.
Assume that English will be the interface language.

3. Design a Web-based form-fill interface to accomplish the same task as in Problem 2.
a. What difficulties did you encounter? Discuss them in a paragraph.
b. Of the two designs you did, which would you say is better suited to Mr. Lano’s task? Why? List

three reasons for your choice. How would you test their usability?
4. A U.K.-based travel agent, Euan Morton, LLC, would like your systems team to design a command-

language interface he can use to book seats for airlines to which his firm has solid business ties, such
as British Air, RyanAir, and Virgin Atlantic.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 477

a. Show what the interface would look like on a standard display.
b. Make a list of commands needed to book an airline seat and write down what each command means.

5. An IT executive, Felicia Finley, from Jersey IT Innovators, Inc., has asked that you design a
graphical user interface for an executive desktop to help her in her work. Use icons for file cabinets,
a wastebasket, a telephone, and so on. Show how they would appear on the computer display.

6. Nick, a celebrity chef/restaurant owner from Williamsburg, New York, wants to be able to receive
clear feedback on the systems used to manage his many “show place” restaurants. Design a display
that provides appropriate feedback for a user whose command cannot be executed.

7. Design a screen for a payroll software package that displays information telling Nick from Problem 6
how to get more detailed feedback.

8. Design a Web-based display that shows an acceptable way to tell Nick that input to his system was accepted.
9. Design a feedback form for Nick’s restaurant customers using an ecommerce Web site.

10. Write six different queries for the file in Problem 1 in Chapter 13.
11. Write six different queries for the 3NF relation in Problem 5 in Chapter 13.
12. Design a search that will find potential competitors of a company such as World’s Trend on the Web.

Assume you are the customer.
13. Search for World’s Trend’s potential competitors on the Web. (You won’t find World’s Trend itself on

the Web. It is a fictional company.) Make a list of those you’ve found.

GROUP PROJECTS
1. With your group members, create a pull-down menu for an employment agency that matches

professional candidates to position openings. Include a list of keystrokes that would directly invoke
the menu options using the Alt-X format. The menu has the following options:

Add employee

Change employee

Delete employee

Employee inquiry

Position inquiry

Employer inquiry

Add employer

Change employer

Delete employer

Match employee to opening

Print open positions report

Print successful matches report

Add position

Change position

Delete position

2. In a paragraph, describe the problems your group faced in creating this menu.
3. The drag-and-drop feature is used in GUIs and allows the user to move sentences around in a word

processing package. As a group, suggest how drag and drop can be used to its fullest potential in the
following applications:
a. Project management software (Chapter 3).
b. Relational database program (Chapter 13).
c. Display or forms designer (Chapter 12).
d. Spreadsheet program.
e. CASE tool for drawing data flow diagrams (Chapter 7).
f. Fax program (Chapter 11).
g. Personal digital assistant (PDA) calendar (Chapter 3).
h. Illustration in a drawing package.
i. CASE tool for developing data dictionaries (Chapter 8).
j. Decision tree drawing program (Chapter 9).
k. Web site for collecting consumer opinions on new products (Chapter 11).
l. Organizing bookmarks for Web sites.

For each solution your group designs, draw the display and show movement by using an arrow.
4. Ask all the members of your group to request a search based on their leisure activities. If there are

four people in your group, there will be four unique searches to perform. Now go ahead and do all
the searches. Compare your results. Does the person who is involved with the activity have an
advantage over the people who know less about it? Explain.

5. Look at the following mashup Web sites and describe how each of them adds value by providing a service.
a. Aboutairportparking.com, www.aboutairportparking.com
b. Baebo, http://baebo.francisshanahan.com
c. Global Incident Map, www.globalincidentmap.com/home.php
d. Hawkee Technology Social Network, www.hawkee.com
e. Homethinking, www.homethinking.com
f. Shopping sites at mpire, www.mpire.com/buyer/search.page
g. Streeteasy, www.streeteasy.com

www.aboutairportparking.com
http://baebo.francisshanahan.com
www.globalincidentmap.com/home.php
www.hawkee.com
www.homethinking.com
www.mpire.com/buyer/search.page
www.streeteasy.com

478 PART IV • THE ESSENTIALS OF DESIGN

6. The following two mashups have political agendas. Suggest three other mashups that attempt to
change something by appealing to the public.

Health Care That Works, www.healthcarethatworks.org/maps/nyc

And also try onNYTurf, www.onnyturf.com

7. Try these mashups just for fun.
a. The Geography of Seinfeld, www.stolasgeospatial.com/seinfeld.htm
b. HBO: The Sopranos www.hbo.com/sopranos/map
c. PlotShot, www.plotshot.com
d. Flickr Sudoku, http://flickrsudoku.com
e. Liveplasma, www.liveplasma.com

SELECTED BIBLIOGRAPHY
Adam, A., and D. Kreps. “Web Accessibility: A Digital Divide for Disabled People?” In Societal and Orga-

nizational Implications for Information Systems, IFIP International Federation for Information Process-
ing, Vol. 208. Edited by E. Trauth, D. Howcraft, T. Butler, B. Fitzgerald, and J. DeGross, pp. 217–228.
Boston: Springer, 2006.

Barki, H., and J. Hartwick. “Measuring User Participation, User Involvement, and User Attitude.” MIS
Quarterly, Vol. 18, No. 1, 1994, pp. 59–82.

Berstel, J., S. C. Reghizzi, G. Roussel, and P. San Pietro. “A Scalable Formal Method for Design and Auto-
matic Checking of User Interfaces.” ACM Transactions on Software Engineering and Methodology,
Vol. 14, No. 2, April 2005, pp. 124–167.

Carey, J., D. Galletta, J. Kim, D. Te’eni, B. Wildemuth, and P. Zhang. “The Role of Human–Computer In-
teraction in Management Information Systems Curricula: A Call to Action.” Communications of the As-
sociation for Information Systems, Vol. 13, 2004, pp. 357–379.

Davis, F. “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology.”
MIS Quarterly, Vol. 13, No. 3, 1989, pp. 319–340.

Davis, G. B., and M. H. Olson. Management Information Systems: Conceptual Foundations, Structure, and
Development. New York: McGraw-Hill, 1985.

Galleta, D., and P. Zhang (Eds.). Human-Computer Interaction and Management Information Systems:
Applications. Armonk, NY: M.E. Sharpe, 2006.

Greene, K. “A Better, Cheaper Multitouch Interface.” Technology Review, March 2009.
www.technologyreview.com/computing/22358/?a=f. Last accessed April 19, 2009.

Hornbaek, K., and E. Frokjaer. “Comparing Usability Problems and Redesign Proposals as Input to Practi-
cal Systems Development.” CHI 2005, April 2–7, 2005, pp. 391–400.

Mantei, M. M., and T. J. Teorey. “Incorporating Behavioral Techniques in the System Development Lifecy-
cle.” MIS Quarterly, Vol. 13, No. 3, September 1989, pp. 257–267.

Nielsen, J., and R. L. Mack. Usability Inspection Methods. New York: John Wiley, 1994.
Nielsen, J., R. Molich, C. Snyder, and S. Farrell. E-Commerce User Experience. Fremont, CA: Norman

Nielsen Group, 2001.
Rubin, J. Handbook of Usability Testing. New York: John Wiley, 1994.
Schneiderman, B., and C. Plaisant. Designing the User Interface: Strategies for Effective Human–Computer

Interaction. New York: Addison-Wesley, 2005.
Te’eni, D., J. Carey, and P. Zhang. Human Computer Interaction: Developing Effective Organizational Sys-

tems. New York: John Wiley, 2007.
U.S. Department of Health and Human Services. “Usability Guide” (for developing Web sites). Available at

www.usability.gov. Last accessed April 19, 2009.
U.S. Equal Employment Opportunity Commission Web site listing employer obligations under the Ameri-

cans with Disabilities Act. Available at www.eeoc.gov/types/ada.html. Last accessed April 19, 2009.
UsabilityNet. “Overview of the User Centered Design Process.” Available at: www.usabilitynet.org/

management/b_overview.htm. Last accessed April 19, 2009.
Venkatesh, V., M. G. Morris, G. B. Davis, and F. D. Davis. “User Acceptance of Information Technology:

Toward a Unified View.” MIS Quarterly, Vol. 27, No. 3, 2003, pp. 425–478.
Zhang, P., J. Carey, D. Te’eni, and M. Tremaine. “Integrating Human–Computer Interaction Development

into the Systems Development Life Cycle: A Methodology.” Communications of the Association for
Information Systems, Vol. 15, 2005, pp. 512–543.

Zhang, P. and D. Galleta (Eds.). Human-Computer Interaction and Management Information Systems:
Foundations. Armonk, NY: M.E. Sharpe, 2006.

www.healthcarethatworks.org/maps/nyc
www.onnyturf.com
www.stolasgeospatial.com/seinfeld.htm
www.hbo.com/sopranos/map
www.plotshot.com
http://flickrsudoku.com
www.liveplasma.com
www.technologyreview.com/computing/22358/?a=f
www.usability.gov
www.eeoc.gov/types/ada.html
www.usabilitynet.org/management/b_overview.htm
www.usabilitynet.org/management/b_overview.htm

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 479

E P I S O D E 14
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Up to the Users
“Let’s take our prototypes and some new displays, reports, and forms to create the final user interface,” Anna
says to Chip.

“It’s about time, isn’t it?” replies Chip. He was all too aware of the importance of designing a good
interface. “I would like to keep all of the factors of the human-computer interface in mind. I think that when
we are finished, we should have the users complete a usability survey.”

“Agreed!” exclaims Anna. “Let’s outline and define our guidelines.”
After talking, they set up the following display dialog guidelines:

1. Well-designed displays should:
Communicate actions and intentions clearly to users.
Show options available to operators, either using text or icons. Examples are:

MAKE CORRECTIONS OR PRESS ESC TO CANCEL
ENTER HARDWARE INVENTORY NUMBER
PRESS ENTER KEY
PRESS ENTER TO CONFIRM DELETE, ESC TO CANCEL
Buttons that say OK or Cancel

Standardize use of any abbreviations.
Avoid the use of codes, substituting the code meaning.
Provide help screens for complicated portions of the dialog.
Provide tool-tip help for toolbar icons.

2. Feedback should be provided to the users. Feedback includes:
Titles to show the current page.
Actions successfully completed messages, such as:

RECORD HAS BEEN ADDED
RECORD HAS BEEN CHANGED

Error messages. Examples are:
INVALID DATE
YOU MUST INCLUDE A NUMBER
SOFTWARE IS NOT ON FILE

An invalid data dialog box, with an OK button on a graphical user interface display.
Processing delay messages similar to:

PLEASE WAIT—REPORT IS BEING PRODUCED
An hourglass turning upside down on a graphical user interface.

3. There should be consistency in the design, including:
Location of the brief help in the status line area. Web pages should include instructions and a clearly

indicated help option.
Date and time in heading areas.
Consistent exit of all displays, such as through the use of the same action or back button on Web pages.
Standard use of icons or buttons, to display a next or previous page in a multiple-page display.
Consistent method of canceling an operation, such as through the use of the Escape key.

Standardized use of color and high-intensity display, such as all error messages appearing in red.
Standardized use of icons and images on Web pages and displays.
Standardized pull-down menus for Web pages and on other displays.

4. Minimum operator actions should be required to use the system. Some examples are:
When changing or deleting records, only the record key need be specified. The system would obtain

the record and display pertinent information.
When names are required as key entries, only the first few letters of the name need be entered. The

program would use partial matching or Ajax for Web pages to find all matching record key names
and present them for selection by the operator.

All numeric entries may omit leading zeros and commas.
As each data field is completed, the cursor should advance to the next entry field. The user should be

able to tab into fields in the correct sequence.

480 PART IV • THE ESSENTIALS OF DESIGN

After each option is completed, the same display, with blank entry areas, should be redisplayed until
the Exit icon is clicked.

When an option is exited, the previous menu should be displayed.
Drop-down lists should be used whenever possible on Web and GUI displays.
Check boxes and radio buttons should be used to make selections whenever possible.
Default buttons should be outlined so that the user can press the Enter key to select them.

5. Data entering the system should be validated. Guidelines are:
Specific fields should be verified according to edit criteria.
As errors are detected, operators should be given a chance either to correct the error or to cancel the

transaction.
When no errors have been detected in a transaction, the entry should be presented to the operator for

visual confirmation. The operator should have the opportunity either to accept it or to make
corrections to the data entered.

Upon examining the many displays and reports (over 30 in all in Access as well as numerous Web
pages), Chip and Anna decide to split the menu into several functions. “How do we divide these various
functions into a set of menus?” asked Chip.

“Why don’t we use a decomposition diagram to organize the functions into a hierarchy?” replied Anna.
Chip and Anna begin working on the diagram. The menu interactions will be represented in a hierarchical
structure, with options shown as rectangles and the overall menu represented by the rectangle on the top.
Each secondary menu will be shown beneath the primary menu, with screen programs at the lowest level.
The main menu will have six main choices, as illustrated in Figure E14.1: (1) Update Software, (2) Update
Hardware, (3) Inquiry, (4) Modify Codes, (5) Training, and (6) Report. Each of these options is further
subdivided into smaller menus or individual functions. The Inquiry Menu is subdivided into two smaller
menus, Software Options and Hardware Options, as well as an option for running the Software Expert
Inquiry.

The rectangles on the functional decomposition diagram are implemented using a series of pull-down
menu lists, which are shown in Figure E14.2. Notice that the Inquiry menu has functions corresponding to

Computer
System Main

Menu

Inquiry Menu
Modify
Codes
Menu

Training Menu Report Menu
Update

Hardware
Menu

Update
Software

Menu

Software
Options

Software
Expert
Inquiry

Hardware
Options

Hardware
Details
Inquiry

Hardware
Characteristics

Inquiry

FIGURE E14.1
Screen hierarchy for the computer
system.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 481

the rectangles on the previous figure. A row of buttons for common functions is included below the menus.
The menu functions are included as a set of buttons in the main area of the screen, and these buttons may be
clicked to run corresponding programs. It was decided that the Add Computer, Add Software Package,
and Change Computer programs would be run directly from the main menu. Clicking the other buttons
causes selection dialog boxes to display, with choices for selecting programs.

“We are also including drop-down menus for the Web pages,” comments Anna. “These use a z-index
to place them in front of the Web page. They drop down when the mouse hovers them, and they disappear
when the mouse moves off of them.”

“Sometimes that can be annoying,” remarks Chip. “The Web page is constantly flashing menus when
the mouse is moved over the page.”

“We can put a delay so that the drop-down happens when the mouse hovers for more than a brief sec-
ond,” says Anna thoughtfully.

“These menus should be consistent for the set of Web pages and forms,” muses Chip. “We can use the
same code and styles on a number of Web pages.”

After some thoughtful deliberation, the design of the Web menus is complete. Figure E14.3 illustrates
the final menu.

FIGURE E14.2
The main menu for the computer
system.

FIGURE E14.3
CPU Web menu showing drop-
down options displaying in front
of the main Web page.

482 PART IV • THE ESSENTIALS OF DESIGN

“Here’s what I think the guidelines for the update programs should be,” Anna tells Chip. “The key
focus is on accuracy, with comprehensive editing for each data field. Add programs will display an entry
page and allow either hardware or software records to be created. After all entries are complete, a user
should double-check the data and click the Add Software Record button. Any data that are already in the
system should be implemented using drop-down lists. There are also buttons to undo changes, move to dif-
ferent records, print the record, save the changes, and exit the page. A record could be added only if the pri-
mary key for the record does not already exist.

“Delete displays must have a simple, primary key entry, such as the COURSE DESCRIPTION in the
DELETE SOFTWARE COURSE display,” Anna continues. “The DELETE SOFTWARE COURSE display
uses a Find button (the binoculars) to help locate the desired record. The corresponding record is read and
the information is displayed. Users click the Delete button and are prompted to confirm the delete. If the user
clicks the Escape key or Cancel, the delete action is canceled. How does all that sound?” she asks Chip.

“So far, so good,” he replies. “Anything about onscreen change displays?”
“Yes. They have a primary key for the record entered and the matching record read. Record informa-

tion is to be displayed that allows the operator to overtype the data with changes. All changes are to be val-
idated with full editing. When all change fields are valid, the user must click a button to save the changes.
Is that clear enough for the user?” Anna asks.

“I think it’s very good,” Chip acknowledges. “I think we’ve got a good start on designing our user
interfaces.”

EXERCISES
E-1. Use Microsoft Access to view the menu options for the computer system.

E-2. Examine the HARDWARE INQUIRY. Explain the inquiry type using the value, entity, and attribute
(V, E, A) notation.

E-3. In a paragraph, explain why a data entry display should emphasize accuracy, whereas an inquiry dis-
play emphasizes how fast results may be displayed.

E-4. Modify and print the hierarchy chart representing the Update Hardware menu. The file name in Mi-
crosoft Visio is Update Hardware. Add rectangles to represent the following menu options:

CHANGE COMPUTER
DELETE COMPUTER RECORD
UPDATE INSTALLED COMPUTER

E-5. Use the Program Structure diagram of Microsoft Visio or the Functional Decomposition diagram in
Visible Analyst to draw a hierarchy chart representing the options found on the Update Software
menu. Start with the top rectangle representing the Update Software menu.

ADD SOFTWARE PACKAGE
CHANGE SOFTWARE RECORD
DELETE SOFTWARE RECORD
UPGRADE SOFTWARE PACKAGE

E-6. Chip and Anna realize that the menu that has been designed is for the users involved in the installa-
tion and maintenance of computer hardware and software. This menu would not be suitable for gen-
eral faculty and staff members, because they should not have the ability to update the records. Design
a menu, either on paper or using software with which you are familiar, that would provide the gen-
eral user with the ability to perform inquiries and reports.

E-7. Discuss in a paragraph why the users would need to move to another page (by pressing the Next
Record button) to display the correct record for the SOFTWARE LOCATION inquiry.

E-8. Design the SOFTWARE DETAILS inquiry display. The entry field is SOFTWARE INVENTORY
NUMBER, and all software information, with the exception of EXPERT and MACHINES IN-
STALLED ON, should be displayed. Refer to the Visible Analyst SOFTWARE DETAILS data flow
repository entry or the repository Web page.

E-9. When scheduling classrooms for student use, Cher Ware needs to know all the software packages in
a given room. She would like to enter the CAMPUS LOCATION and the ROOM on an inquiry dis-
play. The fields would be TITLE, VERSION, SITE LICENSE, and NUMBER OF COPIES.

Design the SOFTWARE BY ROOM inquiry, which is described as a data flow in the repository
Web page or the Visible Analyst repository.

CHAPTER 14 • HUMAN—COMPUTER INTERACTION 483

E-10. Every so often, Hy Perteks receives a request for help concerning a given software package. Staff
members and students need to perform advanced options or transfer data to and from different pack-
ages, and they are having difficulties. Hy would like to enter the software TITLE and VERSION
NUMBER. The resulting display would show the SOFTWARE EXPERT NAME and his or her
CAMPUS LOCATION and ROOM NUMBER. Design the screen for the LOCATE SOFTWARE
EXPERT inquiry. Describe the logic and files needed to produce the inquiry. Use value, entity, and
attribute (V, E, A) notation for this inquiry. The details for this inquiry are included in the Visible An-
alyst SOFTWARE EXPERT data flow repository entry or the repository Web page.

E-11. Hy receives a number of requests for training classes. He would like to plan training and place the
upcoming classes on the intranet so that faculty would have an adequate amount of lead time to
schedule a class. Design the SOFTWARE TRAINING CLASSES inquiry. The details may be found
in the repository Web page or the Visible Analyst data flow repository entry called SOFTWARE
TRAINING CLASSES.

The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft Project, or
a Microsoft Access file that can be used to complete the exercises.

www.pearsonhighered.com/kendall

This page intentionally left blank

485

C H A P T E R 1 5

Designing Accurate
Data Entry Procedures

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Understand the uses of effective coding to support users in accomplishing their tasks.

2. Design effective and efficient data capture approaches for people and systems.

3. Recognize how to ensure data quality through validation.

4. Articulate accuracy advantages of user input on ecommerce Web sites.

Making sure that users are able to enter data into the system accurately is
of utmost importance. It is by now axiomatic that the quality of data input
determines the quality of information output.The systems analyst can sup-
port accurate data entry through the achievement of four broad objectives:
(1) creating meaningful coding for data, (2) designing efficient data cap-

ture approaches, (3) assuring complete and effective data capture, and (4) assuring data qual-
ity through validation.

The quality of data is a measurement of how consistently correct the data are within cer-
tain preset limits. Effectively coded data facilitate accurate data entry by humans through cut-
ting down on the sheer quantity of data, and thus the time required to enter the information.

When users enter data efficiently, data entry is meeting predetermined performance
measures that give the relationship between the time spent on entry and the number of data
items entered. Effective coding, effective and efficient data capture and entry, and ensuring
data quality through validation procedures are all data entry objectives covered in this chapter.

EFFECTIVE CODING
One of the ways that data can be entered more accurately and efficiently is through the knowledge-
able employment of various codes. The process of putting ambiguous or cumbersome data into
short, easily entered digits or letters is called coding (not to be confused with program coding).

Coding aids the systems analyst in reaching the objective of efficiency, because data that are
coded require less time for people to enter, and thus reduce the number of items entered. Coding
can also help in the appropriate sorting of data at a later point in the data transformation process.
In addition, coded data can save valuable memory and storage space. In sum, coding is a way of
being eloquent but succinct in capturing data. Besides providing accuracy and efficiency, codes
should have a purpose that supports users. Specific types of codes allow us to treat data in a par-
ticular manner. Human purposes for coding include the following:

1. Keeping track of something.
2. Classifying information.
3. Concealing information.

PART V
Quality Assurance

and Implementation

486 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

Code Explanation of Code

68506KND7533TVG 99999XXX9999XXX

Abbreviation of magazine

First five digits of zip code
First three consonants in last name

Four digits of street address

FIGURE 15.2
Identifying the account of a
magazine subscriber with an
alphabetic derivation code.

Order #

5676 Rocking Chair/with Leather Arthur Hook, Jr.
5677 Dining Room Chair/Upholstered Millie Monice
5678 Love Seat/Upholstered J. & D. Pare
5679 Child’s Rocking Chair/Decals Lucinda Morely

 Product CustomerFIGURE 15.1
Using a simple sequence code to
indicate the sequence in which
orders enter a custom furniture
shop.

4. Revealing information.
5. Requesting appropriate action.

Each of these purposes for coding is discussed in the following sections, along with some exam-
ples of codes.

Keeping Track of Something
Sometimes we want merely to identify a person, place, or thing just to keep track of it. For exam-
ple, a shop that manufactures custom-made upholstered furniture needs to assign a job number to
a project. The salesperson needs to know the name and address of the customer, but the job shop
manager or the workers who assemble the furniture need not know who the customer is. Conse-
quently, an arbitrary number is assigned to the job. The number can be either random or sequen-
tial, as described in the following subsection.

SIMPLE SEQUENCE CODES. The simple sequence code is a number that is assigned to something
if it needs to be numbered. It therefore has no relation to the data themselves. Figure 15.1 shows
how a furniture manufacturer’s orders are assigned an order number. With this easy reference
number, the company can keep track of the order in process. It is more efficient to enter job
“5676” than “that brown and black rocking chair with the leather seat for Arthur Hook, Jr.”

Using a sequence code rather than a random number has some advantages. First, it eliminates
the possibility of assigning the same number. Second, it gives users an approximation of when
the order was received.

Sequence codes should be used when the order of processing requires knowledge of the se-
quence in which items enter the system or the order in which events unfold. An example is found
in the situation of a bank running a special promotion that makes it important to know when a
person applied for a special, low-interest home loan, because (all other things being equal) the
special mortgage loans will be granted on a first-come, first-served basis. In this case, assigning
a correct sequence code to each applicant is important.

ALPHABETIC DERIVATION CODES. At times it is undesirable to use sequence codes. The most obvious
instance is when you do not wish to have someone read the code to figure out how many numbers
have been assigned. Another situation in which sequence codes may not be useful is when a more
complex code is desirable to avoid a costly mistake. One possible error would be to add a payment
to account 223 when you meant to add it to account 224, because you entered an incorrect digit.

The alphabetic derivation code is a commonly used approach in identifying an account num-
ber. The example in Figure 15.2 comes from a mailing label for a magazine. The code becomes
the account number. The first five digits come from the first five digits of the subscriber’s zip
code, the next three are the first three consonants in the subscriber’s name, the next four numbers
are from the street address, and the last three make up the code for the magazine. The main pur-
pose of this code is to identify an account.

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 487

Code

I
M
 T
 C
 D
 S

Tax-Deductible Item

Supplies
Dues
Contributions
Taxes
Medical Payments
Interest Payments

FIGURE 15.3
Grouping tax-deductible items
through the use of a one-letter
classification code.

A secondary purpose is to print mailing labels. When designing this code, the zip code is the
first part of the account number. The subscriber records are usually updated only once a year, but
the primary purpose of the records is to print mailing labels once a month or once per week. Hav-
ing the zip code as the first part of a primary key field means that the records do not have to be
sorted by zip code for bulk mailing, because records on a file are stored in primary key sequence.
Notice that the expiration date is not part of the account number, because that number can change
more frequently than the other data.

One disadvantage of an alphabetic derivation code occurs when the alphabetic portion is
small (for example, the name Po) or when the name contains fewer consonants than the code re-
quires. The name Roe has only one consonant and would have to be derived as RXX, or derived
using some other scheme. Another disadvantage is that some of the data may change. Changing
one’s address or name would change the primary key for the file.

Classifying Information
Classification affords the ability to distinguish among classes of items. Classifications are neces-
sary for many purposes, such as reflecting what parts of a medical insurance plan an employee
carries, or showing which student has completed the core requirements of his or her coursework.

To be useful, classes must be mutually exclusive. For example, if a student is in class F,
meaning freshman, having completed 0 to 36 credit hours, he or she should not also be classifi-
able as a sophomore (S). Overlapping classes would be F � 0 � 36 credit hours, S � 32 � 64
credit hours, and so on. Data are unclear and not as readily interpretable when coding classes are
not mutually exclusive.

CLASSIFICATION CODES. Classification codes are used to distinguish one group of data with
special characteristics from another. Classification codes can consist of either a single letter or a
number. They are a shorthand way of describing a person, place, thing, or event.

Classification codes are listed in manuals or posted so that users can locate them easily. Many
times, users become so familiar with frequently used codes that they memorize them. A user clas-
sifies an item and then enters its code directly into an online system.

An example of classification coding is the way you may wish to group tax-deductible items for
the purpose of completing your income taxes. Figure 15.3 shows how codes are developed for items
such as interest, medical payments, contributions, and so on. The coding system is simple: Take the
first letter of each of the categories; contributions are C, interest payments are I, and supplies are S.

All goes well until we get to other categories (such as computer items, insurance payments,
and subscriptions) that begin with the same letters we used previously. Figure 15.4 demonstrates
what happens in this case. The coding was stretched so that we could use P for “comPuter,” N for
“iNsurance,” and B for “suBscriptions.” Obviously, this situation is far from perfect. One way to
avoid this type of confusion is to allow for codes longer than one letter, discussed later in this
chapter under the subheading of mnemonic codes. Pull-down menus in a GUI system often use
classification codes as a shortcut for running menu features, such as Alt-F for the File menu.

BLOCK SEQUENCE CODES. Earlier we discussed sequence codes. The block sequence code is an
extension of the sequence code. Figure 15.5 shows how a business user assigns numbers to
computer software. Main categories of software are browsers, database packages, and Web design.
These were assigned sequential numbers in the following “blocks,” or ranges: browser, 100–199;
database, 200–299; and so forth. The advantage of the block sequence code is that the data are
grouped according to common characteristics, but still take advantage of the simplicity of assigning
the next available number (within the block, of course) to the next item needing identification.

488 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

Code Tax-Deductible Item

Interest Payments
Medical Payments
Taxes
Contributions
Dues
Supplies

Subscriptions
Computer
Insurance
Miscellaneous

 Subscriptions
 Computer
 Insurance

These duplicate

codes . . .

. . . are corrected

by “forcing” the

codes to fit.

I
M
 T
 C
 D
 S

 S
 C
I
M

 B
 P
 N

FIGURE 15.4
Problems in using a one-letter
classification code occur when
categories share the same letter.

Code Name of Software Package Type

100
101
102

200
201
202

300
301
302

Apple Safari
Mozilla Firefox
Microsoft Internet Explorer

Microsoft Access
MySQL
Oracle

Adobe Dreamweaver
Freeway Pro
Microsoft Web Expression

Browser

Database

Web design

.

.

.

.

.

.

FIGURE 15.5
Using a block sequence code to
group similar software packages.

Concealing Information
Codes may be used to conceal or disguise information we do not wish others to know. There are
many reasons why a business user may want to do that. For example, a corporation may not want
information in a personnel file to be accessed by data entry workers. A store may want its sales-
people to know the wholesale price to show them how low a price they can negotiate, but they
may encode it on price tickets to prevent customers from finding that out. A restaurant may want
to capture information about the service without letting the customer know the name of the server.
Concealing information and security have become very important in the last few years. Corpora-
tions have started to allow vendors and customers to access their databases directly, and handling
business transactions over the Internet has made it necessary to develop tight encryption schemes.
The following subsection describes an example of concealing information through codes.

CIPHER CODES. Perhaps the simplest coding method is the direct substitution of one letter for another,
one number for another, or one letter for a number. A popular type of puzzle called a cryptogram is
an example of letter substitution. Figure 15.6 is an example of a cipher code taken from a Buffalo,
New York, department store that coded all markdown prices with the words BLEACH MIND. No
one really remembered why those words were chosen, but all the employees knew them by heart, and
so the cipher code was successful. Notice in this figure that an item with a retail price of $25.00 would
have a markdown price of BIMC, or $18.75 when decoded letter by letter.

Revealing Information
Sometimes it is desirable to reveal information to specific users through a code. In a clothing
store, information about the department, product, color, and size is printed along with the price

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 489

Code Meaning Example of Price Ticket Explanation

B 1 GOLDEN’S Store Name
L 2 202-395-40 Style Code
E 3 BIMC Coded Markdown Price
A 4
C 5
H 6 Size 12 Size of Garment

M 7
I 8 $25.00 Customer Price
N 9
D 0
 Regular Price of Dress = $25.00
 Markdown Ticket Encoded BIMC = $18.75

FIGURE 15.6
Encoding markdown prices with a
cipher code is a way of concealing
price information from customers.

on the ticket for each item. This information helps the salespeople and stock people locate the
place for the merchandise.

Another reason for revealing information through codes is to make the data entry more mean-
ingful for humans. A familiar part number, name, or description supports more accurate data en-
try. The examples of codes in the following subsection explain how these concepts can be
realized.

SIGNIFICANT-DIGIT SUBSET CODES. When it is possible to describe a product by virtue of its
membership in many subgroups, we can use a significant-digit subset code to help describe it.
The clothing store price ticket example in Figure 15.7 is an example of an effective significant-
digit subset code.

2023954010 Red maternity dress,
 style 395, size 10

4142191912 Beige winter coat,
 style 219, size 12

 202 395 40 10

Code Merchandise Described Explanation of Code

Size
(Size 12)

Size
(Size 10)

Color
(Beige)

Color
(Red)

Product
(Coat Style 219)

Product
(Dress Style 395)

Department
(Winter Coats)

Department
(Maternity)

414 219 19 12

FIGURE 15.7
Using a significant-digit subset
code helps employees locate items
belonging to a particular
department.

490 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

City Hospitals

BGH Buffalo General Hospital
ROS Roswell Park Memorial Institute
KEN Kenmore Mercy
DEA Deaconess Hospital
SIS Sisters of Charity
STF Saint Francis Hospital
STJ Saint Joseph’s Hospital
OLV Our Lady of Victory Hospital

CodeFIGURE 15.8
Mnemonic codes function as
memory aids by using a
meaningful combination of letters
and numbers.

To the casual observer or customer, the item description appears to be one long number. To
one of the salespeople, however, the number is made up of a few smaller numbers, each one hav-
ing a meaning of its own. The first three digits represent the department, the next three the prod-
uct, the next two the color, and the last two the size.

Significant-digit subset codes may consist of either information that actually describes the
product (for example, the number 10 means size 10), or numbers that are arbitrarily assigned (for
instance, 202 is assigned to mean the maternity department). In this case, the advantage of using
a significant-digit subset code is that it makes it possible to locate items that belong to a certain
group or class. For example, if the store’s manager decided to mark down all winter merchandise
for an upcoming sale, salespeople could locate all items belonging to departments 310 through
449, the block of codes used to designate “winter” in general.

MNEMONIC CODES. A mnemonic (pronounced nî-môn	-ïk) is a human memory aid. Any code
that helps either the data entry person remember how to enter the data or the user remember how
to use the information can be considered a mnemonic. Using a combination of letters and symbols
affords a strikingly clear way to code a product so that the code is easily seen and understood.

The city hospital codes formerly used by the Buffalo Regional Blood Center were mnemonic,
as shown in Figure 15.8. The simple codes were invented precisely because the blood center ad-
ministrators and systems analysts wanted to ensure that hospital codes were easy to memorize and
recall. Mnemonic codes for the hospitals helped lessen the possibility of blood being shipped to
the wrong hospital.

Unicode
Codes allow us to reveal characters that we normally cannot input or view. Traditional keyboards
support character sets that are familiar to people using Western alphabetic characters (referred to
as Latin characters), but many languages, such as Greek, Japanese, Chinese, or Hebrew, do not
use the Western alphabet. These languages may use Greek letters, or glyphs or symbols represent-
ing syllables or whole words. The International Standards Organization (ISO) has defined the
Unicode character set, which includes all standard language symbols, and has room for 65,535
characters. You can display Web pages written in other alphabets by downloading an input
method editor from Microsoft.

Glyph symbols are represented using an “&#xnnnn;” notation, in which nnnn represents a
specific letter or symbol, and x means that hexadecimal notation, or base 16 numbering, is used
to represent the Unicode characters. For example, B3 represents the Japanese Katakana
symbol ko. The code used for the Japanese word for hello, konichiwa, is
こにちわ. In Japanese, the word looks like:

The full set of Unicode characters are grouped by language and may be found at
www.unicode.org.

www.unicode.org

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 491

Code Function

1
2
3
4
5
6
7
8
9

Delivered
Sold
Spoiled
Lost or Stolen
Returned
Transferred Out
Transferred In
Journal Entry (Add)
Journal Entry (Subtract)

FIGURE 15.9
Function codes compactly capture
functions that the computer must
perform.

Requesting Appropriate Action
Codes are often needed to instruct either the computer or the decision maker about what action to
take. Such codes are generally referred to as function codes, and they typically take the form of
either sequence or mnemonic codes.

FUNCTION CODES. The functions that the analyst or programmer desires the computer to perform
with data are captured in function codes. Spelling out precisely what activities are to be
accomplished is translated into a short numeric or alphanumeric code.

Figure 15.9 shows examples of a function code for updating inventory. Suppose you man-
aged a dairy department; if a case of yogurt spoiled, you would use the code 3 to indicate this
event. Of course, data required for input vary depending on what function is needed. For exam-
ple, appending or updating a record would require only the record key and function code, whereas
adding a new record would require all data elements to be input, including the function code.

General Guidelines for Coding
In the previous sections, we examined the purposes for using different types of codes when hu-
mans and machines enter and store data. Next, we examine a few heuristics for establishing a cod-
ing system. These rules are highlighted in Figure 15.10.

BE CONCISE. Codes should be concise. Overly long codes mean more keystrokes and
consequently more errors. Long codes also mean that storing the information in a database will
require more memory.

Short codes are easier for people to remember and easier to enter than long codes. If codes
must be long, they should be broken up into subcodes. For example, 5678923453127 could be
broken up with hyphens as follows: 5678-923-453-127. This approach is much more manageable
and takes advantage of the way people are known to process information in short chunks. Some-
times codes are made longer than necessary for a reason. Credit card numbers are often long to
prevent people from guessing a credit card number. Visa and MasterCard use 16-digit numbers,
which would accommodate nine trillion customers. Because the numbers are not assigned se-
quentially, chances of guessing a credit card number are very slight.

In Establishing a Coding System,
 the Analyst Should:

 Keep codes concise
 Keep codes stable
 Make codes that are unique
 Allow codes to be sortable
 Avoid confusing codes
 Keep codes uniform
 Allow for modification of codes
 Make codes meaningful

FIGURE 15.10
There are eight general guidelines
for establishing a coding system.

492 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

C O N S U L T I N G O P P O R T U N I T Y 1 5 . 1

It’s a Wilderness in Here

“I can’t stand this. I’ve been looking for this hat for the last
45 minutes,” complains Davey, as he swings a coonskin cap by its
tail above his head. He is one of the new warehouse workers for
Crockett’s, a large retail catalog and ecommerce firm. “The catalog
slip calls it a ‘Coo m5–9w/tl.’ Good thing you told me ‘Coo’ stands
for coonskin. Then, of course, I thought about caps and looked over
here. I found it here in this bin labeled BOYS/CAP. Wouldn’t it be
easier if the catalog and Web pages matched the bins? To me, this
invoice says, ‘Cookware, metallic, 5–9-piece set with Teflon.’ I’ve
been stranded in the cookware sets the whole time.”

Daniel, Davey’s coworker, barely listens as he hurriedly pulls
items out of bins to fill another order. “You’ll get used to it. They’ve
got to have it this way so that the computers can understand the bill
later. Mostly, I look at the catalog page number on the invoice, then
I look it up in the book and sort of translate it to back here . . . un-
less I remember it from finding it before,” Daniel explains.

Davey persists, saying, “Computers are smart, though, and we
have to fill so many orders. We should tell the people up in billing
the names we’ve got on our bins.”

Daniel replies cynically, “Oh, sure. They’re dying to know what
we think.” Then he continues in a quieter tone. “You know, we used

to have it like that, but when they got all the new computers and went
to 24-hour phone and Internet orders, it all changed. They said the op-
erators (and users) had to know more about what they were selling (or
buying), so they changed their codes to be more like a story.”

Davey, surprised at Daniel’s revelation, asks, “What’s the
story for the one I was working on?”

Inspecting the code on the cap’s invoice, Daniel replies, “The
one you were working on was ‘Coo m5–9w/tl.’ After looking it up
real fast on the computer the operator can tell the customer, ‘It’s a
coonskin (Coo) cap for boys (m for male) ages 5–9 with a real tail
(w/tl).’ We can’t see the forest for the trees because of their codes,
but you know Crockett’s. They’ve got to make the sale.”

How important is it that the warehouse bins and invoices are
coded inconsistently? Respond in a paragraph. What are some of
the problems created when a code appears to be mnemonic but em-
ployees are never given an appropriate “key” to decode it? Discuss
your response in two paragraphs. What changes would you make to
invoice/warehouse coding for Crockett’s? Document your changes,
identify the type of code you would use, and use the code in an ex-
ample of a product that Crockett’s might sell. Remember to deci-
pher it as well.

KEEP THE CODES STABLE. Stability means that the identification code for a customer should not
change each time new data are received. Earlier, we presented an alphabetic derivation code for
a magazine subscription list. The expiration date was not part of the subscriber identification code
because it was likely to change.

Don’t change the code abbreviations in a mnemonic system. Once you have chosen the code
abbreviations, do not try to revise them, because that makes it extremely difficult for data entry
personnel to adapt.

ENSURE THAT CODES ARE UNIQUE. For codes to work, they must be unique. Make a note of all
codes used in the system to ensure that you are not assigning the same code number or name to
the same items. Code numbers and names are an essential part of the entries in data dictionaries,
discussed in Chapter 8.

ALLOW CODES TO BE SORTABLE. If you are going to manipulate the data usefully, the codes must
be sortable. For example, if you were to perform a text search on the months of the year in
ascending order, the “J” months would be out of order (January, July, and then June). Dictionaries
are sorted in this way, one letter at a time from left to right. So, if you sorted MMMDDYYYY
where the MMM stood for the abbreviation for the month, DD for the day, and YYYY for the
year, the result would be in error.

Figure 15.11 shows what would happen if a text search were performed on different forms
of the date. The third column shows a problem that was part of the year 2000 (Y2K) crisis that
caused some alarm and even made the cover of Time magazine.

One of the lessons learned is to make sure that users can do what you intend them to do with
the codes you create. Numeric codes are much easier to sort than alphanumerics; therefore, con-
sider converting to numerics wherever practical.

AVOID CONFUSING CODES. Try to avoid using coding characters that look or sound alike. The
characters O (the letter oh) and 0 (the number zero) are easily confused, as are the letter I and the

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 493

Incorrect Sorting
Using
MMM-DD-YYYY

Incorrect Sorting
Using
MM-DD-YYYY

Incorrect Sorting
(Year 2000 Problem)
YY-MM-DD

Correct Sorting
Using
YYYY-MM-DD

Dec-25-1998
Dec-31-1997
Jul-04-1999
Jun-04-1998
Jun-11-2000
Jun-12-1997
Oct-24-1998

06-04-1998
06-11-2000
06-12-1997
07-04-1999
10-24-1998
12-25-1998
12-31-1997

00-06-11
97-06-12
97-12-31
98-06-04
98-10-24
98-12-25
99-07-04

1997-06-12
1997-12-31
1998-06-04
1998-10-24
1998-12-25
1999-07-04
2000-06-11

FIGURE 15.11
Plan ahead in order to be able to
do something useful with data that
have been entered. In this
example, the person creating the
codes did not realize the data
would have to be sorted.

number 1, and the letter Z and the number 2. Therefore, codes such as B1C and 280Z are
unsatisfactory.

One example of a potentially confusing code is the Canadian Postal Code, as shown in
Figure 15.12. The code format is X9X 9X9, where X stands for a letter and 9 stands for a num-
ber. One advantage to using letters in the code is to allow more data in a six-digit code (there are
26 letters, but only 10 numbers). Because the code is used on a regular basis by Canadians, the
code makes perfectly good sense to them. To foreigners sending mail to Canada, however, it may
be difficult to tell if the second-to-last symbol is a Z or a 2.

KEEP THE CODES UNIFORM. To be effective and efficient for humans, codes need to follow
readily perceived forms most of the time. Codes used together, such as BUF-234 and KU-3456,
are poor because the first contains three letters and three numbers, whereas the second has only
two letters followed by four numbers.

When you are required to add dates, try to avoid using the codes MMDDYYYY in one ap-
plication, YYYYDDMM in a second, and MMDDYY in a third. It is important to keep codes uni-
form among as well as within programs.

ALLOW FOR MODIFICATION OF CODES. Adaptability is a key feature of a good code. The analyst
must keep in mind that the system will evolve over time, and the coding system should be able to
encompass change. The number of customers should grow, customers will change names, and
suppliers will modify the way they number their products. The analyst needs to be able to forecast
the predictable changes that business users will desire and anticipate a wide range of future needs
when designing codes.

MAKE CODES MEANINGFUL. Unless the analyst wants to hide information intentionally, codes
should be meaningful. Effective codes not only contain information, but they also make sense to
the people using them. Meaningful codes are easy to understand, work with, and recall. The job
of data entry becomes more interesting when working with meaningful codes instead of just
entering a series of meaningless numbers.

USING CODES. Codes are used in a number of ways. In validation programs, input data is checked
against a list of codes to ensure that only valid codes have been entered. In report and inquiry
programs, a code stored on a file is transformed into the meaning of the code. Reports and displays
should not show or print the actual code. If they did, the user would have to memorize code
meanings or look them up in a manual. Codes are used in GUI programs to create drop-down lists.

Handwritten Code Actual Code City, Province Problem

L8S 4M4
T3A ZE5

LOS 1JO

L8S 4M4
T3A 2E5

L0S 1J0

Hamilton, Ontario
Calgary, Alberta

Niagara-on-the-Lake,
Ontario

S looks like a 5
2 looks like a Z
5 looks like an S
Zero and Oh look alike
S looks like a 5
1 looks like an l

Code Format for Canadian Postal Code
X9X 9X9

FIGURE 15.12
Combining look-alike characters
in codes can result in errors.

EFFECTIVE AND EFFICIENT DATA CAPTURE
To ensure the quality of data users enter into the system, it is important to capture data effectively.
Data capture has received increasingly greater attention as the point in information processing at
which excellent productivity gains can be made. Great progress in improving data capture has
been made in the last four decades, as we have moved from multiple-step, slow, and error-prone
systems such as keypunching to using sophisticated systems including such things as optical char-
acter recognition (OCR), bar codes, and point-of-sale terminals.

Deciding What to Capture
The decision about what to capture precedes user interaction with the system. Indeed, it is vital
in making the eventual interface worthwhile, for the adage “garbage in, garbage out” is still true.

Decisions about what data to capture for system input are made among systems analysts and
systems users. Much of what will be captured is specific to the particular business. Capturing
data, inputting them, storing them, and retrieving them are all costly endeavors. With all these
factors in mind, determining what to capture becomes an important decision.

There are two types of data to enter: data that change or vary with every transaction, and data
that concisely differentiate the particular item being processed from all other items.

An example of changeable data is the quantity of supplies purchased each time an advertis-
ing firm places an order with the office supply wholesaler. Because quantities change depending
on the number of employees at the advertising firm and on how many accounts they are servic-
ing, quantity data must be entered each time an order is placed.

An example of differentiation data is the inclusion on a patient record of the patient’s Social
Security number and the first three letters of his or her last name. In this way, the patient is
uniquely differentiated from other patients in the same system.

494 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

C O N S U L T I N G O P P O R T U N I T Y 1 5 . 2

Catching a Summer Code

Vicky takes her fingers off her keyboard and bends over her
workstation to verify the letters on the invoices stacked in front of
her. “What on earth?” Vicky asks aloud as she further scrutinizes the
letters that encode cities where orders are to be shipped.

Shelly Overseer, her supervisor, who usually sits a couple of
workstations away, is passing by and sees Vicky’s consternation.
“What’s the matter? Did the sales rep forget to write in the city code
again?”

Vicky swings around in her chair to face Shelly. “No, there are
codes here, but they’re weird. We usually use a three-letter code,
right? Like CIN for Cincinnati, SEA for Seattle, MIN for Min-
neapolis, BUF for Buffalo. They’re all five-letter codes here,
though.”

“Look,” Vicky says, lifting the invoice to show Shelly.
“CINNC, SEATT, MINNE. It’ll take me all day to enter these. No
kidding, it’s really slowing me down. Maybe there’s a mistake.
Can’t I just use the standard?”

Shelly backs away from Vicky’s workstation as if the problem
were contagious. Excusing herself apologetically, Shelly says, “It’s
the part-timers. They are learning sales now, and management was
worried that they’d get messed up on their cities. I think it has some-
thing to do with mixing up Newark and New Orleans on the last or-

ders. So, a committee decided to make the cities more recognizable
by having them add two letters. Those kids can’t learn everything
we know overnight, even though they try. It’s just until August 19,
though, when the part-timers go back to school.”

As Vicky glumly turns back to her keyboard, Shelly shakes her
head sympathetically and says, “I know it’s a strain and it’s making
you feel miserable, but don’t worry. You’ll get over it. It’s just a
summer code.”

What general guidelines of coding has management over-
looked in its decision to use a summer code for cities? Make a list
of them. What is the effect on full-time data entry personnel of
changing codes for the ease of temporary help? Respond in two
paragraphs. What future impact could the temporary change in
codes have on sorting and retrieving data entered during the sum-
mer period? Take two paragraphs to discuss these implications.
What changes can you suggest so that the part-timers don’t get
mixed up on codes in the short term? In a memo to the supervisor
of this work group, make a list of five to seven changes in the data
capture or data entry procedures that can be made to accommodate
short-term hires without disrupting normal business. In a para-
graph, indicate how this goal can be accomplished without marring
the productivity of data entry personnel.

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 495

Letting the Computer Do the Rest
When considering what data to capture for each transaction and what data to leave to the system
to enter, the systems analyst must take advantage of what computers do best. In the preceding ex-
ample of the advertising agency ordering office supplies, it is not necessary for the operator en-
tering the stationery order to reenter each item description each time an order is received. The
computer can store and access this information easily.

Computers can automatically handle repetitive tasks, such as recording the time of the trans-
action, calculating new values from input, and storing and retrieving data on demand. By employ-
ing the best features of computers, efficient data capture design avoids needless data entry, which
in turn alleviates much human error and boredom, and permits people to focus on higher-level or
creative tasks. Software can be written to ask the user to enter today’s date or capture the date
from the computer’s internal clock. Once entered, the system proceeds to use that date on all
transactions processed in that data entry session.

A prime example of reusing data entered once is that of the online computer library center
(OCLC) used by thousands of libraries in the United States. OCLC was built on the idea that each
item bought by a library should only have to be cataloged once for all time. Once an item is en-
tered, cataloging information goes into the huge OCLC database and is shared with participating
libraries. In this case, implementation of the simple concept of entering data only once has saved
enormous data entry time.

The calculating power of the computer should also be taken into account when deciding what
not to reenter. Computers are adept at long calculations, using data already entered.

For example, the person doing data entry may enter the flight numbers and account number
of an air trip taken by a customer belonging to a frequent-flyer incentive program. The computer
then calculates the number of miles accrued for each flight, adds it to the miles already in the cus-
tomer’s account, and updates the total miles accrued to the account. The computer may also flag
an account that, by virtue of the large number of miles flown, is now eligible for an award. Al-
though all this information may appear on the customer’s updated account, the only new data en-
tered were the flight numbers of the flights flown.

In systems that use a graphical user interface (GUI), codes are often stored either as a func-
tion or as a separate table in the database. There is a trade-off on creating too many tables, be-
cause the software must find matching records from each table, which may lead to slow access.
If the codes are relatively stable and rarely change, they may be stored as a database function. If
the codes change frequently, they are stored on a table so that they may be easily updated.

Figure 15.13 shows how a drop-down list is used to select the codes for adding or chang-
ing a record in the CUSTOMER table. Notice that the code is stored, but the drop-down list

FIGURE 15.13
A table of codes used in a drop-
down list. This list is used to select
a code for adding or changing an
item in a record.

496 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

displays both the code and the code meaning. This method helps to ensure accuracy, because
the user does not have to guess at the meaning of the code and there is no chance of typing an
invalid code.

Avoiding Bottlenecks and Extra Steps
A bottleneck in data entry is an apt allusion to the physical appearance of a bottle. Data are poured
rapidly into the wide mouth of the system only to be slowed in its “neck” because of an artifi-
cially created instance of insufficient processing for the volume or detail of the data being entered.
One way a bottleneck can be avoided is by ensuring that there is enough capacity to handle the
data that are being entered.

Ways to avoid extra steps are determined not only at the time of analysis, but also when users
begin to interact with prototypes of the system. The fewer steps involved in inputting data, the
fewer chances there are for the introduction of errors. So, beyond the obvious consideration of
saved labor, avoiding extra steps is also a way to preserve the quality of data. Once again, use of
an online, real-time system that captures customer data without necessitating the completion of a
form is an excellent example of saving steps in data entry.

Starting with a Good Form
Effective data capture is achievable only if prior thought is given to what the source document
should contain. The data entry operator inputs data from the source document (usually some
kind of form); this document is the source of a large amount of all system data. Online systems
(or special data entry methods such as bar codes) may circumvent the need for a source docu-
ment, but often some kind of paper form, such as a receipt, is created anyway.

With effective forms, it is not necessary to reenter information that the computer has already
stored, or data such as time or date of entry that the computer can determine automatically. Chapter
11 discussed in detail how a form or source document should be designed to maximize its useful-
ness for capturing data and to minimize the time users need to spend entering data from it.

Choosing a Data Entry Method
Several efficient data entry methods are available, and choosing one of them is shaped by many
factors, including the need for speed, accuracy, and user training; the cost of the data entry method
(whether it is materials- or labor-intensive); and the methods currently in use in the organization.

KEYBOARDS. Keyboarding is the oldest method of data entry, and certainly it is the one with
which organizational members are the most familiar. Some improvements have been made over
the years to improve keyboards. Features include special function keys to open programs, keys
used to scroll and explore the Web, and keys that can be programmed with macros to reduce the
number of keystrokes required. Ergonomic keyboards and infrared or Bluetooth-enabled
keyboards and mice are big improvements, as well.

OPTICAL CHARACTER RECOGNITION. Optical character recognition (OCR) lets a user read input
from a source document with an optical scanner rather than off the magnetic media we have been
discussing so far. Using OCR devices can speed data input from 60 to 90 percent over some
keying methods.

The increased speed of OCR comes through not having to encode or key in data from source
documents. It eliminates many of the time-consuming and error-fraught steps of other input de-
vices. In doing so, OCR demands few employee skills and commensurately less training, result-
ing in fewer errors and less time spent by employees in redundant efforts. It also decentralizes
responsibility for quality data directly to the unit that is generating it. OCR, which has become
available to all, has one additional, highly practical use: the transformation of faxes into docu-
ments that can be edited.

OTHER METHODS OF DATA ENTRY. Other methods of data entry are also becoming more widely
employed. Most of these methods reduce labor costs by requiring few operator skills or little
training, they move data entry closer to the source of data, and they eliminate the need for a source
document. In doing so, they have become fast and highly reliable data entry methods. The data
entry methods discussed in the following subsections include magnetic ink character recognition,
mark-sense forms, punch-out forms, bar codes, and data strips.

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 497

Magnetic Ink Character Recognition Magnetic ink characters are found on the bottom of bank
checks and some credit card bills. This method is akin to OCR in that special characters are read,
but its use is limited. Data entry through magnetic ink character recognition (MICR) is done
through a machine that reads and interprets a single line of material encoded with ink that is made
up of magnetic particles.

Some advantages of using MICR are (1) it is a reliable and high-speed method that is not sus-
ceptible to accepting stray marks (because they are not encoded magnetically); (2) if it is required
on all withdrawal checks, it serves as a security measure against bad checks; and (3) data entry
personnel can see the numbers making up the code if it is necessary to verify it.

Mark-Sense Forms Mark-sense forms allow data entry through the use of a scanner that senses
where marks have been made on special forms. A common usage is for scoring answer sheets for
survey questionnaires, as shown in Figure 15.14. Little training of entry personnel is necessary,
and a high volume of forms can be processed quickly.

DIRECTIONS FOR MARKING
Make heavy black marks that fill the circle completely.Erase cleanly any answer you wish to change—make no stray marks.

Examples of PROPER marks Examples of IMPROPER marks
1. What levels of people do you primarily serve in your work?managers

supervisors; forepersons
other salaried
hourly
volunteers

2. Total size of the organization you serve:less than 1,000 15,000–25,0001,000–5,000 more than 25,0005,000–15,000

3. What training and development techniques do you use? (Please mark each technique.)lecture with or without mediafilms
videotape closed-circuit TVdiscussions (cases, issues, etc.)role-playing

behavior modeling
simulation; advanced gamingon-the-job training
job rotation
internships; assistantshipsorganization development techniquesother

0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5

5. A Most Significant Part4. A Major Part
3. A Substantial Part

2. A Smaller Part
1. A Minor Part

0. Does Not Apply

FIGURE 15.14
A mark-sense form that can be
read by a scanner speeds data
entry.

498 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

One drawback of mark-sense forms is that although the readers can determine whether a
mark has been made, they cannot interpret the mark in the way that optical character readers do.
Stray marks on forms can thus be entered as incorrect data. In addition, choices are limited to the
answers provided on the mark-sense form, forms have difficulty in capturing alphanumeric data
because of the space required for a complete set of letters and numbers, and it is easy for those
filling out mark-sense forms to get confused and put a mark in an incorrect position.

Bar Codes Bar codes typically appear on product labels, but they also appear on patient
identification bracelets in hospitals and in almost any context in which a person or object needs
to be checked into and out of any kind of inventory system. Bar codes can be thought of as
metacodes, or codes encoding codes, because they appear as a series of narrow and wide bands
on a label that encodes numbers or letters. These symbols in turn have access to product data
stored in computer memory. A beam of light from a scanner or lightpen is drawn across the bands
on the label either to confirm or record data about the product being scanned.

A bar-coded label, such as the one shown in Figure 15.15, includes the following elements
of coding for a particular grocery product: the manufacturer identification number, the product
identification number, a code to verify the scan’s accuracy, and codes to mark the beginning and
end of the scan.

Bar coding affords an extraordinarily high degree of accuracy for data entry. It saves labor
costs for retailers because each item does not have to be individually price-marked. In addition,
bar coding allows the automatic capturing of data that can be used for reordering, more accurate
inventory tracking, and the forecasting of future needs. Sale prices or other changes in the mean-
ing of the bar codes are entered into the central processor, thus saving the trouble of marking
down numerous items.

One new use of bar coding is the tracking of an individual’s credit card purchases for the pur-
pose of building a consumer profile that can then in turn be used to refine marketing to that indi-
vidual or type of consumer. New input devices are constantly being developed.

RFID Commonly known as RFID, radio frequency identification allows the automatic collection
of data using RFID tags or transponders that contain a chip and an antenna. An RFID tag may or
may not have its own power source. If it does not have its own power, the antenna provides just
enough power from an incoming signal to power the chip and transmit a response. RFID tags can
be attached to products, packages, animals, or even humans so that the item or person can be
identified using a radio frequency.

RFID tags, also called proximity cards because of their limited range, can be passive or ac-
tive. Passive RFID tags have no internal power source; active tags do. Passive tags are inexpen-
sive (less than 5¢ per tag) and are typically the size of a postage stamp. They are used in large
retail stores, including Wal-Mart and Target. Wal-Mart has been actively pursuing RFID technol-
ogy in improving its inventory management and supply chain processes.

Active tags are much more reliable because they have their own power supply. The U.S. De-
partment of Defense has used these tags to minimize the costs related to logistics and increase
supply chain visibility. Active tags cost only a few dollars each.

Beginning (101)

Code meaning “grocery product”

Manufacturer identification number
(first five digits)

Center separation bars (01010)

Product identification number
(last five digits)

Code to verify accuracy of scan (check digit)

End (101)

FIGURE 15.15
Bar coding, as shown in this label
for a grocery product, affords
highly accurate data entry.

Used with the permission of the
Uniform Code Council, Dayton, Ohio.

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 499

To capture the data on an RFID tag, a reader is required. The reader activates the tag so that
it can be read. The reader decodes the data and the unique product code on the chip inside the tag,
then passes it along to a host computer that processes the data.

One example is an electronic toll pass used in vehicles traversing toll roads. An RFID transpon-
der can be attached to the windshield and read every time the vehicle passes through a toll booth.
The toll booth’s RFID reader can also act as a writer, so a balance can be stored on the RFID chip.

The Moscow Metro was the first transportation system to use RFID smartcards in 1998.
Other applications include the tracking of cattle to identify the herd of origin, which enables bet-
ter tracking of mad cow disease, as well as RFID tracking in bookstores, airline baggage services,
pharmaceuticals, and even patients or inmates.

RFID tags have found common use in most shipping applications. The technology will soon
be used in general electronic cash transactions. They may even replace UPC codes since their ad-
vantages include security (by reducing the number of items stolen) and not requiring scanning
(they can simply pass through the reader zone).

RFID is not without controversy. Privacy is a concern. An individual who pays for a tagged
item by a credit card or a shoppers’ card could be identified.

The systems analyst needs to think of the users involved and their rights when considering
whether this technology is suited for the application being designed.

ENSURING DATA QUALITY THROUGH INPUT VALIDATION
So far, we have discussed ensuring the effective capturing of data onto source documents and the
data’s efficient entry into the system through various input devices. Although these conditions are
necessary for ensuring quality data, they alone are not sufficient.

Errors cannot be ruled out entirely, and the critical importance of catching errors during in-
put, prior to processing and storage, cannot be overemphasized. The snarl of problems created by
incorrect input can be a nightmare, not the least of which is that many problems take a long time
to surface. The systems analyst must assume that errors in data will occur and must work with
users to design input validation tests to prevent erroneous data from being processed and stored,

C O N S U L T I N G O P P O R T U N I T Y 1 5 . 3

To Enter or Not to Enter: That Is the Question

“I’ve just taken on the presidency of Elsinore Industries,” says
Rose N. Krantz. “We’re actually part of a small cottage industry that
manufactures toy villages for children seven years old and up. Our
tiny hamlets consist of various kits that will build what children
want from interlocking plastic cubes, essentials such as city hall, the
police station, the gas station, and a hot dog stand. Each kit has a
unique part number from 200 to 800, but not every number is used.
The wholesale prices vary from $54.95 for the city hall to $1.79 for
a hot dog stand.

“I’ve been melancholy over what I’ve found out since signing
on at Elsinore. ‘Something is rotten’ here, to quote a famous play-
wright. In fact, the invoicing system was so out of control that I’ve
been working around the clock with our bookkeeper, Gilda Stern,”
Krantz soliloquizes.

“I would like you to help straighten things out,” Rose contin-
ues. “We ship to 12 distribution warehouses around the country.
Each invoice we write out includes the warehouse number, 1
through 12, its street address, and the U.S. postal code (zip code).

We also put on each invoice the date we fill the order, code numbers
for the hamlet kits they order, a description of each kit, the price per
item, and the quantity of each kit ordered. Of course, we also in-
clude the subtotals of kit charges, shipping charges, and the total
that the warehouse owes us. No sales tax is added, because they re-
sell what we send them to toy stores in all 50 states. I want you to
help us design a computerized order entry system that will be part
of the invoicing system for Elsinore Industries.”

For your design of a data entry system for Elsinore, take into
consideration all the objectives for data entry discussed throughout
this chapter. Draw any displays necessary to illustrate your design.
How can you make the order entry system efficient? Respond in a
paragraph. Specify what data can be stored and retrieved and what
data must be entered anew for each order. How can unnecessary
work be avoided? Write a paragraph to explain why the system you
propose is more efficient than the old one. How can data accuracy
be ensured? List three strategies that will work with the type of data
that are being entered for Elsinore Industries.

500 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

because initial errors that go undiscovered for long periods are expensive and time consuming to
correct.

You cannot imagine everything that will go awry with input, but you must cover the kinds of
errors that give rise to the largest percentage of problems. A summary of potential problems that
must be considered when validating input is given in Figure 15.16.

Validating Input Transactions
Validating input transactions is largely done through software, which is the programmer’s respon-
sibility, but it is important that the systems analyst know what common problems might invali-
date a transaction. Businesses committed to quality will include validity checks as part of their
routine software.

Three main problems can occur with input transactions: submitting the wrong data to the sys-
tem, the submitting of data by an unauthorized person, or asking the system to perform an unac-
ceptable function.

SUBMITTING THE WRONG DATA. An example of submitting the wrong data to the system is the
attempt to input a patient’s Social Security number into a hospital’s payroll system. This error is
usually an accidental one, but it should be flagged before data are processed.

SUBMITTING OF DATA BY AN UNAUTHORIZED PERSON. The system should also be able to
discover if otherwise correct data are submitted by an unauthorized person. For instance, only the
supervising pharmacist should be able to enter inventory totals for controlled substances in the
pharmacy. Invalidation of transactions submitted by an unauthorized individual applies to privacy
and security concerns surrounding payroll systems and employee evaluation records that
determine pay levels, promotions, or discipline; files containing trade secrets; and files holding
classified information, such as national defense data.

ASKING THE SYSTEM TO PERFORM AN UNACCEPTABLE FUNCTION. The third error that
invalidates input transactions is asking the system to perform an unacceptable function. For
instance, it would be logical for a human resources manager to update the existing record of a
current employee, but it would be invalid to ask the system to create a new file rather than merely
to update an existing record.

Validating Input Data
It is essential that the input data themselves, along with the transactions requested, are valid. Sev-
eral tests can be incorporated into software to ensure this validity. We consider eight possible
ways to validate input.

TEST FOR MISSING DATA. The first kind of validity test examines data to see if there are any
missing items. For some situations, all data items must be present. For example, a Social Security
file for paying out retirement or disability benefits would be invalid if it did not include the
payee’s Social Security number.

This Type of
Validation Can Prevent These Problems

Validating Input
Transactions

Validating Input
Data

Submitting the wrong data
Data submitted by an unauthorized
person
Asking the system to perform an
unacceptable function

Missing data
Incorrect field length
Data have unacceptable composition
Data are out of range
Data are invalid
Data do not match with stored data

FIGURE 15.16
Validating input is important to
ensure that most potential
problems with data are eliminated
early.

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 501

In addition, the record should include both the key data that distinguish one record from all
others and the function code telling the computer what to do with the data. The systems analyst
needs to interact with users to determine what data items are essential and to find out whether ex-
ceptional cases ever occur that would allow data to be considered valid even if some data items
were missing. For example, a second address line containing an apartment number or a person’s
middle initial may not be a required entry.

TEST FOR CORRECT FIELD LENGTH. A second kind of validity test checks input to ensure it is of
the correct length for the field. For example, if the Omaha, Nebraska, weather station reports into
the national weather service computer but mistakenly provides a two-letter city code (OM)
instead of the national three-letter city code (OMA), the input data might be deemed invalid, and
hence would not be processed.

TEST FOR CLASS OR COMPOSITION. The test for class or composition validity checks to see that
data fields that are supposed to be exclusively composed of numbers do not include letters, and
vice versa. For example, a credit card account number for American Express should not include
any letters. Using a composition test, the program should not accept an American Express account
number that includes both letters and numbers.

TEST FOR RANGE OR REASONABLENESS. Validity tests for range or reasonableness are really
common-sense measures of input that answer the question of whether data fall within an
acceptable range or whether they are reasonable within predetermined parameters. For instance,
if a user was trying to verify a proposed shipment date, the range test would neither permit a
shipping date on the 32nd day of October nor accept shipment in the 13th month, the respective
ranges being 1 to 31 days and 1 to 12 months.

A reasonableness test ascertains whether the item makes sense for the transaction. For example,
when adding a new employee to the payroll, entering an age of 120 years would not be reasonable.
Reasonableness tests are used for data that are continuous, that is, data that have a smooth range of
values. These tests can include a lower limit, an upper limit, or both a lower and an upper limit.

TEST FOR INVALID VALUES. Checking input for invalid values works if there are only a few valid
values. This test is not feasible for situations in which values are neither restricted nor predictable.
This kind of test is useful for checking responses where data are divided into a limited number of
classes. For example, a brokerage firm divides accounts into three classes only: class 1 � active
account, class 2 � inactive account, and class 3 � closed account. If data are assigned to any other
class through an error, the values are invalid. Value checks are usually performed for discrete data,
which are data that have only certain values. If there are many values, they are usually stored in
a table of codes file. Having the values in a file provides an easy way to add or change values.

CROSS-REFERENCE CHECKS. Cross-reference checks are used when one element has a
relationship with another one. To perform a cross-reference check, each field must be correct in
itself. For example, the price for which an item is sold should be greater than the cost paid for the
item. Price must be entered, numeric, and greater than zero. The same criterion is used to validate
cost. When both price and cost are valid, they may be compared.

A geographical check is another type of cross-reference check. In the United States, the state
abbreviation may be used to ensure that a telephone area code is valid for that state and that the
first two digits of the zip code are valid for the state.

TEST FOR COMPARISON WITH STORED DATA. The next test for validity of input data that we
consider is one comparing it with data that the computer has already stored. For example, a newly
entered part number can be compared with the complete parts inventory to ensure that the number
exists and is being entered correctly.

SETTING UP SELF-VALIDATING CODES (CHECK DIGITS). Another method for ensuring the accuracy
of data, particularly identification numbers, is to use a check digit in the code itself. This
procedure involves beginning with an original numeric code, performing some mathematics to
arrive at a derived check digit, and then adding the check digit to the original code. The
mathematical process involves multiplying each of the digits in the original code by some
predetermined weights, summing these results, and then dividing this sum by a modulus number.
The modulus number is needed because the sum usually is a large number, and we need to reduce
the result to a single digit. Finally, the remainder is subtracted from the modulus number, giving
us the check digit.

502 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

Figure 15.17 shows how a five-digit part number for a radiator hose (54823) is converted to
a six-digit number containing a check digit. In this example, the weights chosen were the “1-3-
1” system; in other words, the weights alternate between 1 and 3. After the digits 5, 4, 8, 2, and 3
were multiplied by 1, 3, 1, 3, and 1, they became 5, 12, 8, 6, and 3. These new digits sum to 34.
Next, 34 is divided by the chosen modulus number, 10, with the result of 3 and a remainder of 4.
The remainder, 4, is subtracted from the modulus number, 10, giving a check digit of 6. The digit
6 is now tacked onto the end of the original number, giving the official product code for the radi-
ator hose (548236).

Using Check Digits The check digit system works in the following way. Suppose we had the part
number 53411. This number has to be typed into the system, and while that is being done,
different types of errors can occur. One possible error is the single-digit miskey; for example, the
clerk types in 54411 instead of 53411. Only the digit in the thousands place is incorrect, but this
error may result in the wrong part being shipped.

A second type of error is transposed digits. It commonly occurs that the intended number
53411 gets typed in as number 54311 instead, just because two keys are pressed in reverse order.
Transposition errors are also difficult for humans to detect.

These errors are avoidable through the use of a check digit because each of these numbers—
the correct one and the error—would have a different check digit number, as shown in Figure 15.18.

Choose the weighing method
and modulus number used in
all calculations.

Multiply the digit by the chosen
weight.

Sum the new numbers.

Divide by the modulus number.

Compute the check digit by
taking the modulus number
and subtracting the remainder
(subtract again if greater
than 10).

Add check digit to the end of
the number.

Use this new code for data
entry and let the computer
validate the code.

54823

“1 × 3 × 1” and 10

5
× 1

5

34
10

4
× 3
12

8
× 1

8

2
× 3

6

3
× 1

3

5 + 12 + 8 + 6 + 3 = 34

= 3 with a remainder of 4

10 – 4 = 6

54823 6

548236

Start with the numeric code.FIGURE 15.17
Steps in converting a five-digit
part number to a six-digit number
containing a check digit.

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 503

If part number 53411 was modified to 534118 (including the check digit 8) and either of the two er-
rors just described occurred, the mistake would be caught. If the second digit was miskeyed as a 4,
the computer would not accept 544118 as a valid number, because the check digit for 54411 would
be 5, not 8. Similarly, if the second and third digits were transposed, as in 543118, the computer
would also reject the number because the check digit for 54311 would be 6, not 8.

The systems analyst chooses the weights and the modulus number, but once chosen, they
must not change. Some examples of weighting methods and modulus numbers can be found in
Figure 15.19.

VERIFYING CREDIT CARDS. When credit cards are entered into a Web site or computer program,
the first check is the length of the number. Credit card companies designed their cards to include
a different number of digits. For example, Visa cards are 16 digits long while American Express
card numbers are 15 digits in length.

Another test is to match the credit card company and bank to verify that it is indeed a card
issued by that company. The first four digits usually signify the type of card. The middle digits
usually represent the bank and the customer. The last digit is a check digit.

In addition to these verification methods, credit card processing uses a check digit formula
called the Luhn formula, created in the 1960s. Suppose we are given a number 7-7-7-8-8-8, where

Status

Correct

Original Code Check Digit New Code

5 3 4 1 1

5 4 4 1 1

5 4 3 1 1

8 534118

Single-digit miskey 5 544115

Transpose 6 543116

FIGURE 15.18
Avoiding common data-entry
errors through the use of a check
digit.

Check Digit
Method Calculations for Check Digit to Be Added to the Original Number 29645

Modulus 10
“2-1-2”

Modulus 10
“3-1-3”

Modulus 11
“Arithmetic”

Modulus 10
“Geometric”

= 39/10 = 3 remainder

 2
 × 2

 4 +

 9
 × 1

9 +

 6
 × 2

 12 +

 4
 × 1

 4 +
10
(9)
 1

10
(2)
 8

 5
 × 2

 10

 2
 × 3

 6 +

 9
 × 1

 9 +

 6
 × 3

 18 +

 4
 × 1

 4 +

 5
 × 3

 15

 2
 × 6

 12 +

 9
 × 5

 45 +

 6
 × 4

 24 +

 4
 × 3

 12 +

 5
 × 2

 10

 2
 × 32

 64 +

 9
 × 16

 144 +

 6
 × 8

 48 +

 4
 × 4

16 +

 5
 × 2

 10

Check digit equals
Code with check digit
is 296451.

= 52/10 = 5 remainder
Check digit equals
Code with check digit
 is 296458.

11
(4)
 7

= 103/11 = 9 remainder
Check digit equals
Code with check digit
 is 296457.

11
(7)
4

= 282/11 = 25 remainder
Check digit equals
Code with check digit
 is 296454.

FIGURE 15.19
Examples of weighting methods
and modulus numbers.

504 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

the first five numbers represent a bank account number and the last digit is a check digit. Let’s
apply the Luhn formula to see if this is a valid number.

1. Double the second last digit, then double every other digit (i.e., skip a digit, double the
next, skip a digit, double the next, etc.). For example, the number 7-7-7-8-8-8 becomes
14-7-14-8-16-8.

2. If doubling any digit results in a number that is larger than 10, reduce this two-digit
number to a single digit by adding the numbers together. In our example, the 14 becomes 1
� 4 � 5 and the 16 becomes 1 � 6 � 7. In doing so, our original number, 7-7-7-8-8-8 has
been transformed into a new number, 5-7-5-8-7-8.

3. Now add all the digits in the new number together. So, 5 � 7 � 5 � 8 � 7 � 8 � 40.
4. Look at the total. If it ends in zero, the number is valid according to the Luhn formula.

Since 40 ends in zero, we can say that it passes the Luhn formula test.

The Luhn formula can be used to identify mistakes in entering an incorrect credit card. For ex-
ample, the credit card number 1334-1334-1334-1334 is assumed to be valid because the digits of
the transformed number 2364-2364-2364-2364 will add up to 60, a number ending in zero. If a
user incorrectly enters a wrong digit, the total would not be a multiple of zero.

The Luhn formula does not catch every error, however. If a user makes mistakes in entering
more than one digit, for example entering 1334-1334-1334-3314, the total of the transformed
number, 2364-2364-2364-6324, is still 60. This transposition error (flipping the second last and
fourth last digit) will not be caught.

Credit card companies also use the expiration date and a three- or four-digit verification code,
often written on the reverse side of the card for more security.

The seven tests for checking on validity of input can go a long way toward protecting the sys-
tem from the entry and storage of erroneous data. Always assume human errors in input are more
likely than not to occur. It is your responsibility to understand which errors will invalidate data,
and how to use the computer to guard against those human errors and thus limit their intrusion
into system data.

C O N S U L T I N G O P P O R T U N I T Y 1 5 . 4

Do You Validate Parking?

“ What are we going to do, Mercedes?” Edsel asks wearily.
Together, Mercedes and Edsel are reviewing the latest billing print-
out for their firm, Denton and Denton Parking Garages. They have
been purchasing batch billing services from a small, local com-
puter services company since they acquired three parking garages
in a medium-sized metropolitan area. Denton and Denton Parking
Garages rents daily, monthly, and yearly parking places to corpo-
rations and individuals.

Mercedes replies, “I’m not sure what our next move is, but the
billing is all wrong. Maybe we should try to talk to the IT people.”

“They said they could figure out how to compute these charges
from looking at what the old owners did by hand before, and they
said they didn’t want to run the old and new systems in parallel,”
Edsel remarks, shaking his head. “That isn’t right, though. At least
I can’t figure it out. Maybe you can.”

Mercedes accepts the notion of chasing the suspect output and
starts looking at the report in detail. “Well, for one thing, they don’t
realize we get cars from all over in here. Wherever we’ve got a car
with plates that aren’t in-state, it seems as if the computer stops fig-
uring. Look, our plates start with a number and then a letter, right?

Well this one from New York begins with three letters. The com-
puter can’t handle it,” she says.

Edsel catches on and starts to think about the business as he
looks at the printout. “Yeah, and look here. This person doesn’t have
a yearly account number, just a monthly one, so no bill came out,” he
says. “We’ve got monthlies, too, and the computer doesn’t know it.”

“And look at this. It still made daily charges for the three days
in November when we told them right out there weren’t any vacan-
cies for daily customers. It isn’t reasonable,” Mercedes asserts.

Edsel continues paging through the printout, but Mercedes
stops him, saying, “Don’t look any further. I’m calling the IT peo-
ple so we can get this mess straightened out.”

How would you characterize the problems being encountered
with the current garage billing system? Use a paragraph to formulate a
response. What are some tests for validity of data that could be included
in the software for a revised billing system for the parking garages? List
them. What could the programmer and analysts for the computer serv-
ices company have done differently so that the customer was not faced
with correcting the poor-quality output? Use three paragraphs to do a
critical analysis of what was done and what should have been done.

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 505

The Process of Validation
It is important to validate each field until it is either valid or an error has been detected. The or-
der of testing data is to first check for missing data. Then a syntax test can check the length of the
data entered and check for proper class and composition. Only after the syntax is correct are the
semantics, or meaning, of the data validated. This includes a range, reasonable, or value test, fol-
lowed by a check digit test.

GUI screens help to reduce the number of human input errors when they incorporate radio
buttons, check boxes, and drop-down lists. When radio buttons are used, one should be set as the
default, and the only way it would be unchecked is if the user clicks a different radio button. In
the case of drop-down lists, the first choice should contain a message informing the user to
change the list. If the first choice is still selected when the form is submitted, a message should
inform the user to select a different option.

Usually validating a single field is done with a series of IF . . . ELSE statements, but there
are also pattern validation methods. Usually these patterns are found in the database design (as in
Microsoft Access) but may be included in programming languages, such as Perl, JavaScript, and
XML schemas. The patterns are called regular expressions and contain symbols that represent the
type of data that must be present in a field. Figure 15.20 illustrates characters used in JavaScript
regular expressions.

An example of pattern validation used to test an email address is

[A-Za-z0-9]\w{2,}@[A-Za-z0-9]{3,}\.[A-Za-z]{3}/

The meaning of this pattern is as follows: The first letter must be any uppercase letter, low-
ercase letter, or number ([A-Za-z0-9]). This is followed by two or more characters that are any
letter, number, or an underscore (\w{2,}). There must then be an @ symbol, followed by at least
three letters or numbers, a period, and exactly three characters after the period.

A cross-reference check assumes that the validity of one field may depend on the value of
another field. An example of a cross-reference check is checking for a valid date. In one very spe-
cial case, the validity of the day of the month depends on the year. That is, February 29 is only
valid during leap years. Once single fields have been checked, you can perform cross-reference
checks. Obviously, if one of the fields is incorrect, the cross-reference check is meaningless and
should not be performed.

Character
Code

Meaning Used in Regular
Expression Validation

\d
\D
\w
\W

.
[characters]
[char-char]
[a–z][A–Z][0–9]
[^characters]
[^char-char]
[^a–z]
{n}

{n,}
\s

\S

Any digit 0–9
Any nondigit character
Any letter, number, or underscore
Any character other than a letter, number,
or underscore
Matches any character
Matches the characters in the brackets
Matches the range of characters
Will accept any letter or digit
Match anything other than the characters
Match anything outside the range of characters
Will accept anything except lowercase letters
Match exactly n occurrences of the preceding
character
Match at least n occurrences of the character
Any white space formatting character
(tab, new line, return, etc.)
Any nonwhite space character

FIGURE 15.20
These characters are used in
regular expression (pattern)
validation.

506 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

XML documents may be validated by comparing them to a document type definition (DTD)
or a schema (refer to Chapter 8). The DTD will check to see whether the format of the document
is valid, but a schema is much more powerful and will check the type of data, such as a short or
long integer, a decimal number, or date. A schema will also check a range of values, the number
of digits to the left and right of a decimal point, and the values of codes. There are free tools to
validate a DTD or schema. IEXMLTLS is a Microsoft extension to Internet Explorer that adds
new menu options when the user right-clicks in an XML document.

ACCURACY ADVANTAGES IN ECOMMERCE ENVIRONMENTS
One of the many bonuses of ecommerce transactions is increased accuracy of data, due to four
reasons:

1. Customers generally key or enter data themselves.
2. Data entered by customers are stored for later use.
3. Data entered at the point of sale are reused throughout the entire order fulfillment process.
4. Information is used as feedback to customers.

An analyst needs to be aware of the advantages that have resulted from ecommerce and the elec-
tronic capture and use of information.

Customers Keying Their Own Data
First, customers know their own information better than anyone else. They know how to spell
their street address, they know whether they live on a “Drive” or a “Street,” and they know their
own area code. If this information is transmitted by phone, it is easier to make a mistake spelling
the address; if it is entered by using a faxed paper form, mistakes can occur if the fax transmis-
sion is difficult to read. If users enter their own information, however, accuracy increases.

Storing Data for Later Use
After customers enter information, it may be stored on their own personal computers. If they return
to that ecommerce site and fill out the same form to complete a second transaction, they will witness
the advantage of storing this information. As they begin to type their name, drop-down lists will
prompt them with their full name even though only a couple of characters were entered. By clicking
on this prompt, the full name is entered and no further typing is necessary for this field. This auto-
complete feature can suggest matches for credit card and password information as well, and this in-
formation is encrypted so that Web sites cannot read the information stored on the user’s computer.

Companies that want to store information to enable faster and more accurate transactions do
so in small files called cookies. Personal information can only be accessed by the company that
placed the cookie on the user’s computer.

Using Data through the Order Fulfillment Process
When companies capture information from a customer order, they can use and reuse that infor-
mation throughout the entire order fulfillment process. Hence, the information gathered to com-
plete an order can also be used to send an invoice to a customer, obtain the product from the
warehouse, ship the product, send feedback to the customer, and restock the product by notifying
the manufacturer. It can also be used again to send a paper catalog to the customer or send a spe-
cial offer by email.

These ecommerce enhancements replace the traditional approach, which used a paper-based
procurement process with purchase orders sent via fax or mail. This electronic process not only
speeds up the delivery of the product, but also increases the accuracy so that the product is deliv-
ered to the correct address. Rather than reading a fax or a mailed-in form, a shipper uses the more
accurate electronic version of the data. Electronic information allows better supply chain man-
agement, including checking product and resource availability electronically, and automating
planning, scheduling, and forecasting.

Providing Feedback to Customers
Confirmations and order status updates are ways to enhance feedback to customers. If a customer
receives confirmation of a mistake in an order just placed, the order can be corrected immediately.

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 507

For example, suppose a customer mistakenly submits an order for two copies of a DVD rather than
one. After submitting the order, the customer receives an email confirming the order. The customer
notices the mistake, immediately contacts the company, and has the order corrected, thereby avoid-
ing having to return the extra copy of the DVD. Accuracy is improved by better feedback.

SUMMARY
Ensuring the quality of the data input to the information system is critical to ensuring quality output. The
quality of data entered can be improved through effective coding, effective and efficient data capture, and
the validation of data.

Data entry by humans can be speeded up through effective use of coding, which puts data into short se-
quences of digits and/or letters. Both simple sequence codes and alphabetic derivation codes can be used to
follow the progress of a given item. Classification codes and block sequence codes are useful for distinguish-
ing classes of items from each other. Cipher codes are also useful because they can conceal information that
is sensitive or is restricted to employees.

Codes are also worthwhile for revealing information to users, since they can enable employees to lo-
cate items in stock and also make data entry more meaningful. Significant-digit subset codes use subgroups
of digits to describe a product. Mnemonic codes also reveal information by serving as human memory aids
that can help a data entry operator enter data correctly or help the user. The Unicode character set includes
all standard language symbols. You can display Web pages written in other alphabets by downloading an in-
put method editor from Microsoft. Function codes are useful shortcuts for informing computers or people
about what functions to perform or what actions to take.

Effective data entry should also consider input devices. A well-designed, effective form that serves as
a source document is the first step. Data can be input through many different methods, each with varying
speed and reliability. Keyboards have been redesigned for efficiency and improved ergonomics. Optical
character recognition (OCR), magnetic ink character recognition (MICR), and mark-sense forms each have
special capacities for improving efficiency. Bar codes also speed data entry, improve data accuracy, and
increase reliability. RFID allow the automatic collection of data using RFID tags on products, people, or
animals. They can improve inventory management and supply chain processes.

Accurate data entry also can be enhanced through the use of input validation. Analysts must work with
users to design input validation tests to prevent erroneous data from being processed and stored, which is
costly and potentially detrimental.

Input transactions should be checked to ensure the request is acceptable, authorized, and correct. Input
data can be validated through software using several types of tests that check for missing data, length of data
items, range and reasonableness of data, and invalid values for data. Input data can also be compared with

HYPERCASE® EXPERIENCE 15

“Sometimes I think I’m the luckiest person on earth. Even
though I’ve been here five years, and away from the UK all of that
time, I still enjoy the people I meet and what I do. Yes, I know
Snowden’s demanding. You’ve experienced some of that, haven’t
you? He, for one, loves codes. I think they are a pain. I always for-
get them or try to make up new ones or something. Some of the
physicians, though, think they’re great. It must be all those Latin ab-
breviations they studied in med school. I hear that your most press-
ing assignment this week has to do with actually getting the
information into the project reporting system. The Training group
wants your ideas, and it wants them fast. Good luck with it. Oh, and
when Snowden gets back from Thailand, I’m certain he’ll want to
take a peek at what your team has been up to.”

HyperCase Questions
1. Using a CASE tool, a software package such as Microsoft

Access, or a paper layout form, design a data entry procedure
for the proposed project reporting system for the Training
group. Assume we are particularly concerned about the
consulting physicians staff, who don’t want to spend a great
deal of time keying in large amounts of data when using the
system.

2. Test your data entry procedure on three teammates. Ask for
feedback concerning the appropriateness of the procedure,
given the type of users the system will have.

3. Redesign the data entry procedure to include the feedback
you have received. Explain in a paragraph how your changes
reflect the comments you were given.

508 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

stored data for validation purposes. Once numerical data are input, they can be checked and corrected auto-
matically through the use of check digits and the Luhn formula.

There is a set order for the testing of data to validate each field. There are also pattern validation meth-
ods found in the database design or included in programming languages. The patterns are called regular ex-
pressions and contain symbols that represent the type of data that must be present in a field.

Ecommerce environments afford the opportunity for increasing accuracy of data. With proper empha-
sis on user-centered design elements, customers can enter their own data, store data for later use, use the
same stored data throughout the order fulfillment process, and receive feedback regarding order confirma-
tions and updates.

KEYWORDS AND PHRASES
alphabetic derivation code
autocomplete feature
bar code
block sequence code
bottleneck
changeable
check digit
cipher code
classification code
coding
cookies
cross-reference test
differentiated
function code
keyboarding
Luhn formula
magnetic ink character recognition (MICR)
mark-sense form

mnemonic code
optical character recognition (OCR)
radio frequency identification (RFID)
redundancy in input data
regular expression
self-validating code
significant-digit subset code
simple sequence code
supply chain management
test for class or composition
test for comparison with stored data
test for correct field length
test for invalid values
test for missing data
test for range or reasonableness
Unicode
validating input

REVIEW QUESTIONS
1. What are the four primary objectives of data entry?
2. List the five general purposes for coding data.
3. Define the term simple sequence code.
4. When is an alphabetic derivation code useful?
5. Explain what is accomplished with a classification code.
6. Define the term block sequence code.
7. What is the simplest type of code for concealing information?
8. What are the benefits of using a significant-digit subset code?
9. What is the purpose of using a mnemonic code for data?

10. Define the term function code.
11. List the eight general guidelines for proper coding.
12. What are changeable data?
13. What are differentiation data?
14. What is one specific way to reduce the redundancy of data being entered?
15. Define the term bottleneck as it applies to data entry.
16. What three repetitive functions of data entry can be done more efficiently by a computer than by a

data entry operator?
17. List six data entry methods.
18. List the three main problems that can occur with input transactions.
19. Define RFID. What are the differences between active and passive RFID tags?
20. Give two examples of the use of RFID tags in process or inventory management in retail or health

care environments.
21. What are the eight tests for validating input data?
22. Which test checks to see whether data fields are correctly filled in with either numbers or letters?
23. What common error is missed by the Luhn formula?
24. Which test would not permit a user to input a date such as October 32?
25. Which test ensures data accuracy by the incorporation of a number in the code itself?
26. List four improvements to data accuracy that transactions conducted over ecommerce Web sites

can offer.

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 509

27. What is Unicode, and how is it used?
28. What is the process for validating data entered into fields?
29. What is a regular expression?

PROBLEMS
1. A small, private university specializing in graduate programs needs to keep track of the list of

students who (a) apply, (b) are accepted, and (c) actually enroll in the university. For security
purposes the university also must send a report to the government with a list of foreign students who
enroll but fail to register. Suggest a kind of code for this purpose, and give an example of its use in
the university that demonstrates its appropriateness. What are its advantages?

2. The Central Pacific University Chipmunks have been using a simple sequence code to keep track of
season ticket holders and fans who are not season ticket holders for all of its sports programs. There
have been some upsetting mix-ups.

In a paragraph, suggest a different coding scheme that will help uniquely identify each ticket
holder and explain how it will prevent mix-ups.

3. A code used by an ice cream store to order its products is 12DRM215-220. This code is deciphered in
this manner: 12 stands for the count of items in the box, DRM stands for Dreamcicles (a particular
kind of ice cream novelty), and 215-220 indicates the entire class of low-fat products carried by the
distributor.
a. What kind of code is used? Describe the purpose behind each part (12, DRM, 215-220) of the code.
b. Construct a coded entry using the same format and logic for an ice cream novelty called Pigeon

Bars, which come in a six-count package and are not low-fat.
c. Construct a coded entry using the same format and logic for an ice cream novelty called

Airwhips, which come in a 24-count package and are low-fat.
4. The data entry operators at Michael Mulheren Construction have been making errors when entering

the codes for residential siding products, which are as follows: U � stUcco, A � Aluminum, R �
bRick, M � Masonite, EZ � EZ color-lok enameled masonite, N � Natural wood siding, AI �
pAInted finish, SH � SHake SHingles. Only one code per address is permitted.
a. List the possible problems with the coding system that could be contributing to erroneous entries.

(Hint: Are the classes mutually exclusive?)
b. Devise a mnemonic code that will help the operators understand what they are entering and

subsequently help their accuracy.
c. How would you redesign the classes for siding materials? Respond in a paragraph.

5. The following is a code for one product in an extensive cosmetic line: L02002Z621289. L means that
it is a lipstick, 0 means it was introduced without matching nail polish, 2002 is a sequence code
indicating in what order it was produced, Z is a classification code indicating that the product is
hypoallergenic, and 621289 is the number of the plant (there are 15 plants) where the product is
produced.
a. Critique the code by listing the features that might lead to inaccurate data entry.
b. Designer Brian d’Arcy James owns the cosmetic firm that uses this coding scheme. Always

interested in new design, Brian is willing to look at a more elegant code that encodes the same
information in a better way. Redesign the coding scheme and provide a key for your work.

c. Write a sentence for each change you have suggested, indicating what data entry problem (from
Problem 5a) the change will eliminate.

d. Mr. d’Arcy James is delighted with your work. He says the firm would like to hire you to help
them branch out into selling theatrical makeup (shows such as Wicked and Shrek with eight
performances a week use a lot of green greasepaint). Add any necessary new codes for the
coding scheme you suggested in b, and provide a key for your work.

6. The d’Arcy James cosmetics firm requires its salespeople to use notebooks to enter orders from retail
department stores (their biggest customers). This information is then relayed to warehouses, and
orders are shipped on a first-come, first-served basis. Unfortunately, the stores are aware of this
policy and are extremely competitive about which one of them will offer a new d’Arcy James
product first. Many retailers have taken the low road and persuaded salespeople to falsify their order
dates on sales forms by making them earlier than they actually were.
a. This problem is creating havoc at the warehouse. Disciplining any of the personnel involved is

not feasible. How can the warehouse computer be used to certify when orders are actually
placed? Explain in a paragraph.

b. Salespeople are complaining that they have to ignore their true job of selling so that they can key
in order data. List the data items relating to sales of cosmetics to retailers that should be stored in
and retrieved from the central computer rather than keyed in for every order.

c. Describe in a paragraph or two how bar coding might help solve the problem in Problem 6b.

510 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

7. List the best data entry method and your reason for choosing it for each of the following six
situations:
a. Turnaround document for a utility company that wants notification of a change in the customer

address.
b. Data retrieval allowed only if there is positive machine identification of the party requesting

data.
c. Not enough trained personnel available to interpret long, written responses; many forms

submitted that capture answers to multiple-choice examinations; high reliability necessary; fast
turnaround not required.

d. Warehouse set up for a discount compact disc operation; bins are labeled with price information,
but individual discs are not; and few skilled operators are available to enter price data.

e. Poison control center that maintains a large database of poisons and antidotes; needs a way to
enter data on the poison taken; also enter weight, age, and general physical condition of the
victim when a person calls the center’s toll-free number for emergency advice.

f. Online purchase of a DVD by a consumer with a credit card.
8. Ben Coleman, one of your systems analysis team members, surprises you by asserting that when a

system uses a test for correct field length, it is redundant also to include a test for range or
reasonableness. In a paragraph, give an example that demonstrates that Ben is mistaken on this one.

9. Several retailers have gotten together and begun issuing a “state” credit card that is good only in
stores in their state. As a courtesy, salesclerks are permitted to transcribe the 15-digit account number
by hand (after getting it from the accounting office) if the customer is not carrying the card. The only
problem with accounts that retailers have noticed so far is that sometimes erroneous account numbers
are accepted into the computer system, resulting in a bill being issued to a nonexistent account.
a. What sort of validity test would clear up the problem? How? Respond in a paragraph.
b. Suggest an alternative data entry method that might alleviate this problem altogether.

10. The following are part numbers: 238902, 238933, 239402, 235693, 235405, 239204, 240965.
Develop a check digit for them using 1-3-1-3-1 multipliers and modulus 11. Use the method
presented in this chapter. Why do some numbers have the same check digit?

11. Develop a check digit system for the part numbers in Problem 10 using 5-4-3-2-1 multipliers and
modulus 11.

12. Develop a check digit system for the part numbers in Problem 10 using the Luhn formula.
13. Why would a check digit system such as 1-1-1-1-1 not work as well as other methods? What errors

would it miss?
14. Define a regular expression for validating each of the following:

a. A U.S. zip code, which must have five digits, followed by an optional hyphen and four digits.
b. A telephone number in the format (aaa) nnn-nnnn, where aaa represents the area code and the ns

represent digits.
c. A date in the form of day-month-year, where the month is a three-letter code and the year is four

digits. Hyphen must separate the day and month and year and month.
d. The alphabetic derivation code illustrated in this chapter for a magazine subscriber. The format is

99999XXX9999XXX, where X represents a letter and 9 represents a number.
15. For the following codes, define the validation criteria (there may be multiple checks for each field)

and the order that you would test each of the conditions.
a. A credit card number entered on a Web form: The customer has selected the type of credit

card from a drop-down list.
b. A part number in a hardware store: The part number is a complex code, where the first digit

represents the department (such as housewares, automotive, and so on), and the number should
be self-checking. There are seven different departments.

c. The date that a book was postmarked when returned to an online bookstore: A copy of the
customer receipt must be included with the book. Returned books must be postmarked within 30
days of the purchase date.

d. A language spoken code used on a Web site: Hint: Search the Web for standard language codes.
e. A driver’s license number, composed of several parts: The person’s birth month, the birthday,

and birth year, not necessarily together; a code representing eye color; and a sequence number.
The driver’s license contains the date of birth, the eye and hair color, as well as the person’s
name and address.

f. The Canadian postal code: The format is X9X 9X9 (X is any letter, 9 is any number).
g. Airline luggage codes: Such as LAX for Los Angeles or DUB for Dublin.
h. A product key used to unlock purchased software: The key consists of four groups of five

characters each. The first group must have two letters followed by three numbers; the second
group must contain two numbers followed by three letters; the third group must contain two

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 511

letters, each from A through G, followed by three numbers from one through four; and the last
group must contain a letter, either an E, G, or C, two digits with values from four through
seven, and two letters, either an A, B, or C. Hint: A pattern may be the best way to validate
the product key.

GROUP PROJECTS
1. Along with your group members, read Consulting Opportunity 15.3, “To Enter or Not to Enter: That

Is the Question,” presented earlier in this chapter. Design an appropriate data entry system for
Elsinore Industries. Your group’s design should emphasize efficiency and accuracy. In addition,
distinguish between data that are changeable and data that differentiate an item being entered from all
others. Draw prototypes of any screen necessary to explain what you are recommending.

2. Divide your group into analysts and Elsinore Industries employees to role-play. The analysts should
present the new data entry system, complete with prototype displays. Ask for feedback on the design
from Elsinore employees.

3. Write a brief paragraph describing how to improve the original data entry design based on the
comments received.

SELECTED BIBLIOGRAPHY
Davis, G. B., and M. H. Olson. Management Information Systems, Conceptual Foundations, Structure, and

Development, 2d ed. New York: McGraw-Hill, 1985.
Lamming, M. G., P. Brown, K. Carter, M. Eldridge, M. Flynn, G. Louie, P. Robinson, and A. Sellan. “The

Design of a Human Memory Prosthesis.” Computer Journal, Vol. 37, 1994, pp. 153–163.
Lee, Y. M., F. Cheng, and Y. T. Leung. “Exploring the Impact of RFID on Supply Chain Dynamics.” In

Proceedings of the 2004 Winter Simulation Conference, pp. 1145–1152. Edited by R. G. Ingalls, M. D.
Rossetti, J. S. Smith, and B. A. Peters.

MacKay, D. J. Information Theory, Inference and Learning Algorithms. Cambridge, UK: Cambridge Uni-
versity Press, 2004.

Miller, G. A. “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capability for Process-
ing Information.” Psychological Review, Vol. 63, No. 2, March 1956, pp. 81–97.

Newman, W. N., M. G. Lamming, and M. Lamming. Interactive System Design. Reading, MA: Addison-
Wesley Longman Publishing Co., 1995.

Niederman, F., R. G. Mathieu, R. Morley, and I. Kwon. “Examining RFID Applications in Supply Chain
Management.” Communications of the ACM, Vol. 50, No. 7, July 2007, pp. 92–101.

Owsowitz, S., and A. Sweetland. “Factors Affecting Coding Errors.” Rand Memorandum RM-4346-PR.
Santa Monica, CA: Rand Corporation, 1965.

Robey, D., and W. Taggart. “Human Processing in Information and Decision Support Systems.” MIS Quar-
terly, Vol. 6, No. 2, June 1982, pp. 61–73.

Ryder, J. “Credit Card Validation Using LUHN Formula.” www.freevbcode.com. Last accessed August
26, 2009.

www.freevbcode.com

512 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

E P I S O D E 15
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Entering Naturally
Tuesday afternoon finds Anna and Chip having their weekly analysis and design review session. Chip waves
toward a large stack of documents that are neatly organized on a large table. “I can’t believe that we’re al-
most finished with the design of this system,” he remarks. “It’s been a long process, but I’ll bet we’ve ob-
tained enough user feedback to ensure a high-quality system. All that’s left is the design of the data entry
procedures, and we’ll be ready to start packaging the specs for the programmers.”

“Yes,” replies Anna, “the end is in sight. Let’s start by examining the design of the input portion of the
system.”

“The ADD SOFTWARE program is online,” notes Chip. “The operator will have to sight-verify each trans-
action. After all data fields have been edited for accuracy, a message will appear on the bottom of the display. It
will prompt the operators to check the data on the display for accuracy against the form and click the Save
Record button if correct. The operators will have a chance to make changes if the data are keyed incorrectly.”

Every data field must be edited for accuracy. Chip notes, “In the long run, it’s better to have complete
editing for accuracy in the programs rather than to find that erroneous data have been stored on master files
and printed on reports.”

The strategy for field editing is to check the data in the following order:

1. Syntax—whether the data are numeric or alphabetic—and the length of the data. An example is the
HARDWARE INVENTORY NUMBER, which must be eight characters in length and numeric.

2. The contents of the field, including range, limit, and values for the data. When validating the DATE
PURCHASED, the month must be from 1 to 12. This check should occur only after the month has been
verified as numeric.

3. Cross-reference checks between two or more data elements. To check the day portion of the DATE
PURCHASED, a table of the number of days possible for each month will be used for an upper limit.
This table could not be used if the month number was not between 1 and 12. Check digits are another
example of a cross-reference edit.

4. External edits, such as reading a file to verify if the record to be added already exists in the file. Read-
ing records is slower than editing, which is performed in main memory, and it should occur only after
the data successfully pass all other edits.

Edit criteria have been entered on the Visible Analyst Element Repository display screen as the ele-
ments were added to the design. These elements include simple editing criteria and table checking. The
Notes area may be used to enter editing criteria. The HARDWARE INVENTORY NUMBER entry includes
a reference for using the modulus-11 method of verifying the check digit portion of the number. Further-
more, when adding a new computer, the COMPUTER MASTER must be read to ensure that a record does
not already exist with the same HARDWARE INVENTORY NUMBER.

Several of the elements have Notes areas referring to tables, as well as entries for the codes in the
Values and Meanings area. An example is the OPERATING SYSTEM element. “I’ll produce a list of all
tables we’ll require,” Anna offers. Produce the list by searching the Repository Web page or using the Vis-
ible Analyst Report Query feature. A list of all elements containing notes starting with “Table of codes” is
printed. Included on the list are the Picture and Length, showing the syntax of the code. With this list, ta-
bles are created.

Each table of codes is defined using Microsoft Access tables. Chip and Anna each spend time working
on the tables.Amnemonic code is chosen for OPERATING SYSTEM, and to represent the SOFTWARE CAT-
EGORY because it is easy for the users to work with. “I think a significant-digit subset coding scheme would
be the best for coding the campus buildings,” remarks Chip. Anna agrees. “That’s good, Chip. The first digit
for the campus location, and the remaining two digits representing individual buildings in the campus.”

Chip designs the codes used for the OPERATING SYSTEM table. The Microsoft Access display is
shown in Figure E15.1. Two columns are used to define codes. The left column contains the code, and the
right column contains the meaning of the code. These entries may be modified, and new entries may be
added, providing flexibility in the final system.

“Here’s the SOFTWARE CATEGORY table that I created,” says Anna. “This table may be easily updated
as new software is developed and acquired by the university. It’s amazing how fast software can change.”

“That’s a valuable component of the system,” Chip comments. “It provides consistency for all codes
and their meanings.”

CHAPTER 15 • DESIGNING ACCURATE DATA ENTRY PROCEDURES 513

FIGURE E15.1
OPERATING SYSTEM TABLE
OF CODES defined using
Microsoft Access.

Chip and Anna finish their work the next morning at about 11:30. They glance around the room hap-
pily, frequently reexamining the final design. The months of analysis, design work, consultation with the
users, and careful adherence to standards are finally complete.

“I feel really good about this project,” says Anna.
Chip agrees, “I’m proud of the quality we put in.”

EXERCISES
E-1. Modify and print the following elements with edit criteria in the Notes (or Values and Meanings for

specific codes) area. These may be found in the Repository Web page or in the VisibleAnalyst repository.

Element Edit Criteria

a. SOFTWARE CATEGORY Table of codes:
Software Category Code

b. COURSE TRAINING LEVEL CODE B - Beginning; I - Intermediate;
A - Advanced

c. OPERATING SYSTEM W - Windows Vista Ultimate;

B - Windows Vista Business;

U - Unix

E-2. Modify and print the following elements with edit criteria placed in the Notes area:

a. Element: SOFTWARE INVENTORY NUMBER

Notes: A modulus-11 check digit must be verified when entering the number. The ADD
SOFTWARE program creates the check digit.

The ADD SOFTWARE program should also check the SOFTWARE MASTER file
to ensure that a record with the same inventory number does not already exist.

b. Element: DATE PURCHASED

Notes: Verify that the DATE PURCHASED is less than or equal to the current date.

c. Element: QUANTITY RECEIVED

Notes: Verify that the QUANTITY RECEIVED is less than or equal to the QUANTITY
ORDERED.

d. Element: SOFTWARE UPGRADE VERSION

Notes: Ensure that the software UPGRADE VERSION is greater than the current version.

e. Element: SECOND HARD DRIVE

Notes: SECOND HARD DRIVE may exist only if there is an entry for HARD DRIVE.

514 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

1 Central Campus

2 Waterford Campus

3 Hillside Campus

001 Administration 010 Environmental Studies

002 Admissions 011 Geology

003 Agricultural 012 Law

004 Astronomy 013 Library

005 Business 014 Mathematics

006 Chemical Engineering 015 Medicine

007 Computer Science 016 Physics

008 Education 017 Psychology

009 Engineering 018 Zoology

E-3. After speaking with Dot Matricks and Mike Crowe, it has become apparent that the campus codes
must be sortable for installing hardware and software, as well as for creating inventory sheets. Use
Microsoft Access to modify and print the CAMPUS LOCATION CODES table. The first digit repre-
sents the campus location. Values are as follows:

The next three digits represent buildings in the campus, with the following building codes:

Use a combination (your choice) of campus and building codes to build the final table of codes.
Include the meaning of the code.

The exercises preceded by a www icon indicate value-added material is available from the Web site at
www.pearsonhighered.com/kendall. Students can download a sample Microsoft Visio, Visible Analyst, Microsoft
Project, or a Microsoft Access file that can be used to complete the exercises.

www.pearsonhighered.com/kendall

515

C H A P T E R 1 6

Quality Assurance
and Implementation

LEARNING OBJECTIVES

Once you have mastered the material in this chapter you will be able to:

1. Recognize the importance of users and analysts taking a total quality approach to improve
the quality of software design and maintenance.

2. Realize the importance of documentation, testing, maintenance, and auditing.

3. Understand how service-oriented architecture and cloud computing are changing the
nature of information system design.

4. Design appropriate training programs for users of the new system.

5. Recognize the differences among physical conversion strategies, and be able to recommend
an appropriate one to a client.

6. Address security, disaster preparedness, and disaster recovery concerns for traditional and
Web-based systems.

7. Understand the importance of evaluating the new system, and be able to recommend a
suitable evaluation technique to a client.

Quality has long been a concern of businesses, as it should be for systems
analysts in the analysis and design of information systems. The user of the
information system is the single most important factor in establishing and
evaluating its quality. It is far less costly to correct problems in their early
stages than it is to wait until a problem is articulated through user com-

plaints or crises. The three approaches to quality assurance through software engineering are
(1) securing total quality assurance by designing systems and software with a top-down, mod-
ular approach; (2) documenting software with appropriate tools; and (3) testing, maintaining,
and auditing software.

The process of ensuring that the information system is operational and then allowing users
to take over its operation for use and evaluation is called implementation. Implementation
concerns moving computer power to individual users by shifting computer power and respon-
sibility to groups and individuals throughout the business with the help of distributed comput-
ing, cloud computing, and service-oriented architecture; training users and making sure that
each user understands any new roles they must take on because of the new information system;
choosing a conversion strategy; providing proper security, privacy, and disaster plans; and
evaluating the new or modified information system.

516 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

THE TOTAL QUALITY MANAGEMENT APPROACH
Total quality management (TQM) is essential throughout all the systems development steps. Ac-
cording to Evans and Lindsay (2004), the primary elements of TQM are meaningful only when
occurring in an organizational context that supports a comprehensive quality effort. It is in this
context that the elements of customer focus, strategic planning and leadership, continuous im-
provement, empowerment, and teamwork are united to change employees’ behavior and, ulti-
mately, the organization’s course. Notice that the concept of quality has broadened over the years
to reflect an organizational, rather than an exclusively production, approach. Instead of conceiv-
ing of quality as controlling the number of defective products produced, quality is now thought
of as an evolutionary process toward perfection that is referred to as total quality management.

Systems analysts must be aware of the factors that are driving the interest in quality. It is im-
portant to realize that the increasing commitment of businesses to TQM fits extraordinarily well
into the overall objectives for systems analysis and design.

Six Sigma
The advent of Six Sigma has changed the approach to quality management. Systems analysts and
systems users need to be aware of Six Sigma and apply some of the principles to their systems
analysis projects. Originally developed by Motorola in the 1980s, Six Sigma is more than a
methodology; it is a culture built on quality. The goal of Six Sigma is to eliminate all defects. This
applies to any product, service, or process. In operations management textbooks from the 1970s
to the end of the century, quality control was expressed in terms of three standard deviations from
the mean, or three sigma, which equals about 67,000 defects per million opportunities. Six Sigma
implies a goal of no more than 3.4 defects per million opportunities.

Six Sigma is a top-down approach. It requires a CEO to adopt the philosophy and an execu-
tive to serve as project champion. A Six Sigma project leader is called a Black Belt. (The
metaphor of the Black Belt comes from the ranking system of capabilities in martial arts.) Black
Belts are certified after they have successfully led projects. Other project members are called
Green Belts. Master Black Belts are Black Belts who have worked on many projects and are avail-
able as a resource to project teams.

Six Sigma can be summarized as a methodology. The steps of Six Sigma are shown in
Figure 16.1. Six Sigma, however, is much more than a methodology; it is a philosophy and a
culture. For more information on Six Sigma and quality management, visit the Web site for
the Juran Center at the Carlson School of Management, University of Minnesota, Twin Cities
(www.csom.umn.edu). In 2002 the Juran Center issued a proclamation to support and encour-
age quality. The authors of this book signed the charter at that time, and we agree wholeheart-
edly with its principles.

The late Joseph M. Juran said, “All quality improvement occurs on a project-by-project ba-
sis and in no other way” (Juran, 1964). Systems analysts, project managers, and users should take
that to heart.

Responsibility for Total Quality Management
Practically speaking, a large portion of the responsibility for the quality of information systems
rests with systems users and management. Two things must happen for TQM to become a reality
with systems projects. First, the full organizational support of management must exist, which is
a departure from merely endorsing the newest management gimmick. Such support means estab-
lishing a context for management people to consider seriously how the quality of information sys-
tems and information itself affects their work.

Early commitment to quality from the analyst and business users is necessary to achieve the
goal of quality. This commitment results in exerting an evenly paced effort toward quality
throughout the systems development life cycle, and it stands in stark contrast to having to pour
huge amounts of effort into ironing out problems at the end of the project.

Organizational support for quality in management information systems can be achieved by
providing on-the-job time for IS quality circles, which consist of six to eight organizational peers
specifically charged with considering both how to improve information systems and how to im-
plement improvements.

Through work in IS quality circles or through other mechanisms already in place, manage-
ment and users must develop guidelines for quality standards of information systems. Preferably,

www.csom.umn.edu

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 517

FIGURE 16.1
Every systems analyst should
understand the methodology and
philosophy of Six Sigma.

standards will be reshaped every time a new system or major modification is to be formally pro-
posed by the systems analysis team.

Hammering out quality standards is not easy, but it is possible and has been done. Part of the
systems analyst’s job is encouraging users to crystallize their expectations about information sys-
tems and their interactions with them.

Departmental quality standards must then be communicated through feedback to the systems
analysis team. The team is often surprised at what has developed. Expectations typically are less
complex than what experienced analysts know could be done with a system. In addition, human
issues that have been overlooked or underrated by the analyst team may be designated as ex-
tremely pressing in users’ quality standards. Getting users involved in spelling out quality stan-
dards for information systems will help the analyst avoid expensive mistakes in unwanted or
unnecessary systems development.

Structured Walkthrough
One of the strongest quality management actions the systems analysis team can take is to do struc-
tured walkthroughs routinely. Structured walkthroughs are a way of using peer reviewers to mon-
itor the system’s programming and overall development, point out problems, and allow the
programmer or analyst responsible for that portion of the system to make suitable changes.

Structured walkthroughs involve at least four people: the person responsible for the part of
the system or subsystem being reviewed (a programmer or analyst), a walkthrough coordinator,
a programmer or analyst peer, and a peer who takes notes about suggestions.

Each person attending a walkthrough has a special role to play. The coordinator is there to
ensure that the others adhere to any roles assigned to them and to ensure that any activities sched-
uled are accomplished. The programmer or analyst is there to listen, not to defend his or her think-
ing, rationalize a problem, or argue. The programmer or analyst peer is present to point out errors
or potential problems, not to specify how the problems should be remedied. The notetaker records
what is said so that the others present can interact without encumbrance.

Structured walkthroughs fit well in a total quality management approach when performed
throughout the systems development life cycle. The time they take should be short—half an hour

6

Standardize
the Changes

3

Analyze
the Causes

1

Define
the Problem

7

Draw
Conclusions

2

Observe
the Problem

Six Sigma

4

Act on
the Causes

5

Study
the Results

to an hour at most—which means that they must be well coordinated. Figure 16.2 shows a form
that is useful in organizing the structured walkthrough and reporting its results. Because walk-
throughs take time, do not overuse them.

Use structured walkthroughs as a way to obtain (and then act on) valuable feedback from a per-
spective that you lack. As with all quality assurance measures, the point of walkthroughs is to eval-
uate the product systematically on an ongoing basis rather than wait until completion of the system.

Top-Down Systems Design and Development
Many companies first introduced computer systems on the lowest level of the organization. This
is where the immediate benefits to computerization are most observable and cost-effective. Busi-
nesses often take this approach to systems development by going out and acquiring, for example,
COTS software for accounting, a different package for production scheduling, and another one
for marketing.

When in-house programming is done with a bottom-up approach, it is difficult to interface
the subsystems so that they perform smoothly as a system. Interface bugs are enormously costly
to correct, and many of them are not uncovered until programming is complete, when analysts
are trying to meet a deadline in putting the system together. At this juncture, there is little time,
budget, or user patience for the debugging of delicate interfaces that have been ignored.

Although each small subsystem appears to get the working software what it wants, when the
overall system is considered, there are severe limitations to taking a bottom-up approach. One is
that there is a duplication of effort in purchasing software and even in entering data. Another is
that worthless data are entered into the system. A third, and perhaps the most serious drawback
of the bottom-up approach, is that, while pockets of users’ needs may have been met, overall or-
ganizational objectives are not considered and hence cannot be met.

Top-down design allows the systems analyst to ascertain overall organizational objectives
first, as well as to ascertain how they are best met in an overall system. Then the analyst divides
that system into subsystems and their requirements.

518 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

C O N S U L T I N G O P P O R T U N I T Y 1 6 . 1

The Quality of MIS Is Not Strained

“Merle, come here and take a look at these end-of-the-week
reports,” Portia pleads. As one of the managers on the six-person IS
task force/quality assurance committee, Portia has been examining
for her marketing department the system output that has been pro-
duced by the prototype. The systems analysis team has asked her to
review the output.

Merle Chant walks over to Portia’s desk and takes a look at the
prospectus she’s holding. “Why, what’s wrong?” he asks. “It looks
okay to me. I think you’re taking this task force deal too much to
heart. We’re supposed to get our other work done as well, you
know.” Merle turns to leave and returns to his desk slightly per-
turbed at being interrupted.

“Merle, have a little mercy. It is really silly to put up with these
reports the way they are. I can’t find anything I need, and then I’m
supposed to tell everyone else in the department what part of the re-
port to read. I, for one, am disappointed. This report is slipshod. It
doesn’t make any sense to me. It’s a rehash of the output we’re get-
ting now. Actually, it looks worse. I am going to bring this up at the
next task force meeting,” Portia proclaims insistently.

Merle turns to face her, saying, “Quality is their responsibility,
Portia. If the system isn’t giving us good reports, they’ll fix it when

it’s all together. All you’re doing is making waves. You’re acting as
if they actually value our input. I wouldn’t give them the time of
day, let alone do their work for them. They’re so smart, let them fig-
ure out what we need.”

Portia looks at Merle blankly, then starts getting a little angry.
“We’ve been on the task force for four weeks,” she says. “You’ve
sat in on four meetings. We’re the ones who know the business. The
whole idea of TQM is to tell them what we need, what we’re satis-
fied with. If we don’t tell them what we need, then we can’t com-
plain. I’m bringing it up the next time we meet.”

How effective do you think Merle will be in communicating
his standards of quality to the systems analysis team and members
of the IS task force? Respond in a paragraph. If the systems analysts
are able to perceive Merle’s unwillingness to work with the task
force on developing quality standards, what would you say to con-
vince him of the importance of user involvement in TQM? Make a
list of arguments supporting the use of TQM. How can the systems
analysis team respond to the concerns Portia is bringing up? In a
paragraph, devise a response.

Report to Managementon Structured Walkthrough

Project Name:

Signature of Coordinator:

Date Report Is Filed: / /

Project Number:

Date of Walkthrough: / /
Time:

Walkthrough Coordinator:List of Participants:

Comments:

Action Recommended (Check One): () ACCEPT WORK AS FOUND () REVISE WORK
 () REVISE WORK AND CONDUCT FOLLOW-UP WALKTHROUGH () REJECT WORK

Portion (Description) of Work Examined:

FIGURE 16.2
A form to document structured
walkthroughs; walkthroughs can
be done whenever a portion of
coding, a system, or a subsystem
is complete.

Top-down design is compatible with the general systems thinking that was discussed in
Chapter 2. When systems analysts employ a top-down approach, they are thinking about the in-
terrelationships and interdependencies of subsystems as they fit into the existing organization.
The top-down approach also provides desirable emphasis on synergy or the interfaces that sys-
tems and their subsystems require, which is lacking in the bottom-up approach. It helps to answer
the question of how teams must work together to accomplish their goals.

The advantages of using a top-down approach to systems design include avoiding the chaos
of attempting to design a system all at once. As we have seen, planning and implementing man-
agement information systems is incredibly complex. Attempting to get all subsystems in place
and running at once is agreeing to fail.

A second advantage of taking a top-down approach to design is that it enables separate sys-
tems analysis teams to work in parallel on different but necessary subsystems, which can save a
great deal of time. The use of teams for subsystems design is particularly well suited to a total
quality assurance approach.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 519

520 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

A third advantage is that a top-down approach avoids a major problem associated with a bot-
tom-up approach: it prevents systems analysts from getting so mired in detail that they lose sight
of what the system is supposed to do.

Total quality management and the top-down approach to design can go hand-in-hand. The
top-down approach provides the systems group with a ready-made division of users into task
forces (specialized teams of users) for subsystems. Task forces set up in this manner can then
serve a dual function as quality circles for the management information system. The necessary
structure for quality assurance is then in place, as is proper motivation for getting the subsystem
to accomplish the departmental goals that are important to the users involved.

Using Structure Charts to Design Modular Systems
Once the top-down design approach is taken, the modular approach is useful in programming.
This approach involves breaking the programming into logical, manageable portions, or modules.
This kind of programming works well with top-down design because it emphasizes the interfaces
between modules and does not neglect them until later in systems development. Ideally, each in-
dividual module should be functionally cohesive so that it is charged with accomplishing only
one function.

Modular program design has three main advantages. First, modules are easier to write and
debug because they are virtually self-contained. Tracing an error in a module is less complicated,
because a problem in one module should not cause problems in others.

FIGURE 16.MAC
Things from Cultured Code.

M A C A P P E A L

An analyst who needs to complete a structured walkthrough might find it useful to take along Things,
an app for Apple’s iPhone. When the analysts return to the office, they can upload the information to
the desktop version. Things is just another way to get organized, but it is much simpler than OMNI-
focus (explained elsewhere in this book).

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 521

A second advantage of modular design is that modules are easier to maintain. Modifications
usually will be limited to a few modules and will not be spread over an entire program.

A third advantage of modular design is that modules are easier to grasp, because they are self-
contained subsystems. Hence, a reader can pick up a code listing of a module and understand its
function.

Some guidelines for modular programming include the following:

1. Keep each module to a manageable size (ideally including only one function).
2. Pay particular attention to the critical interfaces (the data and control variables that are

passed to other modules).
3. Minimize the number of modules the user must modify when making changes.
4. Maintain the hierarchical relationships set up in the top-down phases.

The recommended tool for designing a modular, top-down system is called a structure chart. A
structure chart is simply a diagram consisting of rectangular boxes, which represent the modules,
and connecting arrows.

Figure 16.3, a set of modules used to change a customer record, shows seven modules that
are labeled 000, 100, 110, 120, and so on. Higher-level modules are numbered by 100s, and lower-
level modules are numbered by 10s. This numbering allows programmers to insert modules us-
ing a number between the adjacent module numbers. For example, a module inserted between
modules 110 and 120 would receive number 115.

Off to the sides of the connecting lines, two types of arrows are drawn. The arrows with the
empty circles are called data couples, and the arrows with the filled-in circles are called control
flags or switches. A switch is the same as a control flag except that it is limited to two values: ei-
ther yes or no. These arrows indicate that something is passed either down to the lower module
or up to the upper one.

Ideally, the analyst should keep this coupling to a minimum. The fewer data couples and con-
trol flags one has in the system, the easier it is to change the system. When these modules are ac-
tually programmed, it is important to pass the least number of data couples between modules.

Even more important is that numerous control flags should be avoided. Control is designed to
be passed from lower-level modules to those higher in the structure. On rare occasions, however, it
will be necessary to pass control downward in the structure. When control is passed downward, a

000
Change

Customer
Master

100
Change

Customer
Record

130
Print Customer

Not Found
Error Line

140

Format New
Customer Master

150
Rewrite

Customer
Master

120

Read Customer
Master

110
Read Change

Customer
Transaction

Changed
Customer
Master

Changed
Customer
Master

Customer
Master

Customer
Master

Customer
Number

Customer
Number

Record
Found Switch

Change
Trans. Record

End of
File
Switch

Change
Trans.
Record

FIGURE 16.3
A structure chart encourages
top-down design using modules.

522 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

Web-based Services

Enterprise-based Services

The Application Modules That Comprise a System

FIGURE 16.4
Modules in service-oriented
architectures are independent and
can be ubiquitous.

low-level module is allowed to make a decision, and the result is a module that performs two dif-
ferent tasks. This result violates the ideal of a functional module: It should perform only one task.

Even when a structure chart accomplishes all the purposes for which it was drawn, the struc-
ture chart cannot stand alone as the sole design and documentation technique. First, it doesn’t
show the order in which the modules should be executed (a data flow diagram will accomplish
that). Second, it doesn’t show enough detail (Structured English will accomplish that).

Service-Oriented Architecture (SOA)
Modular development has led to a concept called service-oriented architecture (SOA), but one
that is very different from the modules in the structure chart. Instead of being hierarchical like
the top-down approach found in structure charts, the SOA approach is to make individual SOA
services that are unassociated or only loosely coupled to one another.

Each service executes one action. One service may return the number of days in this month;
another may tell us if this is a leap year; a third service may reserve five nights in a hotel room
from the end of February to the beginning of March. Although the third service needs to know the
values obtained from the first and second services, they are independent of one another. Each ser-
vice can be used in other applications within the organization or even in other organizations.

We can say that service-oriented architecture is simply a group of services that can be called
upon to provide specific functions. Rather than including calls to other services, a service can use
certain defined protocols so that it can communicate with other services.

Figure 16.4 shows how services are called upon throughout the system. Services can be gen-
eral in nature and can be outsourced or even be available on the Web. Other services are more
specialized and oriented toward the business itself. These enterprise-based services provide busi-
ness rules and can also differentiate one business from another. Services can be called upon at a
time and can be called on repeatedly in many application modules.

The burden of connecting services in a useful fashion, a process called orchestration, is
placed upon the systems designer. This can even be accomplished by selecting services from a
menu of services and monitoring them by setting up an SOA dashboard.

In order to set up an SOA, the services must be:

1. modular,
2. reusable,
3. work together with other modules (interoperability),
4. able to be categorized and identified,
5. able to be monitored, and
6. comply with industry-specific standards.

While the advantages of reusability and interoperability are obvious, SOA is not without its
challenges. First industry standards must be agreed upon. Next, a library must be maintained so

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 523

that developers can find the services they need. Finally, security and privacy can be issues when
using software developed by someone else. Advocates of SOA claim that service-oriented archi-
tecture has made many of the features found in Web 2.0 possible.

DOCUMENTATION APPROACHES
The total quality assurance effort requires that programs be documented properly. Software, sys-
tems, and formal and informal procedures need to be documented so that systems can be main-
tained and improved. Documentation allows users, programmers, and analysts to “see” the
system, its software, and procedures without having to interact with it.

Turnover of information service personnel has traditionally been high in comparison with other
departments, so chances are that the people who conceived of and installed the original system will
not be the same ones who maintain it. Consistent, well-updated documentation will shorten the
number of hours required for new people to learn the system before performing maintenance.

There are many reasons why systems and programs are undocumented or underdocumented.
Some of the problems reside with the systems and programs themselves, others with systems an-
alysts and programmers.

Systems analysts may fail to document systems properly because they do not have the time or
are not rewarded for time spent documenting. Some analysts do not document because they dread
doing so or think it is not their real work. Furthermore, many analysts are reticent about document-
ing systems that are not their own, perhaps fearing reprisals if they include incorrect material about
someone else’s system. Defenders of the SDLC approach remind us that documentation accom-
plished by means of a CASE tool during the analysis phases can address many of these problems.

Procedure Manuals
Procedure manuals are common organizational documents that most people have seen. They are the
English-language component of documentation, although they may also contain program codes,
flowcharts, and so on. Manuals are intended to communicate to those who use them. They may con-
tain background comments, steps required to accomplish different transactions, instructions on how
to recover from problems, and what to do next if something isn’t working (troubleshooting). Many
manuals are now available online, with hypertext capability that facilitates use.

A straightforward, standardized approach to creating user support documentation is also desir-
able. To be useful, user documentation must be kept up to date. Use of the Web has revolutionized the
speed with which assistance can be obtained by users. Many software developers have moved user
support—complete with manuals, FAQ pages, online chat, and user communities—to the Web.

Key sections of a manual should include an introduction, how to use the software, what to
do if things go wrong, a technical reference section, an index, and information on how to contact
the manufacturer. The biggest complaints with procedure manuals are that (1) they are poorly or-
ganized, (2) it is hard to find needed information in them, (3) the specific case in question does
not appear in the manual, and (4) the manual is not written in plain English.

The FOLKLORE Method
FOLKLORE is a systems documentation technique that was created to supplement some of the
techniques just covered. Even with the plethora of techniques available, many systems are inad-
equately documented or not documented at all. FOLKLORE gathers information that is often
shared among users but is seldom written down.

FOLKLORE was first developed in the 1980s by Kendall and Losee, well before the creation
of blogs and user communities. FOLKLORE has two main advantages over commonly found
user communities: (1) it is structured, resulting in more organized, more complete documenta-
tion, and (2) it encourages someone familiar with the software to seek out information rather than
depending on users to come forth on their own.

FOLKLORE is a systematic technique, based on traditional methods used in gathering folk-
lore about people and legends. This approach to systems documentation requires the analyst to
interview users, investigate existing documentation in files, and observe the processing of infor-
mation. The objective is to gather information corresponding to one of four categories: customs,
tales, sayings, and art forms. Figure 16.5 suggests how each category relates to the documenta-
tion of information systems.

524 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

When documenting customs, the analyst (or other folklorist) tries to capture in writing what
users are currently doing to get all programs to run without problems. An example of a custom is:
“Usually, we take two days to update the monthly records because the task is quite large. We run
commercial accounts on day one and save the others for the next day.”

Tales are stories that users tell regarding how the system worked. The accuracy of the tale,
of course, depends on the user’s memory and is at best an opinion about how the program worked.
Tales normally have a beginning, a middle, and an end. So we would have a story about a prob-
lem (the beginning), a description of the effects (the middle), and the solution (the end).

Sayings are brief statements representing generalizations or advice. We have many sayings
in everyday life, such as “April showers bring May flowers,” or “A stitch in time saves nine.” In
systems documentation, we have many sayings, such as “Omit this section of code and the pro-
gram will bomb,” or “Always back up frequently.” Users like to give advice, and the analyst
should try to capture this advice and include it in the FOLKLORE documentation.

Gathering art forms is another important activity of traditional folklorists, and the systems
analyst should understand its importance, too. Flowcharts, diagrams, and tables that users draw

CUSTOMS
Descriptions of how
users currently get
the system to run.

FOLKLORE

TALES
Stories about how
users were able to get
the system to work.

ART FORMS
Diagrams, tables,
and flowcharts.

SAYINGS
“Do this and it works.”

FIGURE 16.5
Customs, tales, sayings, and art
forms used in the FOLKLORE
method of documentation apply to
information systems.

C O N S U L T I N G O P P O R T U N I T Y 1 6 . 2

Write Is Right

“It’s so easy to understand. I say if everybody uses pseudocode,
we won’t have trouble, you know, with things not being standard-
ized,” says Al Gorithm, a new programmer who will be working
with your systems analysis team. Al is speaking to an informal
meeting among three members of the systems analysis team, a six-
person MIS task force from the advertising department, and two
programmers, who were all working to develop an information sys-
tem for advertising personnel.

Philip, an advertising account executive and one of the members
of the MIS task force, looks up in surprise. “What is this method
called?” The two programmers reply at the same time, “Pseudocode.”
Philip looks unimpressed and says, “That doesn’t say anything to me.”

Neeva Phail, one of the systems analysts, begins explaining.
“It probably won’t matter one way or the other what we use, if—”

Flo Chart, another systems analyst, breaks in saying, “I hate
pseudocode.” She looks hopefully at the programmers. “I’m sure
we can agree on a better technique.”

David, an older advertising executive, seems slightly upset,
stating, “I learned about flowcharting from the first systems ana-
lysts we had years ago. Don’t you people do that anymore? I think
they work best.”

What was at first a friendly meeting suddenly seems to have
reached an impasse. The participants are looking at each other war-
ily. As a systems analyst who has worked on many different proj-
ects with many different kinds of people, you realize that the group
is looking to you to make some reasonable suggestions.

Based on what you know about the various documentation
techniques, what technique(s) would you propose to the members
of the group? How will the technique(s) you proposed overcome
some of the concerns they have voiced? What process will you use
to decide on appropriate techniques? Compose your answer in one
page.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 525

sometimes may be better or more useful than flowcharts drawn by the original system author. An-
alysts will often find such art posted on bulletin boards, or they may ask the users to clean out
their files and retrieve any useful diagrams.

Contributors to the FOLKLORE document do not have to document the entire system,
only the parts they know about. Just like with Web-based user communities, the danger of re-
lying on FOLKLORE is that the information gathered from users may be correct, partially cor-
rect, or incorrect.

H Y P E R C A S E ® E X P E R I E N C E 1 6 . 1

“This is a fascinating place to work. I’m sure you agree, now that
you’ve had a chance to observe us. Sometimes I think it must be fun
to be an outsider . . . don’t you feel like an anthropologist discover-
ing a new culture? I remember when I first came here. Everything
was so new, so strange. Why, even the language was different. It
wasn’t a ‘customer,’ it was a ‘client.’ We didn’t have ‘departments,’
we had ‘units.’ It’s not an employee cafeteria, it’s the ‘canteen.’ That
goes for the way we work, too. We all have our different ways to ap-
proach things. I think I’m getting the hang of what Snowden expects,
but every once in a while I make a mistake, too. For instance, if I can
give him work online, he’d just as soon see it that way than get a
printed report. That’s why I have two computers on my desk, too! I
always see you taking so many notes . . . I guess it makes sense,
though. You’re supposed to document what we do with our systems
and information as well as what your team is doing, aren’t you?”

HYPERCASE Questions
1. Use the FOLKLORE method to complete the documentation

of the Management Information Systems Unit GEMS
system. Be sure to include customs, tales, sayings, and art
forms.

2. In two paragraphs, suggest a PC-based approach for
capturing the elements of FOLKLORE so that it is not
necessary to use a paper-based log. Make sure that your
suggested solution can accommodate graphics as well as text.

3. Design input and output screens for FOLKLORE that
facilitate easy entry, and provide prompting so that recall of
FOLKLORE elements is immediate.

FIGURE 16.HC1
In HyperCase, use FOLKLORE to document art forms that users have created or
collected to make sense of their systems.

526 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

TESTING

Full Systems
Testing with
Live Data

USERS

ANALYSTS

Link Testing
with Test Data

Program Testing
with Test Data

Full Systems
Testing with
Test Data

OPERATORS

PROGRAMMERS

FIGURE 16.6
Programmers, analysts, operators,
and users all play different roles in
testing software and systems.

Choosing a Design and Documentation Technique
The techniques discussed in this chapter are extremely valuable as design tools, memory aids,
productivity tools, and as a means of reducing dependencies on key staff members. The systems
analyst, however, is faced with a difficult decision regarding which method to adopt. The follow-
ing is a set of guidelines to help the analyst use the appropriate technique.

Choose a technique that:

1. Is compatible with existing documentation.
2. Is understood by others in the organization.
3. Allows you to return to working on the system after you have been away from it for a

period of time.
4. Is suitable for the size of the system on which you are working.
5. Allows for a structured design approach if that is considered to be more important than

other factors.
6. Allows for easy modification.

TESTING, MAINTENANCE, AND AUDITING
Once the analyst has designed and coded the system, testing, maintenance, and auditing of it are
prime considerations.

The Testing Process
All the system’s newly written or modified application programs—as well as new procedural
manuals, new hardware, and all system interfaces—must be tested thoroughly. Haphazard, trial-
and-error testing will not suffice. Testing is done throughout systems development, not just at the
end. It is meant to turn up heretofore unknown problems, not to demonstrate the perfection of pro-
grams, manuals, or equipment.

Although testing is tedious, it is an essential series of steps that helps ensure the quality of
the eventual system. It is far less disruptive to test beforehand than to have a poorly tested sys-
tem fail after installation. Testing is accomplished on subsystems or program modules as work
progresses. Testing is done on many different levels at various intervals. Before the system is put
into production, all programs must be desk checked, checked with test data, and checked to see
if the modules work together with one another as planned.

The system as a working whole must also be tested. Included here are testing the interfaces
between subsystems, the correctness of output, and the usefulness and understandability of sys-
tems documentation and output. Programmers, analysts, operators, and users all play different
roles in the various aspects of testing, as shown in Figure 16.6. Testing of hardware is typically

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 527

provided as a service by vendors of equipment, who will run their own tests on equipment when
it is delivered onsite.

PROGRAM TESTING WITH TEST DATA. Much of the responsibility for program testing resides with
the original author(s) of each program. The systems analyst serves as an advisor and coordinator for
program testing. In this capacity, the analyst works to ensure that correct testing techniques are
implemented by programmers but probably does not personally carry out this level of checking.

At this stage, programmers must first desk check their programs to verify the way the sys-
tem will work. In desk checking, the programmer follows each step in the program on paper to
check whether the routine works as it is written.

Next, programmers must create both valid and invalid test data. These data are then run to
see if base routines work and also to catch errors. If output from main modules is satisfactory, you
can add more test data so as to check other modules. Created test data should test possible mini-
mum and maximum values as well as all possible variations in format and codes. File output from
test data must be carefully verified. It should never be assumed that data contained in a file are
correct just because a file was created and accessed.

Throughout this process, the systems analyst checks output for errors, advising the program-
mer of any needed corrections. The analyst will usually not recommend or create test data for pro-
gram testing but might point out to the programmer omissions of data types to be added in later
tests.

LINK TESTING WITH TEST DATA. When programs pass desk checking and checking with test data,
they must go through link testing, which is also referred to as string testing. Link testing checks
to see if programs that are interdependent actually work together as planned.

The analyst creates special test data that cover a variety of processing situations for link test-
ing. First, typical test data are processed to see if the system can handle normal transactions, those
that would make up the bulk of its load. If the system works with normal transactions, variations
are added, including invalid data used to ensure that the system can properly detect errors.

FULL SYSTEMS TESTING WITH TEST DATA. When link tests are satisfactorily concluded, the
system as a complete entity must be tested. At this stage, operators and end users become actively
involved in testing. Test data, created by the systems analysis team for the express purpose of
testing system objectives, are used.

As can be expected, there are a number of factors to consider when systems testing with test
data:

1. Examining whether operators have adequate documentation in procedure manuals (hard
copy or online) to afford correct and efficient operation.

2. Checking whether procedure manuals are clear enough in communicating how data should
be prepared for input.

3. Ascertaining if work flows necessitated by the new or modified system actually “flow.”
4. Determining if output is correct and whether users understand that this output is, in all

likelihood, as it will look in its final form.

Remember to schedule adequate time for system testing. Unfortunately, this step often gets
dropped if system installation is lagging behind the target date.

Systems testing includes reaffirming the quality standards for system performance that were
set up when the initial system specifications were made. Everyone involved should once again
agree on how to determine whether the system is doing what it is supposed to do. This step will
include measures of error, timeliness, ease of use, proper ordering of transactions, acceptable
down time, and understandable procedure manuals.

FULL SYSTEMS TESTING WITH LIVE DATA. When systems tests using test data prove satisfactory,
it is a good idea to try the new system with several passes on what is called live data, data that
have been successfully processed through the existing system. This step allows an accurate
comparison of the new system’s output with what you know to be correctly processed output, as
well as a good idea for testing how actual data will be handled. Obviously, this step is not possible
when creating entirely new outputs (for instance, output from an ecommerce transaction from a
new corporate Web site). As with test data, only small amounts of live data are used in this kind
of system testing.

528 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

C O N S U L T I N G O P P O R T U N I T Y 1 6 . 3

Cramming for Your Systems Test

“We’re strapped for time. Just look at this projection,” says
Lou Scuntroll, the newest member of your systems analysis team,
showing you the PERT diagram that the team has been using to proj-
ect when the new system would be up and running. “We can’t possi-
bly make the July target date for testing with live data. We’re running
three weeks behind because of that slow equipment shipment.”

As one of the systems analysts who has seen deadlines come
and go on other projects, you try to remain calm and to size up the
situation carefully before you speak. Slowly, you question Lou
about the possibility of delaying testing.

Lou replies, “If we try to push the testing off until the first
weeks of August, there are two key people from accounting who are
going to be out on vacation.” Lou is visibly upset at the possibility
of missing the deadline.

Stan Dards, another junior member of your systems analysis
team, enters Lou’s office. “You two look terrible. Things are going
okay, aren’t they? I’m not reassigned to program a payroll applica-
tion, am I?”

Lou looks up, obviously neither appreciating Stan’s sense of
humor nor what seems like his single-minded self-concern. “Good
thing you came in when you did. We’ve got some big decisions to
make about scheduling.” Lou holds up the PERT diagram for Stan’s
inspection. “Notice the July test date. Notice that there is no way we
can make it. Any bright ideas?”

Stan contemplates the chart momentarily, then states, “Some-
thing’s got to go. Let’s see here . . . maybe move testing of the ac-
counting module to—”

Lou interrupts, saying bluntly, “Nope, already thought of that,
but Stanford and Binet from accounting are out of town in August.
Maybe we can skip that portion of the testing. They’ve been really
cooperative. I don’t think they’d object if we just ‘do it for real’ and
test as we actually go into production.”

“I think that’s a good idea, Lou,” Stan agrees, trying to make
up for his earlier jokes. “We haven’t had any real trouble with that,
and the programmers sure are confident. That way we could stay on
schedule with everything else. I vote for not testing the accounting
portion, but just sort of winging it when it starts up.”

As the most senior member of the team present, what can you
do to convince Lou and Stan about the importance of testing the ac-
counting module with live data? What can systems analysts do in
planning their time to allow adequate time for testing with test and
live data? What are some of the possible problems the team mem-
bers may encounter if they do not test the system completely with
live data before putting the system into production? Realistically,
are there steps in the systems analysis and design process that can
be collapsed to bring a delayed project in on time? Respond to these
questions in two pages.

Although much thought is given to user-system interaction (see Chapter 14), you can never
fully predict the wide range of differences in the way users will actually interact with the system.
It is not enough to interview users about how they are interacting with the system; you must ob-
serve them firsthand.

Items to watch for are ease of learning the system and user reaction to system feedback, in-
cluding what happens when an error message is received, and what happens when the user is in-
formed that the system is executing his or her commands. Be particularly sensitive to how users
react to system response time and to the language of responses. Also listen to what users say about
the system as they encounter it. Any real problems need to be addressed before the system is put
into production, not just glossed over as adjustments to the system that users and operators ought
to make on their own.

Procedure manuals, just like computer software, also need to be tested. Although manuals
can be proofread by support staff and checked for technical accuracy by the systems analysis
team, the only real way to test them is to have users and operators try them, preferably during full
systems testing with live data. Consider user suggestions, and incorporate them into the final ver-
sions of Web pages, printed manuals, and other documentation.

Maintenance Practices
Your objective as a systems analyst should be to install or modify systems that have a reasonably
useful life. You want to create a system whose design is comprehensive and farsighted enough to
serve current and projected user needs for several years to come. Part of your expertise should be
used to project what those needs might be and then build flexibility and adaptability into the sys-
tem. The better the system design, the easier it will be to maintain and the less money the busi-
ness will have to spend on maintenance.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 529

Reducing maintenance costs is a major concern, because software maintenance alone can de-
vour upward of 50 percent of the total data processing budget for a business. Excessive mainte-
nance costs reflect directly back on the system’s designer, because approximately 70 percent of
software errors have been attributed to inappropriate software design. From a systems perspec-
tive, it makes sense that detecting and correcting software design errors early on is less costly than
letting errors remain unnoticed until maintenance is necessary.

Maintenance is performed most often to improve the existing software rather than to re-
spond to a crisis or system failure. Maintenance is also done to update software in response to
the changing organization. This work is not as substantial as enhancing the software, but it
must be done. Emergency and adaptive maintenance comprises less than half of all system
maintenance.

Part of the systems analyst’s job is to ensure that there are adequate channels and procedures
in place to permit feedback about—and subsequent response to—maintenance needs. Users must
be able to communicate problems and suggestions easily to those who will be maintaining the
system. Solutions are to provide users email access to technical support, as well as to allow them
to download product updates or patches from the Web.

Auditing
Auditing is yet another way of ensuring the quality of the information contained in the system.
Broadly defined, auditing refers to having an expert who is not involved in setting up or using a
system examine information in order to ascertain its reliability. Whether or not information is
found to be reliable, the finding on its reliability is communicated to others for the purpose of
making the system’s information more useful to them.

For information systems, there are generally two kinds of auditors: internal and external.
Whether both are necessary for the system you design depends on what kind of system it is. In-
ternal auditors work for the same organization that owns the information system, whereas exter-
nal (also called independent) auditors are hired from the outside.

External auditors are used when the information system processes data that influences a
company’s financial statements. External auditors audit the system to ensure the fairness of the
financial statements being produced. They may also be brought in if there is something out of
the ordinary occurring that involves company employees, such as suspected computer fraud or
embezzlement.

Internal auditors study the controls used in the information system to make sure that they are
adequate and that they are doing what they are purported to be doing. They also test the adequacy
of security controls. Although they work for the same organization, internal auditors do not re-
port to the people responsible for the system they are auditing. The work of internal auditors is
often more in-depth than that of external auditors.

IMPLEMENTING DISTRIBUTED SYSTEMS
If the reliability of a telecommunications network is high, it is possible to have distributed sys-
tems for businesses, a setup that can be conceived of as an application of telecommunications.
The concept of distributed systems is used in many different ways. Here it will be taken in a broad
sense so that it includes workstations that can communicate with each other and data processors,
as well as different hierarchical architectural configurations of data processors that communicate
with each other and that have differing data storage capabilities.

In this model, the processing functions are delegated either to clients (users) or to servers,
depending on which machines are most suitable for executing the work. In this type of architec-
ture, the client portion of a network application will run on the client system, with the server part
of the application running on the file server. With a client-server model, users interact with lim-
ited parts of the application, including the user interface, data input, database queries, and report
generation. Controlling user access to centralized databases, retrieving or processing data, and
other functions (such as managing peripheral devices) are handled by the server.

Client-Server Technology
The client-server model, client-server computing, client-server technology, and client-server ar-
chitecture all refer to a design model that can be thought of as applications running on a network.

530 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

Web Server
(handles Web-based

exchange of information)

Client Computers
(the means of input and
display of information)

Application Server
(processes data to and from
the Client Computers and the

Database Server)

Database Server
(stores and

retrieves data)

FIGURE 16.7
A three-tiered client-server
configuration.

In very basic terms, you can picture the client requesting—and the server executing or in some
way fulfilling—the request. That would be considered two-tier client-server architecture.

A more involved configuration uses three sets of computers to accomplish retrieval, process-
ing, storage, and receiving of data. Figure 16.7 shows a three-tiered client-server model. In this
figure, client computers access three different tiers of servers; Web servers, which handle Web-
based exchange of information; application servers, which process data to and from the client
computers and the database server; and the database server, which stores and receives data. The
computers on the network are programmed to perform work efficiently by dividing up process-
ing tasks among clients and servers.

When you think of the client-server model, you should think of a system that accentuates the
users as the center of the work, with their interaction with data being the key concept. Although
there are two elements working—the client and the server—it is the intent of the client-server
model that users view it as one system. Indeed, the hope is that users are unaware of how the
client-server network is performing its distributed processing, because it should have the look and
feel of a unified system. In a peer-to-peer network, PCs can act as either the server or the client,
depending on the requirements of the application.

CLIENTS AS PART OF THE CLIENT-SERVER MODEL. When you see the term client, you might be
tempted to think of people or users; for example, we speak of “clients of our consulting practice.”
In the client-server model, however, the term client refers not to people but to networked
machines that are typical points of entry to the client-server system that is used by humans.
Therefore, clients could be networked desktop computers, a workstation, or notebook computers,
or any other way in which the user can enter the system.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 531

Using a graphical user interface (GUI), individuals typically interface directly only with the
client part. Client workstations use smaller programs that reside in the client to do front-end pro-
cessing (as opposed to the back-end processing, mentioned later), including communicating with
the user. If an application is called a client-based application, the application resides in a client
computer and cannot be accessed by other users on the network.

WEIGHING THE ADVANTAGES AND DISADVANTAGES OF THE CLIENT-SERVER MODEL. Early
adopters of the client-server model found that they were not always the best solution to an
organization’s computing problems. Often, the systems designer is asked to endorse a client-
server model that is already in the works. Just as with any other corporate computing proposal
that you did not have an active part in creating, you must review the plan carefully. Will the
organization’s culture support a client-server model? What kinds of changes must be made in the
informal culture and in the formal work procedures before a client-server model can be used to
its full potential? What should your role as a systems analyst be in this situation?

Although lower processing costs are cited as a benefit of the client-server model, there is
very little actual data available to prove it (even though there is some anecdotal evidence to
support this claim). There are well-documented high start-up or switch-over costs associated
with a movement to a client-server architecture. Applications for the client-server model must
be written as two separate software components, each running on separate machines, but they
must appear as if they are operating as one application. Using the client-server model, however,
affords greater computer power and greater opportunity to customize applications than other
options.

Although networks can be characterized by their shape or topology, they are also discussed
in terms of their geographic coverage and the kinds of services they offer. Standard types of net-
works include a wide area network (WAN) and a local area network (LAN). LANs are standard
for linking local computers or terminals within a department, building, or several buildings of an
organization. WANs can serve users over several miles or across entire continents.

Networking is now technically, economically, and operationally feasible for small offices as
well, and it provides a solution that analysts must consider for small businesses. One of the costly
aspects of implementing a LAN is that each time it is moved, it must be rewired. Some organiza-
tions are coping with this by setting up a high-speed, wireless local area network (WLAN). More
specifically, these wireless networks are called Wi-Fi.

Cloud Computing
The most rapidly growing type of computing is cloud computing. Cloud computing has been de-
scribed as a metaphor for the Internet, since the Internet is often drawn as a cloud in network di-
agrams. Using cloud computing, organizations and individual users can use Web services,
database services, and application services over the Internet, without having to invest in corpo-
rate or personal hardware, software, or software tools. Figure 16.8 depicts the exchanges between
client computers and services in the cloud. Businesses use Web browsers such as Microsoft In-
ternet Explorer or Mozilla Firefox to access applications. As you can see, servers store software
and data for businesses.

Many large, well-established hardware, software, and consulting companies such as Cisco,
Dell, IBM, HP, Microsoft, SAP, and others are creating massive cloud computing endeavors, of-
ten with what are termed “virtualized resources.” What is distinct about these approaches is their
ability to grow and adapt to changing business needs. That is, they are scalable to suit growing
(or changing) demand by users. The model of “software as a service,” also called SaaS, is in-
cluded in the concept of cloud computing.

For their part, users do not need to understand, control, or be experts in the technology infra-
structure that composes the complex cloud infrastructure that enables them to accomplish their
work. Often, organizations do not need to keep IT staff to scale up or down even when a contract
or company budget changes upward or downward because of the lessened impact of these
changes.

Often organizations that are using cloud computing do not find it necessary to make up-front
capital expenditures on IT infrastructure, so it enables smaller companies with smaller and less
predictable budgets to make advances in processing more quickly. It also allows larger corpora-
tions to invest in strategic projects rather than IT infrastructure.

532 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

Web Services Application ServicesDatabase Services

Client Computers

FIGURE 16.8
Cloud computing offers many
services.

Sharing IT resources via cloud computing means that a large collection of corporate users
share Web services, but also then jointly bear the lowered cost of them; realize increases in peak-
load capacity, and that underutilized systems are used more efficiently and widely.

Companies also hope to improve their ability to perform disaster recovery by using cloud
computing that provides many redundant sites. While cloud computing is not immune to outages,
it can spread the risk to multiple servers.

Organizations try to improve security via cloud computing by using services that are sold as
possessing a security focus. However, there are concerns that centralization of this sort also can
translate into loss of control over mission-critical data. Users might benefit from the mobility af-
forded by being liberated from a single computer installation or single interface. Rather, Web
browsers and Web-based services made available through cloud computing free users to access
applications from anywhere at any time without regard for location or the device they are using.

Many large software companies (some of which are called “pure players” since they have
never existed as brick-and-mortar enterprises) are offering applications using cloud computing,
where users can use their Web browser to access applications. These include Google Apps (for
spreadsheets and calendars), Amazon Web Services, Akami, and CRM software by Salesforce.com
that is now available on the iPhone as well. These software purveyors state that they are attempt-
ing to lower the cost to the user, as well as to provide increased flexibility.

Some observers believe that the move to cloud computing is a way for older, larger compa-
nies to solidify and retain their core businesses by incorporating SaaS (software as a service),

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 533

SOA (Service-Oriented Architecture), virtualization, open source, and many other trends from
the last decade into their offerings of software, software tools, services, and computing power
via the Internet. However, if the cost of infrastructure were to fall dramatically (as it has his-
torically), the drive toward cloud computing could reverse. If that happened, organizations
might make different decisions, and once again invest in their own infrastructure. In addition,
many of the online services comprising cloud computing are being paid for through advertising
revenue. In a faltering economy, advertising incomes would decline, and cloud computing spon-
sorships could dwindle as well.

Network Modeling
Because networking has become so important, the systems designer needs to consider network
design. Whether a systems designer gets involved with decisions about the configurations of
networks—or whether he or she worries about hardware such as routers and bridges that must
be in place when networks meet—the systems designer must always consider the logical de-
sign of networks.

An analyst should adopt a set of symbols such as the ones in Figure 16.9 to model the net-
work. It is useful to have distinct symbols to distinguish among hubs, external networks, and
workstations. It is also useful to adopt a convention for illustrating multiple networks and work-
stations. The first step is to draw a network decomposition diagram that provides an overview of
the system. Next, draw a hub connectivity diagram. Finally, explode the hub connectivity diagram
to show the various workstations and how they are to be connected.

DRAWING A NETWORK DECOMPOSITION DIAGRAM. We can illustrate drawing a network
decomposition model by referring once again to the World’s Trend Catalog Division example
from earlier chapters. Start by drawing a circle at the top and labeling it “World’s Trend Network.”
Now draw a number of circles on the level below, as shown in Figure 16.10. These circles
represent hubs for the Marketing Division and each of the three order-entry and distribution
centers (the U.S. Division, the Canadian Division, and the Mexican Division).

We can extend this drawing further by drawing another level. This time, we can add the work-
stations. For example, the Marketing Division has two workstations connected to it, whereas the
U.S. Division has 33 workstations on its LAN (Administration, the Warehouse, the Order-Entry

Hub or Local Area Network

External Network

Multiple External Networks with Similar Functions

Workstation

Multiple Workstations with Similar Functions

FIGURE 16.9
Use special symbols when
drawing network decomposition
and hub connectivity diagrams.

534 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

World’s
Trend

Network

Marketing
Division

U.S.
Division

Canadian
Division

Mexican
Division

Administra-
tion

U.S.
Warehouse

Order-
Entry

Manager

Order-
Entry Clerks

(30)

Canadian
Warehouse

Order-Entry
Manager

Order-Entry
Clerks

(8)

Mexican
Warehouse

Order-Entry
Manager

Order-Entry
Clerks

(4)

Advertising
Manager

Catalog
Publications

Suppliers
(21)

FIGURE 16.10
A network decomposition diagram
for World’s Trend.

Manager, and 30 Order-Entry Clerks). This network is simplified for the purpose of providing a
readily understandable example.

CREATING A HUB CONNECTIVITY DIAGRAM. The hub connectivity diagram is useful for showing
how the major hubs are connected. At World’s Trend, shown in Figure 16.11, there are four major
hubs that are all connected to one another. In addition, there are external hubs (suppliers) that need

Marketing
Division

Mexican
Division

Canadian
Division

U.S.
Division

50 miles

625 miles

1–3,500 miles

10–3,500 miles

2,750 miles

50–3,500 miles Suppliers
(21)

FIGURE 16.11
A hub connectivity diagram for
World’s Trend.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 535

to be notified when inventory drops below a certain point, and so on. Each of the three country
divisions are connected to the 21 suppliers; the Marketing Division, however, does not need to be
connected to suppliers.

To produce an effective hub connectivity diagram, start by drawing all the hubs. Then exper-
iment (perhaps sketching it first on a sheet of paper) to see which links are necessary. Once that
is done, you can redraw the diagram so that it is attractive and communicates well to users.

EXPLODING THE HUB CONNECTIVITY DIAGRAM INTO A WORKSTATION CONNECTIVITY DIAGRAM.
The purpose of network modeling is to show the connectivity of workstations in some detail. To
do so, we explode the hub connectivity diagram. Figure 16.12 shows each of the 33 workstations
for the U.S. Division and how they are to be connected.

Draw the diagrams for this level by examining the third level of the network decomposition
diagram. Group items such as Order-Entry Manager and Order-Entry Clerks together, because
you already recognize that they must be connected. Use a special symbol to show multiple work-
stations and indicate in parentheses the number of similar workstations. In our example, there are
30 Order-Entry Clerks.

On the perimeter of the diagram, place workstations that must be connected to other hubs. In
this way, it will be easier to represent these connections using arrows. Draw the external connec-
tions in a different color or use thicker arrows. External connections are usually long distance.
For example, Administration is connected to the Marketing Division, which is 50 miles away, and
also to the Canadian and Mexican Divisions. The Warehouse needs to communicate directly with
the Canadian and Mexican warehouses in case it is possible to obtain the merchandise from an-
other warehouse. The Order-Entry Manager and Order-Entry Clerks do not have to be connected
to anyone outside their LAN.

ADVANTAGES OF DISTRIBUTED SYSTEMS. Distributed systems allow the storage of data where
they are not in the way of any online real-time transactions. For example, response time on
inquiries might be improved if not all records need to be searched before a response is made. In
addition, not all data are needed by all users all the time, so they can be stored in less-expensive
media at a different site and only accessed when needed.

Use of distributed systems can also lower equipment costs, because not all parts of the sys-
tem need to be able to perform all functions. Some capabilities, such as processing and storage,
can be shared.

300 feet

250 feet

200–250 feet

50–100 feet500 feet

To Canadian Division
575 miles

50–3,500 miles

To Suppliers

50 miles

To Marketing Division

To Mexican Division
2,800 miles

To Canadian Division
575 miles

To Mexican Division
2,800 miles

Order-
Entry

Manager

Order-Entry
Clerks
(30)

Administra-
tion

Ware-
house

FIGURE 16.12
A workstation connectivity
diagram for World’s Trend.

536 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

Distributed systems can also help lower costs by permitting flexibility in the choice of manufac-
turer, because the whole focus of networks is on communicating between nodes, and manufacturers
make compatible components. This compatibility allows the user to shop for price as well as for func-
tion. Furthermore, distributed systems can be less expensive initially than large systems because it is
feasible to plan for expansion without actually having to buy hardware at the time the system is im-
plemented. Developing corporate intranets is a proactive way to network organizational members, a
way that can also serve as a means for cutting down on problematic aspects of the Internet (such as
aimless Web surfing during corporate time, or possible security breakdowns caused by lack of fire-
walls) and at the same time support group work with useful applications. Extranets formed with sup-
pliers and other important partners are also excellent ways of demonstrating that a business is outward
looking and accessible. Advantages of distributed systems are given in Figure 16.13.

DISADVANTAGES OF DISTRIBUTED SYSTEMS. Distributed systems pose some unique problems
that centralized computer systems do not. The analyst needs to weigh these problems against the
advantages just presented and to raise them with the concerned business as well.

The first problem is that of network reliability. To make a network an asset rather than a lia-
bility, it must be possible to transmit, receive, process, and store data reliably. If there are too
many problems with system reliability, the system will be abandoned.

Distributing greater computing power to individuals increases the threat to security because of
widespread access. The need for secret passwords, secure computer rooms, and adequate security
training of personnel are all concerns that multiply when distributed systems are implemented.

Systems analysts creating distributed systems need to focus on the network itself or on the syn-
ergistic aspect of distributed systems. Their power resides in their ability to interact as user work-
groups share data. If the relationship between subsystems is ignored or deemphasized, you are
creating more problems than you are solving. Disadvantages of distributed systems are listed in
Figure 16.14.

TRAINING USERS
Systems analysts engage in an educational process with users that is called training. Throughout
the systems development life cycle, the user has been involved so that by now the analyst should
possess an accurate assessment of the users who must be trained.

• Allow data storage out of the way of online, real-time
 transactions
• Allow less expensive media for data storage when all data
 are not needed all the time by all users
• Lower equipment cost because not all system parts need
 to perform all functions
• Lower equipment cost by permitting flexibility in choice of
 manufacturer
• Less expensive than large systems initially because ex-
 pansion can be planned for without actually purchasing
 hardware

Advantages of Distributed Systems
FIGURE 16.13
There are five main advantages to
creating distributed systems.

• Difficulty in achieving a reliable system
• Security concerns increase commensurately when more
 individuals have access to the system
• Analysts must emphasize the network and the interactions
 it provides and deemphasize the power of subsystems
• Choosing the wrong level of computing to support (i.e.,
 individual instead of department, department instead of
 branch)

Disadvantages of Distributed SystemsFIGURE 16.14
There are four chief disadvantages
to creating distributed systems.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 537

In the implementation of large projects, the analyst will often be managing the training rather
than be personally involved in it. One of the most prized assets the analyst can bring to any train-
ing situation is the ability to see the system from the user’s viewpoint. The analyst must never for-
get what it is like to face a new system. Those recollections can help analysts empathize with users
and facilitate their training.

Training Strategies
Training strategies are determined by who is being trained and who will train them. The analyst
will want to ensure that anyone whose work is affected by the new information system is prop-
erly trained by the appropriate trainer.

WHOM TO TRAIN. All people who will have primary or secondary use of the system must be
trained. They include everyone from data entry personnel to those who will use output to make
decisions without personally using a computer. The amount of training a system requires depends
on how much someone’s job will change because of the new interactions required by the revised
system.

You must ensure that users of different skill levels and job interests are separated. It is cer-
tain trouble to include novices in the same training sessions as experts, because novices are
quickly lost and experts are rapidly bored with basics. Both groups are then lost.

PEOPLE WHO TRAIN USERS. For a large project, many different trainers may be used depending
on how many users must be trained and who they are. Possible training sources include the
following:

1. Vendors.
2. Systems analysts.
3. External paid trainers.
4. In-house trainers.
5. Other system users.

This list gives just a few of the options the analyst has in planning for and providing training.
Large vendors often provide off-site, one- or two-day training sessions on their equipment as

part of the service benefits offered when corporations purchase expensive COTS software. These
sessions include both lectures and hands-on training in a focused environment. They may also ex-
tend the experience with online user groups, dedicated blogs, or annual user conferences.

Because systems analysts know the organization’s people and the system, they can often pro-
vide good training. The use of analysts for training purposes depends on their availability, because
they also are expected to oversee the complete implementation process.

External paid trainers are sometimes brought into the organization to help with training. They
may have broad experience in teaching people how to use a variety of computers, but they may
not give the hands-on training that is needed for some users. In addition, they may not be able to
custom-tailor their presentations enough to make them meaningful to users.

Full-time, in-house trainers are usually familiar with the skills and learning preferences of
personnel and can tailor materials to their needs. One of the drawbacks of in-house trainers is that
they may possess expertise in areas other than information systems and may therefore lack the
depth of technical expertise that users require.

It is also possible to have any of these trainers train a small group of people from each func-
tional area that will be using the new information system. They in turn can be used to train the re-
maining users. This approach can work well if the original trainees still have access to materials
and trainers as resources when they themselves are providing training. Otherwise, it might degen-
erate into a trial-and-error situation rather than a structured one.

Guidelines for Training
The analyst has four major guidelines for setting up training. They are (1) establishing measura-
ble objectives, (2) using appropriate training methods, (3) selecting suitable training sites, and
(4) employing understandable training materials.

TRAINING OBJECTIVES. Who is being trained in large part dictates the training objectives.
Training objectives for each group must be spelled out clearly. Well-defined objectives are of

538 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

enormous help in letting trainees know what is expected of them. In addition, objectives allow
evaluation of training when it is complete. For example, operators must know such basics as
turning on the machine, what to do when common errors occur, basic troubleshooting, and how
to end an entry.

TRAINING METHODS. Each user and operator will need slightly different training. To some
extent, their jobs determine what they need to know, and their personalities, experience, and
backgrounds determine how they learn best. Some users learn best by seeing, others by hearing,
and still others by doing. Because it is often not possible to customize training for an individual,
a combination of methods is often the best way to proceed. That way, most users are reached
through one method or another.

Methods for those who learn best by seeing include demonstrations of equipment and exposure
to training manuals. Those who learn best by hearing will benefit from lectures about procedures,
discussions, and question-and-answer sessions among trainers and trainees. Those who learn best
by doing need hands-on experience with new equipment. For jobs such as that of computer opera-
tor, hands-on experience is essential, whereas a quality assurance manager for a production line may
only need to see output, learn how to interpret it, and know when it is scheduled to arrive.

TRAINING SITES. Training takes place in many different locations, some of which are more
conducive to learning than others. Large computer vendors provide special off-site locations at
which operable equipment is maintained free of charge. Their trainers offer hands-on experience
as well as seminars in settings that allow users to concentrate on learning the new system. One of
the disadvantages of off-site training is that users are away from the organizational context in
which they must eventually perform.

Onsite training in the users’ organization is also possible with several different kinds of train-
ers. The advantage is that users see the equipment placed as it will be when it is fully operational
in the organizational context. A serious disadvantage is that trainees often feel guilty about not
fulfilling their regular job duties if they remain onsite for training. Thus, full concentration on
training may not be possible.

C O N S U L T I N G O P P O R T U N I T Y 1 6 . 4

You Can Lead a Fish to Water . . .
But You Can’t Make It Drink

Sam Monroe, Belle Uga, Wally Ide, and you make up a four-
member systems analysis team that is developing an information
system to help managers monitor and control water temperature,
the number of fish released, and other factors at a large commer-
cial fish hatchery. (They were last seen in “To Hatch a Fish,” Con-
sulting Opportunity 6.3, when they asked you, as their fourth
member, to help solve a problem involving the timely delivery of
a system prototype.)

With your input, the team successfully turned the tide of the
earlier dilemma, and the project has continued. Now you are dis-
cussing the training that you have begun to undertake for managers
and other systems users. Due to some scheduling difficulties, you
have decided to cut down on the number of different training ses-
sions offered, which has resulted in users at a variety of levels of
management and computer expertise being in the same training ses-
sions in some instances.

Laurie Hook, one of the operators who is being trained, has
been in the same training “tank” with Wade Boot, one of the man-

agers with whom you have been working. Both Laurie and Wade
have come to the team privately with different concerns.

Wade told you, “I’m mad that I have to type in my own data in the
sessions. The Mississippi will freeze solid before I ever do that on my
job. I’ve got to know when to expect output and how to interpret it when
it comes. I’m not spending time in training sessions if I can’t get that.”

Laurie, who shares training sessions with Wade, also com-
plained to your group. “We should be getting more hands-on train-
ing. All we hear is a bunch of lectures. It’s like school. Not only that,
but the managers in the group like to spin these ‘fish stories’ about
what happened to them with the old system. It’s boring. I want to
know how to operate the thing. It’s bait and switch, if you ask me.
I’m not learning what you said I would, and besides, with all those
bosses in there, I feel like a fish out of water.”

What problems are occurring with the training sessions? How
can they be addressed, given the scheduling constraints mentioned?
What basic advice on setting up training sessions did your team ig-
nore? Write a one-page response to these questions.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 539

Off-site training sites are also available for a fee through consultants and vendors. Training
sites can be set up in places with rented meeting space, such as a hotel, or may even be perma-
nent facilities maintained by the trainers. These arrangements allow workers to be free from reg-
ular job demands, but they may not provide equipment for hands-on training.

TRAINING MATERIALS. In planning for the training of users, systems analysts must realize the
importance of well-prepared training materials. These materials include training manuals;
training cases, in which users are assigned to work through a case that incorporates most of the
commonly encountered interactions with the system; and prototypes and mock-ups of output.
Users of larger systems will sometimes be able to train on elaborate Web-based simulations or
software that is identical to what is being written or purchased. Most COTS software vendors
provide online tutorials that illustrate basic functions, and vendors may maintain Web sites that
feature pages devoted to FAQ, which can be downloaded and printed. Changes to manuals can
also be gleaned from many vendors’ Web sites.

Because the user’s understanding of the system depends on them, training materials must be
clearly written for the correct audience with a minimum of jargon. Training materials should also
be well indexed and available to everyone who needs them. A summary of considerations for
training objectives, methods, sites, and materials is provided in Figure 16.15.

CONVERSION TO A NEW SYSTEM
A third approach to implementation is physically converting the old information system to the new
or modified one. There are many conversion strategies available to analysts, and also a contingency
approach that takes into account several user and organizational variables in deciding which con-
version strategy to use. There is no single best way to proceed with conversion. The importance of
adequate planning and scheduling of conversion with the strategic involvement of users (which of-
ten takes many weeks), file backup, and adequate security cannot be overemphasized.

Conversion Strategies
The five strategies for converting from the old system to the new are given in Figure 16.16 and
are as follows:

1. Direct changeover.
2. Parallel conversion.
3. Gradual, or phased, conversion.
4. Modular conversion.
5. Distributed conversion.

Each of the five conversion approaches is described separately in the following subsections.

DIRECT CHANGEOVER. Conversion by direct changeover means that, on a specified date, users stop
using the old system and the new system is put into use. Direct changeover can only be successful
if extensive testing is done beforehand, and it works best when some delays in processing can be
tolerated. Direct changeover is considered a risky approach to conversion. Disruption to the work
environment may occur if users resent being forced into using an unfamiliar system without
recourse. Finally, there is no adequate way to compare new results with old.

Elements Relevant Factors

Training Objectives

Training Methods

Depend on requirements of user’s job

Depend on user’s job, personality, background, and experience;
use combination of lecture, demonstration, hands-on, and study

Depend on training objectives, cost, availability; free vendor sites
with operable equipment; in-house installation; rented facilities

Depend on user’s needs; operating manuals, cases, prototypes
of equipments and output; online tutorials

Training Sites

Training Materials

FIGURE 16.15
Appropriate training objectives,
methods, sites, and materials are
contingent on many factors.

540 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

PARALLEL CONVERSION. Parallel conversion refers to running the old system and the new system
at the same time, in parallel. When the same results can be gained over time, the new system is
put into use and the old one is stopped. One advantage of running both systems in parallel is the
possibility of checking new data against old data to catch any errors in processing in the new
system. The main disadvantages include the cost of running two systems at the same time and the
burden on employees of virtually doubling their workload during conversion.

GRADUAL CONVERSION. Gradual, or phased, conversion attempts to combine the best features
of the two previously mentioned plans, without incurring all the risks. In this plan, the volume of
transactions handled by the new system is gradually increased as the system is phased in. The
advantages of this approach include allowing users to get used to the system gradually, the
possibility of detecting and recovering from errors without a lot of down time, and the ability to
add features one-by-one. Agile methodologies tend to use this conversion approach.

MODULAR CONVERSION. Modular conversion uses the building of self-contained, operational
subsystems to change from old systems to new in a gradual manner. As each module is modified
and accepted, it is put into use. One advantage is that each module is thoroughly tested before
being used. Another advantage is that users are familiar with each module as it becomes
operational. Their feedback has helped determine the final attributes of the system. Object-
oriented methodologies often use this approach.

DISTRIBUTED CONVERSION. Distributed conversion refers to a situation in which many
installations of the same system are contemplated, as is the case in banking or in franchises such
as restaurants or clothing stores. One entire conversion is done (with any of the four approaches
considered previously) at one site. When that conversion is successfully completed, other
conversions are done for other sites. An advantage of distributed conversion is that problems can
be detected and contained rather than inflicted simultaneously on all sites. A disadvantage is that
even when one conversion is successful, each site will have its own people and culture, along with
regional and local peculiarities to work through, and they must be handled accordingly.

Other Conversion Considerations
Conversion also entails other details for the analyst, which include the following:

1. Ordering equipment (up to three months ahead of planned conversion).
2. Ordering any necessary materials that are externally supplied to the information system,

such as toner cartridges, paper, preprinted forms, and magnetic media.
3. Appointing a manager to supervise, or personally supervising, the preparation of the

installation site.

Direct Changeover

Distributed Conversion

Modular Conversion

Gradual Conversion

Parallel Conversion

Conversion Method Changes over Time
FIGURE 16.16
Five conversion strategies for
information systems.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 541

4. Planning, scheduling, and supervising programmers and data entry personnel who must
convert all relevant files and databases.

For many implementations, your chief role will be accurately estimating the time needed for
each activity, appointing people to manage each subproject, and coordinating their work. For
smaller projects, you will do much of the conversion work on your own. Many of the project
management techniques discussed in Chapter 3, such as Gantt charts, PERT, function point
analysis, and successfully communicating with team members, are useful for planning and con-
trolling implementation.

Organizational Metaphors and Their Relationship to Successful Systems
Be aware of organizational metaphors when you attempt to implement a system you have just de-
veloped. Our research has suggested that the success or failure of a system may be related to the
metaphors used by organizational members.

When people in the organization describe the company as a zoo, you can infer that the atmo-
sphere is chaotic; if it is described as a machine, everything is working in an orderly fashion.
When the predominant metaphor is war, journey, or jungle, the environment is chaotic, as with
the zoo. The war and journey metaphors are oriented toward an organization goal, however,
whereas the zoo and jungle metaphors are not.

In addition to the machine, metaphors such as society, family, and the game all signify order
and rules. Although the machine and game metaphors are goal oriented, the society and zoo
metaphors do not stress the company’s goal, but instead allow individuals in the corporation to
set their own standards and rewards. Another metaphor, organism, appears balanced between or-
der and chaos, corporate and individual goals.

Our research suggests that the success or failure of a system may have something to do with
the predominant metaphor. Figure 16.17 shows that a traditional MIS will tend to succeed when
the predominant metaphor is society, machine, or family, but it might not succeed if the metaphor
is war or jungle (two chaotic metaphors). Notice, however, that competitive systems will most
likely succeed if the metaphor is war.

Positive metaphors appear to be game, organism, and machine. Negative metaphors appear to
be jungle and zoo. The others (journey, war, society, and family) show mixed success depending
on the type of information system being developed. More research needs to be done in this area.
In the meantime, the systems analyst should be aware that metaphors communicated in interviews

Success less
likely with these

metaphors

Success more
likely with these
metaphors

War
Jungle

War
Journey

Jungle
Zoo

Family
Society
Machine

Family
Society
Organism

Traditional MIS

Decision Support Systems

Expert Systems/Al

Society
Zoo

Zoo
Family

Society

Journey
Zoo

Game
Organism
Machine

Journey
Game
Organism

War
Game
Organism

Organism
Game

Cooperative Systems

Competitive Systems

Executive Information Systems

Type of Information System

FIGURE 16.17
Organizational metaphors may
contribute to the success or failure
of an information system.

542 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

could be meaningful and may even be a contributing factor toward the success of the information
system implementation.

SECURITY CONCERNS FOR TRADITIONAL
AND WEB-BASED SYSTEMS
Security of computer facilities, stored data, and the information generated is part of a successful
conversion. Recognition of the need for security is a natural outgrowth of the belief that informa-
tion is a key organizational resource, as discussed in Chapter 1. With increasingly complex trans-
actions and many innovative exchanges, the Web has brought heightened security concerns to the
IS professional’s world.

It is useful to think of security of systems, data, and information on an imaginary continuum
from totally secure to totally open. Although there is no such thing as a totally secure system, the
actions analysts and users take are meant to move systems toward the secure end of the continuum
by lessening the system’s vulnerability. It should be noted that as more people in the organization
gain greater computer power, gain access to the Web, or connect to intranets and extranets, secu-
rity becomes increasingly difficult and complex. Sometimes, organizations will hire a security con-
sultant to work with the systems analyst when security is crucial to successful operations.

Security is the responsibility of all those who come into contact with the system and is only
as good as the most lax behavior or policy in the organization. Security has three interrelated as-
pects: physical, logical, and behavioral. All three must work together if the quality of security is
to remain high.

Physical Security
Physical security refers to securing the computer facility, its equipment, and software through
physical means. It can include controlling access to the computer room by means of machine-
readable badges, biometric systems, or a human sign-in/sign-out system, as well as using closed-
circuit television cameras to monitor computer areas, backing up data frequently, and storing
backups in a fireproof, waterproof area, often at a secure off-site location.

In addition, small computer equipment should be secured so that a typical user cannot move
it, and it should be guaranteed uninterrupted power. Alarms that notify appropriate people of fire,
flood, or unauthorized human intrusion must be in working order at all times.

Decisions about physical security should be made along with users when the analyst is plan-
ning for computer facilities and equipment purchases. Obviously, physical security can be much
tighter if anticipated in advance of actual installation and if computer rooms are specially
equipped for security when they are constructed rather than outfitted as an afterthought.

Logical Security
Logical security refers to logical controls in the software itself. The logical controls familiar to
most users are passwords or authorization codes of some sort. When used, they permit the user
with the correct password to enter the system or a particular part of a database.

Passwords, however, are treated cavalierly in many organizations. Employees have been
overheard yelling a password across crowded offices, taping passwords to their display screens,
and sharing personal passwords with authorized employees who have forgotten their own.

Special encryption software has been developed to protect commercial transactions on the
Web, and business transactions are proliferating. Internet fraud is also up sharply, however, with
few authorities trained in catching Internet criminals and a “wild west,” or “last frontier,” men-
tality clearly evidenced in those instances when authorities have been able to apprehend Web
criminals.

One way for networks to cut down on the risk of exposure to security challenges from the
outside world is to build a firewall or firewall system. A firewall constructs a barricade between
an internal organization’s network and an external (inter)network, such as the Internet. The inter-
nal network is assumed to be trustworthy and secure, whereas the Internet is not. Firewalls are in-
tended to prevent communication into or out of the network that has not been authorized and that
is not wanted. A firewall system is not a perfect remedy for organizational and Internet security;

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 543

it is, however, an additional layer of security that is now widely endorsed. There is still no fully
integrated way to address security problems with internal and external networks, but they do de-
serve analysts’ attention when planning any new or improved systems.

Logical and physical controls are important but clearly not enough to provide adequate se-
curity. Behavioral changes are also necessary.

Behavioral Security
The behavioral expectations of an organization are implicit in its policy manuals and even on
signs posted in work rooms and lunch rooms, as we saw in Chapter 5. The behavior that organi-
zation members internalize, however, is also critical to the success of security efforts. (One rea-
son firewalls are not attack-proof is because many attacks to information systems come from
within the organization.)

Security can begin with the screening of employees who will eventually have access to com-
puters, data, and information, to ensure that their interests are consistent with the organization’s
interests and that they fully understand the importance of carrying through on security proce-
dures. Policies regarding security must be written, distributed, and updated so that employees are
fully aware of expectations and responsibilities. It is typical that the systems analyst will first have
contact with the behavioral aspects of security. Some organizations have written rules or policies
prohibiting employees from surfing the Web during work hours, or even prohibiting Web surfing
altogether, if company equipment is involved. Other corporations use software locks to limit ac-
cess to Web sites that are judged to be objectionable in the workplace, such as game, gambling,
or pornographic sites.

Part of the behavioral facet of security is monitoring behavior at irregular intervals to ascer-
tain that proper procedures are being followed and to correct any behaviors that may have eroded
with time. Having the system log the number of unsuccessful sign-on attempts of users is one way
to monitor whether unauthorized users are attempting to sign on to the system. Periodic and fre-
quent inventorying of equipment and software is desirable. In addition, unusually long sessions
or atypical after-hours access to the system should be examined.

Employees should clearly understand what is expected of them, what is prohibited, and the
extent of their rights and responsibilities. In the United States and European Union, employers
are legally obligated to disclose all monitoring that is being done or that is being contemplated,
and they must supply the rationale behind it. Such disclosure should include the use of video cam-
eras, software, and phone monitoring.

Output generated by the system must be recognized for its potential to put the organization
at risk in some circumstances. Controls for output include displays that can only be accessed via
password, the classification of information (that is, to whom it can be distributed and when), and
secure storage of printed and stored documents, no matter what their format.

In some cases, provision for shredding documents that are classified or proprietary must be
made. Shredding or pulverization services can be contracted from an outside firm that, for a fee,
will shred magnetic media, printer cartridges, and paper. A large corporation may shred upward
of 76,000 pounds of output in a variety of media annually.

Special Security Considerations for Ecommerce
It is well known that intruders can violate the integrity of any computer system. As an analyst,
you need to take a series of precautions to protect the computer network from both internal and
external Web security threats. A number of actions and products can help you:

1. Virus protection software.
2. Email filtering products that provide policy-based email and email attachment scanning

and filtering to protect companies against both incoming and outgoing email. Incoming
scanning protects against spam (unsolicited email such as advertising) attacks, and
outgoing scanning protects against the loss of proprietary information.

3. URL filtering products that provide employees with access to the Web by user, by groups
of users, by computers, by the time, or by the day of the week.

4. Firewalls, gateways, and virtual private networks that prevent hackers from gaining
backdoor access to a corporate network.

544 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

5. Intrusion detection and antiphishing products that continually monitor usage, provide
messages and reports, and suggest actions to take.

6. Vulnerability management products that assess the potential risks in a system and discover
and report vulnerabilities. Some products correlate the vulnerabilities to make it easier to
find the root cause of the security breach. Risk cannot be eliminated, but this software can
help manage the risk by balancing security risk to the financial bottom line.

7. Security technologies such as secure socket layering (SSL) for authentication.
8. Encryption technologies such as secure electronic translation (SET).
9. Public key infrastructure (PKI) and digital certificates (obtained from a company such as

VeriSign). Use of digital certificates ensures that the reported sender of the message is
really the company that sent the message.

Privacy Considerations for Ecommerce
The other side of security is privacy. To make your Web site more secure, you must ask the user
or customer to give up some privacy.

As a Web site designer, you will recognize that the company for which you design exercises
a great deal of power over the data its customers are providing. The same tenets of ethical and le-
gal behavior apply to Web site design as to the design of any traditional application that accepts
personal data from customers. The Web, however, allows the data to be collected faster and al-
lows different data to be collected (such as the browsing habits of the customer). In general, in-
formation technology makes it possible to store more data in data warehouses, process that data,
and distribute the data more widely.

Every company for which you design an ecommerce application should adopt a privacy pol-
icy. Here are some guidelines:

1. Start with a corporate policy on privacy. Make sure it is prominently displayed on the Web
site so that all customers can access the policy whenever they complete a transaction.

2. Only ask for information the application requires to complete the transaction at hand. For
example, is it necessary to the transaction to ask a person’s age or gender?

3. Make it optional for customers to fill out personal information on the Web site. Some
customers do not mind receiving targeted messages, but you should always give customers
an opportunity to maintain the confidentiality of their personal data by not responding.

4. Use sources that allow you to obtain anonymous information about classes of customers.
There are companies that offer audience profiling technology and technology solutions for
management of advertisements, their targeting, and their delivery. They do so by
maintaining a dynamic database of consumer profiles without linking them to individuals,
thereby respecting customers’ rights to privacy.

5. Be ethical. Avoid the latest cheap trick that permits your client to gather information about
the customer in highly suspect ways. Tricks such as screen scraping (capturing remotely
what is on a customer’s screen) and email cookie grabbing are clear violations of privacy,
and may prove to be illegal as well.

A coordinated policy of security and privacy is essential. It is essential to establish these poli-
cies and adhere to them when implementing an ecommerce application.

Disaster Recovery Planning
No matter how diligently you and your organizational colleagues work to ensure the security and
stability of systems, all employees and systems are inevitably vulnerable to some kind of natural
or human-made disaster that threatens security as well as the very functioning of the business.
Some disasters are quite common, such as power outages, and we can assess the probability of
some disasters occurring, such as a hurricane or an earthquake. However many disasters are un-
expected in their timing or their severity, perhaps even causing loss of life, creating chaos for peo-
ple and the organization itself.

The fields of disaster preparedness and disaster recovery are interdependent, and they build
on each other. Disaster preparedness includes what a company should do if it encounters a crisis.
The field of disaster recovery is focused on how a business can continue in the aftermath of a dis-
aster and how it can restore essential systems in the IT infrastructure. This section focuses on dis-

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 545

aster recovery as it relates to information systems. The traditional disaster recovery process con-
sists of planning, a walkthrough, practice drills, and recovery from the disaster.

When hit with a disaster, a company stands to lose people, money, reputation, and their own
assets, as well as those of their clients. It is important to do the right things to minimize potential
losses. Analysts should determine what the organization’s level of disaster planning is and how
well articulated the role of information systems is in their disaster response and recovery plans.
The key questions that analysts must ask early on are (1) whether employees know where to go,
and (2) what to do in the face of a disaster. The answer to these questions will guide your further
planning. Conventional wisdom provides seven elements to consider during and after a disaster.
As you will see, many of them involve information systems and relate specifically to the plan-
ning required of you as a systems analyst.

1. Identify the teams responsible for managing a crisis.
2. Eliminate single points of failure.
3. Determine data replication technologies that match the organization’s timetable for getting

systems up and running.
4. Create detailed relocation and transportation plans.
5. Establish multiple communication channels among employees and consultants who are

onsite, such as analyst teams.
6. Provide recovery solutions that include an off-site location.
7. Ensure the physical and psychological well-being of employees and others who may be

physically present at the work site when a disaster hits.

The disaster preparedness plan should identify who, in the event of a disaster, is responsible
for making several pivotal decisions. These include decisions about whether business operations
will continue; how to support communications (both computer and voice); where people will be
sent if the business is uninhabitable; where personnel will go in an emergency; seeing to the per-
sonal and psychological needs of the people present in the business and those who might be work-
ing virtually; and restoring the main computing and work environments.

Redundancy of data provides the key for eliminating single points of failure for servers run-
ning Web applications. As an analyst you can be especially helpful in setting up this type of
backup and redundancy.

Some businesses are moving to storage area networks (SANs) to get away from some of the
unreliability associated with physical tape backups and storage. Synchronous remote replication,
also called data mirroring, for nearly real-time backup is also gaining favor. However, if compa-
nies are farther than 100 miles away from the site, the data mirroring process can be affected.
Asynchronous remote replication sends data to the secondary storage location at designated time
intervals. Online options are available for small businesses, too.

The organization should develop and distribute a one-page memo that contains evacuation
routes and employee assembly points. This should be distributed to everyone in the organization.
The three common choices are either to send employees home, to have them remain onsite, or to
relocate them to a recovery facility that is set up to continue operations. The entire gamut of trans-
portation options should be considered when developing this memo.

Organizational and analyst team members must be able to communicate in the event that
their typical email is disrupted. If email is unavailable for broadcasting an emergency mes-
sage, an emergency information Web page or emergency hotline can serve as viable alterna-
tives. Recently, some software companies have started offering a suite of software tools that
permits ad hoc communication by emergency response agencies that allows them to rapidly
set up secure VoIP, Web connectivity, and Wi-Fi hot spot capabilities. Wider availability and
lower prices will undoubtedly bring these important communication capabilities to other types
of organizations in the future.

To better protect the organization’s backup systems and to ensure the continued, uninter-
rupted flow of banking transactions in the event of a disaster, new regulations in the United States
stipulate that bank off-site locations must be at least 100 miles away from the original site. Since
paper files and backups also present a monumental problem and are highly vulnerable to natural
and human-made disasters, organizations are strongly encouraged to create a plan that helps them
move toward a digital documentation project that is meant to convert all of their paper documents
to electronic formats within three to five years of inception (Stephens, 2003).

546 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

Support for humans working at an organization that experiences a disaster is paramount.
There must be plentiful and easily available water, especially if employees are unable to leave
the site for a number of days due to outside weather conditions or partial building collapses.
While food is important, water is more so. Employees should also be issued a safety kit contain-
ing water, a dust mask, a flashlight, glow sticks, and a whistle. One way to learn what should
comprise a personal workspace disaster supplies kit is to go to The American Red Cross Web
site (www.redcross.org), which provides details for supporting humans during disasters and pro-
viding for them in the aftermath.

EVALUATION
Throughout the systems development life cycle, the analyst, management, and users have been
evaluating the evolving information systems and networks to give feedback for their eventual im-
provement. Evaluation is also called for following system implementation.

Evaluation Techniques
In recognition that the ongoing evaluation of information systems and networks is important,
many evaluation techniques have been devised. These techniques include cost-benefit analysis
(as discussed in Chapter 3); models that attempt to estimate the value of a decision based on the
effects of revised information using information theory, simulation, or Bayesian statistics; user
evaluations that emphasize implementation problems and user involvement; and information sys-
tem utility approaches that examine the properties of information.

Each type of evaluation serves a different purpose and has inherent drawbacks. Cost-benefit
analysis may be difficult to apply, because information systems provide information about objec-
tives for the first time, making it impossible to compare performance before and after implemen-
tation of the system or distributed network. The revised decision evaluation approach presents
difficulty, because all variables involved with the design, development, and implementation of
the information system cannot be calculated or quantified. The user involvement approach yields
some insight for new projects by providing a checklist of potentially dysfunctional behavior by
various organizational members, but it stresses implementation over other aspects of IS design.
The information system utility approach to evaluation can be more comprehensive than the oth-
ers if it is expanded and systematically applied.

The Information System Utility Approach
The information system utility approach for evaluating information systems can be a comprehen-
sive and fruitful technique for measuring the success of a developed system. It also can serve as
a guide in the development of any future projects the analyst might undertake.

Utilities of information include possession, form, place, and time. To evaluate the information
system comprehensively, these utilities must be expanded to include actualization utility and goal
utility. Then the utilities can be seen to address adequately the questions of who (possession), what
(form), where (place), when (time), how (actualization), and why (goal). An example of this infor-
mation utility approach can be seen in the evaluation of a blood inventory system in Figure 16.18.

C O N S U L T I N G O P P O R T U N I T Y 1 6 . 5

The Sweet Smell of Success

Recall that in Consulting Opportunity 3.1, “The Sweetest Sound
I’ve Ever Sipped,” you met Felix Straw. Devise a systems solution
that will address the problems discussed there. (Hint: The technol-
ogy is important, but so is the way people can use it.) Your solution

should stress collaboration, flexibility, adaptability, and access. Use
network diagramming to illustrate your solution. In a few para-
graphs, write a rationale for why your solution should be chosen.

www.redcross.org

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 547

An information system can be evaluated as successful if it possesses all six of these utilities.
If the system module is judged as “poor” in providing one of the utilities, the entire module will
be destined to fail. A partial or “fair” attainment of a utility will result in a partially successful
module. If the information system module is judged as “good” in providing every utility, the mod-
ule is a success.

POSSESSION UTILITY. Possession utility answers the question of who should receive output, or,
in other words, who should be responsible for making decisions. Information has no value in the
hands of someone who lacks the power to make improvements in the system or someone who
lacks the ability to use the information productively.

FORM UTILITY. Form utility answers the question of what kind of output is distributed to the
decision maker. The documents must be useful for a particular decision maker in terms of the
document’s format and the jargon used. Acronyms and column headings must be meaningful to
the user. Furthermore, information itself must be in an appropriate form. For example, the user
should not have to divide one number by another to obtain a ratio. Instead, a ratio should be
calculated and prominently displayed. At the other extreme is the presentation of too much
irrelevant data. Information overload certainly decreases the value of an information system.

PLACE UTILITY. Place utility answers the question of where the information is distributed.
Information must be delivered to the location where the decision is made. More detailed reports
or previous management reports should be filed or stored to facilitate future access.

TIME UTILITY. Time utility answers the question of when information is delivered. Information
must arrive before a decision is made. Late information has no utility. At the other extreme is the
delivery of information too far in advance of the decision. Reports may become inaccurate or may
be forgotten if delivered prematurely.

ACTUALIZATION UTILITY. Actualization utility involves how the information is introduced and
used by the decision maker. First, the information system has value if it possesses the ability to

Information
Systems
Modules

Form
Utility

Time
Utility

Place
Utility

Possession
Utility

Actualization
Utility

Goal
Utility

Inventory
Lists
Success

Good. Acronyms
used were the same
as shipping codes.
As systems grew,
too much information
was presented; this
overload called
for summary
information.

Poor. The people
who allocated
blood mistrusted
the mysterious
numbers produced
by the computer.

Good. Reports
were received
at least one
hour before
scheduled
shipments on
a daily basis.

Good. Inventory
lists were printed at
the regional blood
center. Lists were
delivered to hospitals
with the current
shipments.

Good. Implemen-
tation was easy
because hospitals
found the inven-
tory lists to be
extremely useful.

Good. The same
people who origi-
nally kept manual
records received
these reports.

Good. Information
about the location
of particular units
was made
available.

Poor. This was
not an immediate
goal of the blood
region. Shipping
costs were passed
on to patients.

Poor. Too many
people were in-
volved with blood
inventories to be
able to participate
in the design of
the system.

Fair. Adminis-
trators responsible
for daily blood
allocation received
the original.

Good. Printed at
blood center.

Good. Reports
were provided
one hour before
allocation deci-
sions were made.

Heuristic
Allocation
Failure

Good. Shortages
were prevented by
calling in more
donors.

Good. Output
design could
have been more
participative.

Good. Adminis-
trators concerned
with distribution
and collections
received the report.

Good. Printed at
blood center.

Good. Forecasts
were updated
daily.

Good. A forecast
was issued for
each blood type.

Short-Term
Forecasting
Success

Good. Summary
reports helped
reduce outdating
and prevent
shortages.

Good. Blood
administrators
participated in
the design of the
reports.

Good. Blood admin-
istrators who origin-
ally kept manual
reports received
these reports.

Good. Summary
reports were
printed at the
center where
they were
needed.

Good. Same
as listings.

Good. Summary report
was designed to exact
format specifications
of manual summary
reports developed by
the blood administrator
for city hospitals.

Management
Summary
Reports
Success

FIGURE 16.18
Evaluating a blood inventory
information and decision support
system using the information
system utility approach.

548 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

be implemented. Second, actualization utility implies that an information system has value if it is
maintained after its designers depart, or if a one-time use of the information system obtains
satisfactory and long-lasting results.

GOAL UTILITY. Goal utility answers the “why” of information systems by asking whether the
output has value in helping the organization obtain its objectives. The goal of the information
system must not only be in line with the goals of decision makers, but it must also reflect their
priorities.

EVALUATING CORPORATE WEB SITES
Evaluating the corporate Web site that you are developing or maintaining is an important part of
any successful implementation effort. Analysts can use the information system utility approach
previously described to assess the aesthetic qualities, content, and delivery of the site. As an an-
alyst or Webmaster, you should go one step further and analyze Web traffic.

A visitor to your Web site can generate a large amount of useful information for you to ana-
lyze. This information can be gathered automatically by capturing information about the source,
including the previous Web site the user visited and the keywords used to find the site; the infor-
mation can also be obtained through using cookies (files left on a user’s computer about when
they last were on the site).

A leading Web activity monitoring package is Webtrends. Figure 16.19 is a sample report
showing the most downloaded files on the Web site by day of the week. The graph displays the
top five downloaded files, and the table at the bottom is a sorted list of all downloads.

An analyst or Webmaster can gain valuable information by using a service such as Web-
trends. (Although some services are free, the pay services usually provide the detail needed to
evaluate the site in depth. The cost is an ongoing budget item for maintaining the Web site.) In-
formation to help you evaluate your client’s site and make improvements is plentiful and easy to
obtain. The seven essential items are described next.

1. Know how often your client’s Web site is visited. The number of hits a Web site had in
the last few days, the number of visitor sessions, and the number of pages visited are a few
of the general things you need to know.

2. Learn details about specific pages on the site. It is possible to get statistics on the most
requested pages, most requested topics, top paths a visitor takes through the client’s Web
site, or even the most downloadable files. If the Web site is a commercial one, shopping
cart reports can show how many visitors were converted into buyers and how many
abandoned their carts or failed to complete the checkout process.

C O N S U L T I N G O P P O R T U N I T Y 1 6 . 6

Mopping Up with the New System

“Idon’t know what happened. When the new system was in-
stalled, the systems analysts made a clean getaway, as far as I can
tell,” says Marc Schnieder, waxing philosophic. Recall that he is
owner of the Marc Schnieder Janitorial Supply Company. (You last
met Marc in Consulting Opportunity 13.1, in which you helped him
with his data storage needs. In the interim, he has had a new infor-
mation system installed.)

“The systems analysis team asked us some questions about
how we liked the new system,” Marc supplies eagerly. “We didn’t
really know how to tell them that the output wasn’t as spotless as

we’d like. I mean, it’s confusing. It isn’t getting to the right people
at the right time or anything. We never really did get into the nitty-
gritty about the finished system with that consulting team. I feel as
if we had to hire your group just to mop up after what they left.”

After further discussions with Stan Lessink and Jill Oh, the
company’s chief programmers, you realize that the team that did the
initial installation had no evaluation mechanism. Suggest a suitable
framework for evaluating the kinds of concerns that Mr. Schnieder
raised about the system. What are the problems that can occur when
a system is not evaluated systematically? Respond in a paragraph.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 549

3. Find out more about the Web site’s visitors. Visitor demographics and information such
as the number of visits by a particular visitor in a period of time, whether the visitor is a
new or a returning one, and who the top visitors are—all are valuable information when
evaluating a Web site. The display in Figure 16.20 shows the number of unique visitors
(top graph), the number of first-time visitors (middle graph), and the average length of
visits over time (bottom graph).

4. Discover if visitors can properly fill out the forms you designed. If the error rate is high,
redesign the form and see what happens. Analysis of the statistics will reveal whether bad
form design was to blame for errors in response.

5. Find out who is referring Web site visitors to the client’s site. Find out which sites are
responsible for referring visitors to the client’s Web site. Get statistics on the top referring
site, the top search engines leading to the site, and even the keywords visitors used to

FIGURE 16.19
A sample report from Webtrends
Corporation showing the most
downloaded files on the corporate
Web site.

FIGURE 16.20
A report comparing statistics on
visitors generated by Commerce
Trends (from Webtrends
Corporation).

550 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

locate your client’s Web site. After promoting a site, you can use Web traffic analysis to
track whether the site promotion really made a difference.

6. Determine what browsers visitors are using. By knowing what browsers are being used,
you can add browser-specific features that improve the look and feel of the site and
encourage visitors to stay longer, thereby improving the stickiness of the site. It helps to
know whether visitors are using current or outdated browsers.

7. Find out if the client’s Web site visitors are interested in advertising. Finally, find out if
visitors to the site are interested in the ad campaigns you have on your site, such as
offering a product for sale for a specific period.

Web activity services can be helpful in evaluating whether the site is meeting its stated ob-
jectives in terms of traffic, advertising effectiveness, employee productivity, and return on invest-
ment. It is one of the ways an analyst can evaluate whether the corporate Web presence is meeting
management goals and whether it accurately portrays the organization’s vision.

SUMMARY
The systems analyst can ensure total quality management (TQM) for analyzing and designing information
systems in many ways. Six Sigma is a culture, philosophy, methodology, and approach to quality that has as
its goal the elimination of all defects. A tool for designing a top-down, modular system is called a structure
chart. Service-oriented architecture is an approach that uses independent services to perform various func-
tions. Two of the structured techniques that can aid the systems analyst are procedure manuals and FOLK-
LORE. Systems analysts must choose a technique that fits in well with what was previously used in the
organization and that allows flexibility and easy modification.

Testing of specific programs, subsystems, and total systems is essential to quality. System maintenance
is an important consideration. Both internal and external auditors are used to determine the reliability of the
system’s information. They communicate their audit findings to others so as to improve the usefulness of
the system’s information.

Implementation is the process of ensuring that information systems and networks are operational and
then involving well-trained users in their operation. In large systems projects, the primary role of the ana-
lyst is overseeing implementation by correctly estimating the time needed and then supervising the installa-
tion of equipment for information systems.

Distributed systems take advantage of telecommunications technology and database management to in-
terconnect people manipulating some of the same data in meaningful but different ways. As hardware and
software are evaluated, the systems analyst also needs to consider the costs and benefits of employing a dis-
tributed system to fulfill user requirements. One of the most popular ways to approach distributed systems
is through the use of a client-server model. Cloud computing allows commerce, applications, and data stor-
age to be served using the Internet. Standard types of organizational networks include the local area network
(LAN) and the wide area network (WAN). Using a top-down approach, analysts can use five symbols to help
draw network decomposition and hub connectivity diagrams.

Training users and personnel to interact with the information system is an important part of implemen-
tation, because users must usually be able to run the system without the intervention of the analyst. Conver-
sion is the process from changing from the old information system to the new. The five conversion strategies
are direct changeover, parallel conversion, phased or gradual conversion, modular conversion, and distrib-
uted conversion. Research suggests that systems analysts can improve the chances that newly implemented
systems will be accepted if they develop systems with predominant organizational metaphors in mind.

Security of data and systems has taken on increased importance for analysts who are designing more
ecommerce applications. Security has several facets—physical, logical, and behavioral—that must all work
together. Analysts can take a number of precautions, such as virus protection software, email filtering, URL
filters, firewalls, gateways, virtual private networks, intrusion detection products, secure socket layering, se-
cure electronic translation, and the use of a public key infrastructure, to improve privacy, confidentiality, and
the security of systems, networks, data, individuals, and organizations. In addition, every company for which
you design an ecommerce application should adopt a privacy policy following five guidelines.

Even though you take all possible measures to ensure system security, privacy, and stability, all em-
ployees and systems are vulnerable to natural or human-made disaster. Disaster recovery is focused on how
a business can continue after a disaster has hit and how it can restore essential IT infrastructure.

Many different evaluation approaches are available, including cost-benefit analysis, the revised deci-
sion evaluation approach, and user involvement evaluations. The information system utility framework is a
direct way to evaluate a new system based on the six utilities of possession, form, place, time, actualization,
and goal.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 551

H Y P E R C A S E ® E X P E R I E N C E 1 6 . 2

“As you know, Snowden is determined to implement some kind
of computerized tracking for the Training people. Even after having
you and your team here at MRE for all of this time, though, it isn’t
clear to me how that will ever come about. You’ve probably noticed
by now that people such as Tom Ketcham are pretty set in their
ways, but so is Snowden, and he definitely has the upper hand. I’m
not telling you anything you don’t know already, am I?

“Also, please check with Jack O’Malley and Kate Eckert to
make sure that what you’re planning will be covered by their latest
disaster recovery plan. I think when Snowden comes back from
Poland, you should be ready to show him how we can implement
an automated tracking system for the Training group, but it really
has to be acceptable to the new users. After all, they’re the ones who
have to live with it. I’ll pencil you in for a meeting with Snowden
two weeks from today.”

HYPERCASE Questions
1. Develop an implementation plan that would be useful to the

Training group in changing to a computerized project
tracking system. Use a paragraph to explain your approach.
Be sure that what you are doing also meets Snowden’s
expectations.

2. In two paragraphs, discuss what conversion approach is
appropriate for adopting a new automated project tracking
system for the Training group.

3. Create a bulleted list of the measures you would take to
secure and back up the new project tracking system you are
proposing for the Training group.

KEYWORDS AND PHRASES
behavioral security
bottom-up design
client-server model
control flag (switch)
corporate privacy policy
data couple
desk check
direct changeover
disaster preparedness
disaster recovery
distributed conversion
distributed processing
email filtering products
encryption software
firewall or firewall system
FOLKLORE
full systems testing with live data
full systems testing with test data
gradual or phased conversion
hub connectivity
information system utility
internal auditor
IS quality circle
link testing with test data (string testing)

local area network (LAN)
logical security
modular conversion
modular design and development
network decomposition
network modeling
organizational metaphors
parallel conversion
program testing with test data
public key infrastructure (PKI)
Six Sigma
software documentation
software maintenance
storage area networks (SANs)
structure chart
structured walkthrough
top-down design
total quality management (TQM)
URL filtering products
virus protection software
Web traffic analysis
wide area network (WAN)
wireless local area network (WLAN)

REVIEW QUESTIONS
1. What are the three broad approaches available to the systems analyst for attaining quality in newly

developed systems?
2. Who or what is the most important factor in establishing and evaluating the quality of information

systems or decision support systems? Why?
3. Define the total quality management (TQM) approach as it applies to the analysis and design of

information systems.

552 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

4. What is meant by the term Six Sigma?
5. What is an IS quality circle?
6. Define what is meant by doing a structured walkthrough. Who should be involved? When should

structured walkthroughs be done?
7. List the advantages of taking a top-down approach to design.
8. Define modular development.
9. List four guidelines for correct modular programming.

10. Name the two types of arrows used in structure charts.
11. What is service-oriented architecture?
12. Give two reasons that support the necessity of well-developed systems and software documentation.
13. In what four categories does the FOLKLORE documentation method collect information?
14. List six guidelines for choosing a design and documentation technique.
15. Whose primary responsibility is it to test computer programs?
16. What is the difference between test data and live data?
17. What are the two types of systems auditors?
18. List the four approaches to implementation.
19. Describe what is meant by a distributed system.
20. What is the client-server model?
21. Describe how a client is different from a user.
22. What are the advantages of using a client/server approach?
23. What are the disadvantages of using a client/server approach?
24. Who should be trained to use the new or modified information system?
25. List the five possible sources of training for users of information systems.
26. List the five conversion strategies for converting old information systems to new ones.
27. List the nine organizational metaphors and the hypothesized success of each type of system given

their presence.
28. Define the terms physical, logical, and behavioral security, and give an example of each one that

illustrates the differences among them.
29. Define what encryption software means.
30. What is a firewall or firewall system?
31. List five of the several measures an analyst can take to improve the security, privacy, and

confidentiality of data, systems, networks, individuals, and organizations that use ecommerce Web
applications.

32. List five guidelines for designing a corporate privacy policy for ecommerce applications.
33. Briefly give the differences between disaster preparedness and disaster recovery.
34. List and describe the utilities of information systems that can be used to evaluate the information

system.
35. What are seven essential items that the analyst should include in performing a Web site traffic

analysis?

PROBLEMS
1. One of your systems analysis team members has been discouraging user input on quality standards,

arguing that because you are the experts, you are really the only ones who know what constitutes a
quality system. In a paragraph, explain to your team member why getting user input is critical to
system quality. Use an example.

2. Write a detailed table of contents for a procedure manual that explains to users how to log onto your
school’s computer network, as well as the school’s network policies (who is an authorized user, and
so on). Make sure that the manual is written with the user in mind.

3. Your systems analysis team is close to completing a system for Meecham Feeds. Roger is quite
confident that the programs that he has written for Meecham’s inventory system will perform as
necessary, because they are similar to programs he has done before. Your team has been very busy
and would ideally like to begin full systems testing as soon as possible. Two of your junior team
members have proposed the following:
a. Skip desk checking of the programs (because similar programs were checked in other

installations; Roger has agreed).
b. Do link testing with large amounts of data to prove that the system will work.
c. Do full systems testing with large amounts of live data to show that the system is working.

Respond to each of the three steps in their proposed test schedule. Use a paragraph to explain
your response.

4. Propose a revised testing plan for Meecham Feeds (Problem 3). Break down your plan into a
sequence of detailed steps.

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 553

5. Draw a local area network or some other configuration of distributed processing using the
client/server approach to solve some of the data sharing problems that Bakerloo Brothers is having. It
wants to be able to allow teams of architects to work on blueprints at headquarters, let the
construction supervisor enter last-minute changes to plans under construction from the field, and
permit clients to view plans from almost anywhere. Currently, the company has a LAN for the
architects who are in one city (Philadelphia) that lets them share some drawing tools and any updates
that team members make with architects in other cities (New York, Terre Haute, Milwaukee, Lincoln,
and Vancouver). The supervisor uses a notebook computer, cannot make any changes, and is not
connected to a database. Clients view plans on displays, but sales representatives are not able to enter
modifications to show them what would happen if a wall were moved or a roof line altered. (Hint:
List the problems that the company is encountering, analyze the symptoms, think of a solution, and
then start drawing.) More than one network may be necessary, and not all problems will be amenable
to a systems solution.

6. Create a disaster recovery plan for one of the networks you recommended to Bakerloo Brothers in
Problem 5.

7. Cramtrack, the regional commuter train system, is trying to train users of its newly installed
computer system. For the users to get the proper training, the systems analysts involved with the
project sent a memo to the heads of the four departments that include both primary and secondary
users. The memo said in part, “Only people who feel as if they require training need to make
reservations for off-site training; all others should learn the system as they work with it on the job.”
Only 3 of a possible 42 users signed up. The analysts were satisfied that the memo effectively
screened people who needed training from those who did not.
a. In a paragraph, explain how the systems analysts got off the track in their approach to training.
b. Outline the steps you would take to ensure that the right people at Cramtrack are trained.
c. Suggest in a paragraph how the Web might be used to assist in training for Cramtrack.

8. A beautiful, full-color brochure arrived on Bill Cornwell’s desk describing the Benny Company’s off-
site training program and facilities in glowing terms; it showed happy users at PCs and professional-
looking trainers leaning over them with concerned looks. Bill ran excitedly into Roseann’s office and
told her, “We’ve got to use these people. This place looks terrific!” Roseann was not persuaded by
the brochure, but didn’t know what to say in defense of the onsite training for users that she had
already authorized.
a. In a few sentences, help Roseann argue the usefulness of onsite training with in-house trainers in

contrast to off-site training with externally hired trainers.
b. If Bill does decide on Benny Company training, what should he do to verify that this company is

indeed the right place to train the company’s information system users? Make a list of actions he
should take.

9. “Just a little longer . . . I want to be sure this is working correctly before I change over,” says Buffy,
the owner of three bathroom accessories boutiques called Tub ‘n Stuff. Her accountant, who helped
her set up a new accounting information system, is desperately trying to persuade Buffy to change
over completely to the new system. Buffy has insisted on running the old and new systems in parallel
for an entire year.
a. Briefly describe the general problems involved in using a parallel conversion strategy for

implementing a new information system.
b. In a paragraph, try to convince the owner of Tub ‘n Stuff that a year of running a system in

parallel is long enough. Suggest a way to end Tub ‘n Stuff’s dual systems that will provide
enough reassurance to Buffy. (Assume the new system is reliable.)

10. Draft a plan to perform Web traffic analysis for the ecommerce application developed for Marathon
Vitamin Shops. (See Consulting Opportunities 1.1, 13.2, and 14.6 for more information about the
organization, their products, and their goals.) Your plan should take the form of a written report to the
owner of the chain, Bill Berry. Be sure to indicate what statistics you will monitor and why they are
important for Marathon Vitamin Shops to know.

11. FilmMagic, a chain of video rental stores, is experimenting with adding a new Web-based service to
its store (similar to www.netflix.com) that would, for a monthly fee, permit customers to choose a list
of DVDs, have them sent to their home, and return them in prepaid mailers when they had finished
viewing them. Based on what you know about FilmMagic, write a corporate privacy policy that
would work well on their newly proposed Web site. Create a prototype screen (either with a graphics
package or on a word processor) that includes appropriate language, fonts, and icons to show how
your policy will appear as a page on FilmMagic’s Web site.

12. Ayman’s Office Supplies Company recently had a new information system installed to help its
managers with inventory. In speaking with the managers, you notice that they seemed disgruntled
with the system output, which is a series of displays that show current inventory, customer and
supplier addresses, and so on. All screens need to be accessed through several special commands and

www.netflix.com

554 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

the use of a password. The managers had several opinions about the system but had no systematic
way to evaluate it.
a. Devise a checklist or form that helps Ayman’s managers evaluate the utilities of an information

system.
b. Suggest a second way to evaluate the information system. Compare it with what you did in

Problem 12a.

GROUP PROJECTS
1. Nicholas Ventola is the General Manager for the world famous Le Corked restaurant. His information

system was developed over time and, as it exists now, it consists of two computer systems that do not
communicate with one another. One system handles reservations and maintains a database of
customers’ preferences (likes and dislikes), birthdates and anniversaries, and other information. The
other system assigns each party to a table on a given night. In your group use a top-down approach to
identify the modules that would be necessary to accomplish everything Nicholas wants to do using
only one computer system, from making reservations to ordering food. From your own experience,
determine what systems are necessary to operate a fine dining establishment, then describe the
modules and how and when you would use them.

2. Divide your group into two subgroups. One subgroup should interview the members of the other
subgroup about their experiences encountered in registering for a class. Questions should be designed
to elicit information on customs, tales, sayings, and art forms that will help document the registration
process at your school.

3. Reunite your group to develop a Web page for a short excerpt for a FOLKLORE manual that
documents the process of registering for a class, one based on the FOLKLORE passed on in the
interviews in Group Project 2 above. Remember to include examples of customs, tales, sayings, and
art forms.

SELECTED BIBLIOGRAPHY
Evans, J. R., and W. M. Lindsay. An Introduction to Six Sigma and Process Improvement. Florence, KY:

Cengage Learning, 2004.
Hecht, J. A. “Business Continuity Management.” Communications of the AIS, Vol. 8, Article 30, 2002.
Juran, J. M. Managerial Breakthrough. New York: McGraw-Hill, 1964.
Kendall, J. E., and K. E. Kendall. “Metaphors and Methodologies: Living Beyond the Systems Machine.”

MIS Quarterly, Vol. 17, No. 2, June 1993, pp. 149–171.
Kendall, K. E. “Evaluation of a Regional Blood Distribution Information System.” International Journal of

Physical Distribution and Materials Management, Vol. 10, No. 7, 1980.
Kendall, K. E., J. E. Kendall, and K. C. Lee. “Understanding Disaster Recovery Planning through a Theatre

Metaphor: Rehearsing for a Show That Might Never Open.” Communications of AIS, Vol. 16, 2005,
pp. 1001–1012.

Kendall, K. E., and R. Losee. “Information System FOLKLORE: A New Technique for System Documen-
tation.” Information and Management, Vol. 10, No. 2, 1986, pp. 103–111.

Kobieulus, J. “Above the Cloud,” Network World, December 15, 2008, p. 22. www.networkworld.com. Last
accessed on August 26, 2009.

Stephens, D. O. “Protecting Records in the Face of Chaos, Calamity, and Cataclysm,” The Information Man-
agement Journal, January/February 2003, pp. 33–40.

Warkentin, W., R. S. Morse, E. Bekkering, and A. C. Johnston. “Analysis of Systems Development Project
Risks: An Integrative Framework. The DATA BASE for Advances in Information Systems, Volume 40,
Number 2, May, 2009, pp. 8–21.

Wikipedia, the free encyclopedia, “Cloud Computing.” Last accessed August 26, 2009.
Zmud, R. W., and J. F. Cox. “The Implementation Process: A Change Approach.” MIS Quarterly, Vol. 3,

No. 2, 1979, pp. 35–44.

www.networkworld.com

CHAPTER 16 • QUALITY ASSURANCE AND IMPLEMENTATION 555

E P I S O D E 16
CPU CASE

ALLEN SCHMIDT, JULIE E. KENDALL, AND KENNETH E. KENDALL

Semper Redundate
Mack Roe walks to Anna’s desk where Chip is standing and says, “The last program has been tested and in-
corporated into the system test. The results indicate that the system is finally complete. Every program and sub-
system is working as planned. The whole system checks out. Testing has been thorough and exacting, with all
the problems and program bugs satisfactorily resolved. I’ve reviewed the deliverables, and each one has been
developed into programs. I’ll leave you two to install it and then celebrate.”

“That’s fantastic!” Anna replies as Mack leaves. “We’ve been anticipating this moment for a long time.
We now have the task of installing the system. I’ve checked with Mike Crowe, and all the hardware has ar-
rived and has been installed. The computers have been connected, and the network software has been in-
stalled. Why don’t we make a list of the tasks to be completed?”

“Sure,” answers Chip. “We’ll need to train the users on the operation of the system. It would be good
to provide some general training, followed by specific training for each user. We might want to train several
people—the user and a backup person—for each specific operation.”

“That’s all right with me,” responds Anna, “but I don’t think we should have a backup person for Paige
Prynter. Somehow I don’t think she would be fond of the idea.”

“Speaking of backup,” says Chip, “what about creating backups of master database tables and other ta-
bles? We should design an automated procedure for creating these copies.”

“Yes,” replies Anna. “Great idea. We also need to be concerned with system security: Who can access the
data, and who has clearance to update various database elements. We should also create a disaster recovery
plan, just in case of things like power outages or other human-made or natural disasters.”

“I agree,” remarks Chip. “You never know when things might go awry. Another consideration is con-
verting the production files from the old system to the new format. We don’t want to rekey all the records from
the hardware and software master files.”

“Why don’t we have one of the programmers write a one-time program that will convert each file from
the old format to the new?” suggests Anna. “The indexes could be automatically updated, and additional
fields initialized to spaces or zeros.”

The programmers complete the file conversion programs in a short time. The new database tables are
created and painstakingly verified for accuracy. This effort is rewarded with new tables that contain all the
necessary rows loaded with correct information.

Training is scheduled to start in the Information Center. Hy Perteks is more than willing to reserve a
block of time for installing the software and providing the training sessions. Chip and Anna alternate in pro-
viding instruction, each for the portions of the system they had created.

With the training sessions concluded, the last task is the conversion of the old system to the new. The
phased method is selected as the best approach. First, the computer hardware programs are installed.
Records are updated with information for the additional elements included in the system design.

Next, the software update programs are installed. Again, updates to database tables are entered. When
the records contain complete information, the inquiry screens are installed. Finally, report and menu pro-
grams are added to the system.

“The installation is a great success,” exults Chip. “Everything is working correctly, without a bug in
the system. I guess we should knock on wood. Have you heard any comments from the users?”

“Yes,” replies Anna. “They are happy and relieved to have their new system. Mike Crowe has already
started to use the preventive maintenance feature and has his students helping to tackle one lab room at a time.
Cher and Dot were running through the various displays and several times commented on how easy it is to per-
form tasks. I paid a visit to Paige Prynter, and she asked me what she should do with all her free time.”

“I understand that the Web system is available through the faculty portal. Notices are being sent out via
email about the availability of the Web system and training sessions.”

The analysts smile at each other. Chip says, “It has been a really great project to work on.”
“It certainly has,” answers Anna. “The best system we’ve ever created here at CPU.”
“I’ve learned a lot about the university in my short time here, too. It’s a great place to work,” Chip muses.
“And as long as you remember our motto, you should do fine,” Anna replies. “Semper redundate,” she

says to Chip.
“Yeah, I see it on all the letterhead. I must admit, though, that I never took Latin in school. What does

the motto actually mean?” Chip asks.
“Always back up!” Anna says securely.

556 PART V • QUALITY ASSURANCE AND IMPLEMENTATION

EXERCISES
E-1. Describe procedures that should be designed to create automatic backup. In a paragraph, be sure to

consider the pros and cons of these procedures.

E-2. List security measures that should be taken to prevent unauthorized persons from using the computer
system.

E-3. Outline a disaster recovery plan for the new computer system you have created for CPU. In particu-
lar focus on the teams that will be responsible for managing a crisis.

E-4. Explain in a paragraph why a phased conversion would be used to install the computer system.

557

Numbers in parentheses refer to the chapter in which that
term is defined.

ACTOR In UML, a particular role of a user of the system.
The actor exists outside the system and interacts with the
system in a specific way. An actor can be a human, another
system, or a device such as a keyboard. (10) See also use
case.

AGGREGATION Often described as “has a” relationship
when using UML for an object-oriented approach.
Aggregations provide a means of showing that the whole
object is composed of the sum of its parts (other
objects). (10)

AGILE APPROACH (OR AGILE MODELING) A
systems development approach which has values, principles,
and practices useful for systems analysts who desire a
flexible, interactive, and participative approach. (6) See also
extreme programming.

AJAX A method using JavaScript and XML to
dynamically change Web pages without displaying a new
page by obtaining small amounts of data from the
server. (12)

ALIAS Alternative name for a data element used by
different users. Recorded in a data dictionary. (8)

APPLICATION SERVICE PROVIDER (ASP) A
company that hosts application software, which is leased by
other organizations for use on the Web. Applications include
traditional ones as well as collaboration and data
management. (16)

ASSOCIATIVE ENTITY An entity type that associates
the instances of one or more entity types and contains
attributes that are peculiar to the relationship between those
entity instances. (2)

ATTRIBUTE Some characteristic of an entity. There can
be many attributes for each entity. (13) See also data item.

ATTRIBUTIVE ENTITY One of the types of entities
used in entity-relationship diagrams. Something useful in
describing attributes, especially repeating groups. (2)

BEHAVIOR How an object acts and reacts. (10)

BESPOKE SOFTWARE Another term for custom
software, it is the opposite of commercial-off-the-shelf
(COTS) software. It is software developed to serve a
particular function, or to support a unique organizational
feature. (1)

BIPOLAR QUESTION A subset of closed questions that
can be answered in two ways only, such as yes or no, true or
false, and agree or disagree. (4) See also closed question,
open-ended question.

BROWSER Special software that runs on an Internet-
connected computer enabling users to view hypertext-based
Web pages on the Internet. Microsoft Internet Explorer and
Mozilla’s Firefox are examples of graphical browsers. (11)

BUBBLE DIAGRAM A simple diagram that shows data
associations of data elements. Each entity is enclosed in an
ellipse, and arrows are used to show the relationships. Also
called a data model diagram. (13)

BUSINESS RULES Statements specific to an
organization’s functioning that provide a logical description
of business activities. Used to help create data flow
diagrams. (7)

CASE TOOLS Computer-aided software engineering
tools that include computer-based automated diagramming,
analyzing, and modeling capabilities. (1)

CHILD DIAGRAM The diagram that results from
exploding the process on Diagram 0 (called the parent
process). (7)

CLASS A common template for a group of individual
objects with common attributes and common behavior in
object-oriented analysis and design and UML. (10)

GLOSSARY

CLASS DIAGRAM Used to graphically model the static
structural design view of a system; illustrates the functional
requirements of the system gathered by way of analysis, as
well as the physical design of the system. (10)

CLIENT/SERVER ARCHITECTURE A design model
that features applications running on a local area network
(LAN). Computers on the network divide processing tasks
among servers and clients. Clients are networked machines
that are points of entry into the client/server system. (16)

CLOSED QUESTION A type of question used in
interviews or on surveys that closes the possible response set
available to respondents. (4) See also bipolar question, open-
ended question.

CLOSED SYSTEM Part of general systems theory; a
system that does not receive information, energy, people, or
raw materials as input. Systems are never totally closed or
totally open, but exist on a continuum from more closed to
more open. (2) See also open system.

CLOUD COMPUTING Organizations and individual
users use Web services, database services, and application
services over the Internet (the cloud), without having to
invest in corporate or personal hardware, software, or
software tools beyond the Web. Businesses use Web browsers
to access applications and servers store software and data for
businesses. (16)

COMMAND LANGUAGE INTERFACE A type of
interface that allows users to control the application with a
series of keystrokes, commands, phrases, or some sequence
of these three methods. (14)

COMPUTER-AIDED SOFTWARE ENGINEERING
(CASE) Specialized software tools that include computer-
based automated diagramming, analyzing, and modeling
capabilities. (1)

CONCATENATED KEY A composite key created when
it is not possible to identify a record uniquely by using one
of the data items found in a record; a key can be constructed
by choosing two or more data items and combining
them. (13)

CONTEXT-LEVEL DATA FLOW DIAGRAM The
most basic data flow diagram of an organization showing
how processes transform incoming data into outgoing
information. Also called an environmental model. (2) See
also data flow diagram.

CONTROL FLAG Used in structure charts to govern
which portion of a module is to be executed, associated
with IF, THEN, ELSE, and other similar types of
statements. (16)

CONVERSION Physically converting the old information
system to the new one. There are five conversion strategies:
direct changeover, parallel conversion, phased or gradual

conversion, modular prototype conversion, and distributed
conversion. (16)

CRC CARDS The analyst creates Class, Responsibilities,
and Collaborators cards to represent the responsibilities of
classes and the interaction between the classes when
beginning to model the system from an object-oriented
perspective. Analysts create the cards based on scenarios that
outline system requirements. (10)

CRITICAL PATH The longest path calculated using the
PERT scheduling technique; the path that will cause the
whole systems project to fall behind if even one day’s delay
is encountered on it. (3)

DASHBOARD Display for decision makers including a
variety of displays of relevant performance
measurements. (11)

DATA COUPLE Depiction of the passing of data between
two modules on a structure chart. (16)

DATA DICTIONARY A reference work of data about
data (metadata) created by the systems analyst based on data
flow diagrams; collects and coordinates specific data terms,
confirming what each term means to different people in the
organization. (8)

DATA ELEMENT A simple piece of data, can be base or
derived; should be defined in the data dictionary. (8)

DATA FLOW Data that move in the system from one
place to another; input and output are depicted using an
arrow with an arrowhead in data flow diagrams. (7)

DATA FLOW DIAGRAM (DFD) Graphical depiction of
data processes, data flows, and data stores in a business
system. (7)

DATA ITEM The smallest unit in a file or database. Used
interchangeably with the word attribute. (13)

DATA MINING Techniques that apply algorithms for
extracting patterns from data stored in data warehouses that
are typically not apparent to human decision makers. Also
known as knowledge data discovery (KDD). (14)

DATA REPOSITORY A centralized database that
contains all diagrams, form and report definitions, data
structures, data definitions, process flows and logic, and
definitions of other organizational and system components;
provides a set of mechanisms and structures to achieve
seamless data-to-tool and data-to-data integration. (8)

DATA STORE Data that are at rest in the system; depicted
using an open-ended rectangle in data flow diagrams. (7)

DATA STRUCTURE Structures composed of data
elements, typically described using algebraic notation to
produce a view of the elements. The analyst begins with the
logical design and then designs the physical data
structures. (8)

558 GLOSSARY

DATA WAREHOUSE A collection of data in support of
management decision processes that is subject oriented,
integrated, time variant, and nonvolatile. (14) See also data
mining.

DATABASE A formally defined and centrally controlled
store of electronic data intended for use in many different
applications. (13)

DATABASE MANAGEMENT SYSTEM
(DBMS) Software that organizes data in a database
providing information storage, organization, and retrieval
capacities. (13)

DECISION SUPPORT SYSTEM (DSS) An interactive
information system that supports the decision-making
process through the presentation of information designed
specifically for the decision maker’s problem-solving
approach and application needs. It does not make a decision
for the user. (1)

DECISION TABLE A way to examine, describe, and
document structured decisions. Four quadrants are drawn to
describe the conditions, identify possible decision
alternatives, indicate which actions should be performed, and
describe the actions. (9)

DECISION TREE A method of decision analysis for
structured decisions; an appropriate approach when actions
must be accomplished in a certain sequence. (9)

DEFAULT VALUE A value that a field will assume unless
an explicit value is entered for it. (13)

DELIVERABLES Any of the software, documentation,
procedures, user manuals, or training sessions that a systems
analyst delivers to a client based on specific contractual
promises. (3)

DENORMALIZATION Defining physical records not in
third or higher normal forms; includes joining attributes from
several relations together to avoid the cost of accessing
several files. Partitioning is an intentional form of
denormalization. (13)

DIGITAL SUBSCRIBER LINE (DSL) Protocols that
allow high-speed data transmission over regular telephone
wire. (16)

DISASTER RECOVERY PLANNING Strategic and
tactical plans to aid people and systems to recover in the face
of natural and human-made disasters. (16)

DISPLAY Any one of a number of display alternatives that
users employ to view computer software, including monitors
and liquid plasma screens. (11)

DISTRIBUTED SYSTEMS Computer systems that are
distributed geographically, as well as having their
processing, data, and databases distributed. One common
architecture for distributed systems is a LAN-based
client/server system. (16)

GLOSSARY 559

DOCUMENTATION Written material created by the
analyst that describes how to run the software, gives an
overview of the system, or details the program code used.
Analysts can use a CASE tool to facilitate
documentation. (16)

DROP-DOWN LIST One of many GUI design elements
that permits users to click on a box that appears to drop down
on the screen and list a number of alternatives, which can be
subsequently chosen. (11)

ECOMMERCE Doing business electronically, including
via email, Web technologies, BBS, smart cards, EFT, and
EDI, among suppliers, customers, governmental agencies,
and other businesses to conduct and execute transactions in
business, administrative, and consumer activities. (1)

ENCAPSULATION In object-oriented analysis and
design, an object is encapsulated by its behavior. An object
maintains data about the real-world things it represents in a
true sense. An object must be asked or told to change its own
data with a message. (10)

ENCRYPTION The process of converting a message into
an encrypted message by using a key so that the message
cannot be read by a person. The intended receiver of the
message can then use a key to decode and read the encrypted
message. (13)

END USERS In an organization, noninformation system
professionals who specify the business requirements for and
use software applications. End users often request new or
modified applications, test and approve applications, and
may serve on project teams as business experts. (1)

ENTERPRISE SYSTEMS Information systems that are
integrated organization-wide (enterprise-wide) that help
companies in the coordination of critical organizational
processes. (1)

ENTITY A person, group, department, or system that
either receives or originates information or data. One of the
primary symbols on a data flow diagram. (2) See also data
flow diagram, external entity.

ENTITY-RELATIONSHIP (E-R) DIAGRAM A
graphical representation of an E-R model. (8)

ENTITY TYPE A collection of entities that share
common properties or characteristics. (8)

ENVIRONMENT Anything external to an organization.
Multiple environments exist, such as the physical, economic,
legal, and social environments. (2)

EXECUTIVE SUPPORT SYSTEM (ESS) A computer
system that helps executives organize their interactions with
the external environment by providing graphical and
communication support. (1)

EXPERT SYSTEM (ES) A computer-based system that
captures and uses the knowledge of an expert for solving a

particular problem. Basic components are the knowledge
base, an inference engine, and the user interface. (1)

EXPLORATION PHASE This is the beginning phase of
agile development where the analyst asserts his or her
conviction that the agile approach is the correct one, then
assembles the development team, and assesses their skills. It
can last for a few weeks or up to a few months. (1)

EXTERNAL ENTITY A source or destination of data
considered to be external to the system being described. Also
called an entity. (7) See also data flow diagram.

EXTREME PROGRAMMING (XP) Extreme
programming (XP) is a systems development approach that
accepts what we know as good systems development
practices and takes them to the extreme. Genesis of agile
approaches. (3)

FAVICON A small icon displayed next to any bookmarked
address in a browser. Copying the bookmarked link to a
desktop results in a larger version of the icon being placed
there. Unique favicons can be generated with a Java icon
generator or with other graphics programs. (11)

FIELD A physical part of a database that can be packed
with several data items; the smallest unit of named
application data recognized by system software. (13)

FIREWALL Computer security software used to erect a
barrier between an organization’s LAN and the Internet.
Although it prevents hackers from getting into an internal
network, it also stops organizational members from getting
direct access to the Internet. (16)

FIRST NORMAL FORM (1NF) The first step in
normalizing a relation in data used in a database so that it
contains no repeating groups. (13) See also second normal
form, third normal form.

FIT Describes the way that HCI elements of the human,
the computer, and the task that needs to be performed work
together to improve performance and well-being. (14)

FOLKLORE A system documentation technique based on
traditional methods used in gathering information about
people and legends. (16)

FORECASTING Systems analysts are required to predict
certain key variables before the systems proposal is
submitted to the client. Forecasting is the art and science of
predicting key variables, often assisted with mathematical
forecasting models. (3)

FORM-FILL INTERFACE Part of GUI design elements
that automatically prompt the user to fill in a standard form.
Useful for ecommerce applications. (14)

FUNCTION POINT ANALYSIS A way to estimate project
size, considering the five main components of computer
systems: external inputs, external outputs, external log queries,
internal logical files, and external interface files. (3)

GANTT CHART A graphical representation of a project
that shows each task activity as a horizontal bar, the length of
which is proportional to its time for completion. (3)

GRAPHICAL USER INTERFACE (GUI) An icon-
based user interface, with features such as pull-down menus,
drop-down lists, and radio buttons. (14)

HUMAN–COMPUTER INTERACTION (HCI) The
aspect of a computer that enables communications and
interactions between humans and the computer; the layer of
the computer between humans and the computer. (14)

HYPERLINK Any highlighted word in a hypertext
system that will display another document when clicked on
by the user. (11)

ICON Small picture that represents an activity and
function available to users when they activate it, often with a
mouse click. Frequently used in GUI design. (14)

IMPLEMENTATION The last phase of the systems
development life cycle, in which the analyst ensures that the
system is in operation and then allows users to take over its
operation and evaluation. (16)

INDEXED FILE ORGANIZATION A type of file
organization that uses separate index files to locate
records. (13)

INHERITANCE In object-oriented analysis and design,
classes can have children. The parent class is known as the
base class, and the child class is called a derived class. The
derived class can be created to inherit all the attributes and
behaviors of the base class. (10)

INPUT Any data, either text or numbers, that are entered
into an information system for storage or processing via
forms, screens, voice, or interactive Web fill-in forms. (12)

INTANGIBLE BENEFITS Benefits that accrue to the
organization as a result of a new information system and that
are difficult to measure, such as improving decision making,
enhancing accuracy, and becoming more competitive. (3) See
also intangible costs, tangible benefits, tangible costs.

INTANGIBLE COSTS Costs that are difficult to
estimate and may not be known, including losing a
competitive edge, losing a reputation for innovation, and
declining company image, due to untimely or inaccessible
information. (3) See also intangible benefits, tangible
benefits, tangible costs.

INTEGRATED SERVICES DIGITAL NETWORK
(ISDN) A switched network service that provides end-to-end
digital connectivity for transmitting voice, data, and video
simultaneously over a single line versus multiple lines. (16)

INTERNET SERVICE PROVIDER (ISP) A company
that provides access to the Internet and that may provide
other services, such as Web hosting and Web traffic analysis,
for a fee. (12)

560 GLOSSARY

IP (INTERNET PROTOCOL) ADDRESS The number
used to represent an individual computer on a network. The
format for an IP address is 999.999.999.999. (16)

JAVA An object-oriented programming language that
allows dynamic applications to be run on the Internet. (11)

JOINT APPLICATION DESIGN (JAD) IBM’s
proprietary approach to panel interviews conducted with
analysts, users, and executives to accomplish requirements
analysis jointly. (4)

KEY One of the data items in a record that is used to
identify a record. (13) See also primary key, secondary key.

LEVEL 0 DIAGRAM The explosion (or decomposition)
of the context-level data flow diagram, showing from three to
nine major processes, important data flows, and data stores
of the system under study. (7)

LOCAL AREA NETWORK (LAN) The cabling,
hardware, and software used to connect workstations,
computers, and file servers located in a confined
geographical area (typically within one building or
campus). (15)

LOGICAL DATA FLOW DIAGRAM A diagram that
focuses on the business and how the business operates;
describes the business events that take place and the data
required and produced by each event. (7) See also data flow
diagram, physical data flow diagram.

LOWER CASE TOOLS CASE tools used by analysts to
generate computer source code, eliminating the need for
programming the system. (1) See also CASE tools.

MAINTENANCE Maintaining the information system to
improve it or to fix problems begins in this phase of the
SDLC and continues through the life of the system. Some
maintenance can be done automatically through connecting
to the vendor’s Web site. (1)

MANAGEMENT INFORMATION SYSTEM (MIS) A
computer-based system composed of people, software,
hardware, and procedures that share a common database to
help users interpret and apply data to the business. (1)

MASHUPS A new application created by combining two
or more Web-based APIs (application programming
interfaces) together. (14)

METHOD In UML, an action that can be requested from
any object of the class; the processes that a class knows how
to carry out. (10)

MNEMONIC CODE Any code (often using a
combination of letters and symbols) that helps the data entry
person remember how to correctly enter data or helps the
user remember how to use the information. (15)

NATURAL-LANGUAGE INTERFACE An interface that
permits the user to speak or write in human language to
interact with the computer. (14)

NORMALIZATION The transformation of complex user
views and data stores to a set of smaller, stable data
structures. Normalized data structures are more easily
maintained than complex structures. (13)

OBJECT In the object-oriented approach, an object is a
computer representation of some real-world thing or event;
can have both attributes and behaviors. (10)

OBJECT CLASS A category of similar objects. Objects
are grouped into classes. A class defines the set of shared
attributes and behaviors found in each object in the
class. (10)

OBJECT DIAGRAM A diagram that is similar to class
diagrams but that portrays the state of class instances and
their relationships at a point in time; shows objects and their
relationships. Also shows optionality (customer can have
zero or more rental contracts) and cardinality (rental contract
can have only one customer). (10)

OBJECT THINK Elementary statements the analyst
writes on CRC cards to begin thinking in an object-oriented
way. (10)

OPEN-ENDED QUESTION A type of question used in
interviews or on surveys that opens up the possible response
set available to respondents. (4) See also bipolar question,
closed question.

OPEN SOURCE SOFTWARE (OSS) A development
model and philosophy of distributing software free and
publishing its source code, which can then be studied,
shared, and modified by users and programmers. The Linux
operating system is an example. (1)

OPEN SYSTEM Part of general systems theory; a system
that freely receives information, energy, people, or raw
materials as input. Systems are never totally closed or totally
open, but exist on a continuum from more closed to more
open. (2) See also closed system.

OUTPUT Information delivered to users through the
information system by way of intranets, extranets, or the
Web, on printed reports, on displays, or via audio. (11)

PACKAGE In UML, things can be grouped together
in packages, which can be considered physical subsystems.
Systems are implemented and deployed in
packages. (10)

PAIR PROGRAMMING A core practice of the agile
approach wherein two programmers who choose to work
together both do the programming, run the tests, and talk to
one another about ways to efficiently and effectively get the
job done. (6)

PERT DIAGRAM A tool used to determine critical
activities for a project. It can be used to improve a project
schedule and evaluate progress. It stands for Program
Evaluation Review Technique. (3)

GLOSSARY 561

PHYSICAL DATA FLOW DIAGRAM A DFD that
shows how a system will be implemented, including the
hardware, software, people, and files involved. (7) See also
logical data flow diagram.

PLANNING GAME Used in agile development, the
planning game spells out rules that can help formulate the
agile development team’s relationship with their business
customers. (1).

PLUG-IN Additional software (often developed by a third
party) that can be used with another program; for example,
RealNetworks’ Real Player or Macromedia Flash are used as
plug-ins in Web browsers to play streaming audio or video
and view vector-based animation. (11)

PODCASTING The technique of putting downloadable
audio files on the Web. (11)

POLYMORPHISM Alternative behaviors among derived
classes in object-oriented approaches. When several classes
inherit both attributes and behaviors, the behavior of a
derived class might be different from its base class or its
sibling-derived classes. (10)

PRESENT VALUE The total amount that a series of
future payments is worth now; a way to assess the economic
outlays and revenues of the information system over its
economic life and compare costs today with future
benefits. (10)

PRIMARY KEY A key that uniquely identifies a record.
(13) See also key, secondary key.

PROBES Follow-up questions primarily used during
interviews between analysts and users. (4) See also closed
question, open-ended question.

PROBLEM DEFINITION A formal statement of the
problem, including (1) the issues of the present situation, (2)
the objectives for each issue, (3) the requirements that must
be included in all proposed systems, and (4) the constraints
that limit system development. (3)

PROCESS The activities that transform or change data in
an information system. They can be either manual or
automated. Signified by a rounded rectangle in a data flow
diagram. (2)

PRODUCTIONIZING PHASE The phase in agile
development when the software is released and feedback to
improve the software product is received. Product releases
can happen as often as every week. (1)

PROJECT CHARTER A written document describing
the expected results of the systems project (deliverables) and
the time frame for delivery; it essentially becomes a contract
between the chief analyst (or project manager) and his or her
analysis team with the organizational users requesting the
new system. (3)

PROJECT MANAGEMENT The art and science of
planning a project, estimating costs and schedules, managing
risk, and organizing and overseeing a team. Many software
packages exist to support project management tasks. (3)

PROJECT MANAGER A person responsible for
overseeing the planning, costing, scheduling, and team
organization of a (often systems) project. Frequently, it is a
role played by a systems analyst. (3)

PROTOTYPING A rapid, interactive process between
users and analysts to create and refine portions of a new
system; it can be used as part of the systems development life
cycle (SDLC) for requirements determination or as an
alternative to the SDLC. (6) See also rapid application
development.

PSEUDOCODE A technique to create computer
instructions that are the intermediate step between English
and program code; used to represent the logic of each
module on a structure chart. (16) See also structure chart.

PULL-DOWN MENU One of many GUI design elements
that provides an onscreen menu of command options that
appear after the user selects the command name on a menu
bar. (14). See also drop-down list.

QUERIES Questions users pose to the database
concerning data within it. Each query involves an entity, an
attribute, and a value. (14)

RADIO BUTTON One of many GUI design elements that
provides a round option button in a dialog box. Buttons are
mutually exclusive, because a user can choose only one radio
button option within the group of options displayed. (11)

RAPID APPLICATION DEVELOPMENT (RAD) An
object-oriented approach to systems development that
includes a method of development as well as software tools.
(6) See also prototyping.

RECORD A collection of data items that have something
in common with the entity described. (13)

RELATIONAL DATABASE MODEL Represents data in
the database as two-dimensional tables called relations. As
long as both tables share a common data element, the
database can relate any one file or table to data in another file
or table. (13)

RELATIONSHIP Association between entities
(sometimes referred to as data association); can take the form
of one-to-one, one-to-many, many-to-one, or many-to-
many. (13)

REPEATING GROUP The existence of many of the
same elements in the data structure. (8) See also data
structure.

RUBY ON RAILS A combination programming language
and code generator for creating Web applications. (11)

562 GLOSSARY

SAMPLING Systematically selecting representative
elements of a population. Analysts sample hard data, archival
data, and people during information requirements
determination. (5)

SECOND NORMAL FORM (2NF) When normalizing
data for a database, the analyst ensures that all nonkey
attributes are fully dependent on the primary key. All partial
dependencies are removed and placed in another relation.
(13) See also first normal form, third normal form.

SECONDARY KEY A key that cannot uniquely identify a
record; can be used to select a group of records that belong to
a set. (13)

SEQUENCE DIAGRAM In UML, a sequence diagram
illustrates a succession of interactions between object
instances over time. Often used to illustrate the processing
described in use case scenarios. (10)

SERVICE-ORIENTED ARCHITECTURE
(SOA) Making individual software services that are
unassociated or only loosely coupled to one another available
as applications or parts of applications to users, often using
the Web as a platform. (16)

SIX SIGMA A culture built on quality; the goal is to
eliminate all defects. (16)

STATECHART DIAGRAM In UML, a way to further
refine requirements. (10)

STICKINESS A property of Web pages, particularly
discussed in ecommerce. Features that increase the stickiness
of a Web page are those that entice customers to stay on the
page longer, help them to navigate back to the page if they
click on a link, and increase the likelihood they will
complete a purchase. (14).

STRUCTURE CHART A tool for designing a modular,
top-down system consisting of rectangular boxes and
connecting arrows. (16). See also control flag, data couple.

STRUCTURED ENGLISH A technique for analyzing
structured decisions based on structure logic and simple
English statements, such as add, multiply, and move. (9)

STRUCTURED OBSERVATION OF THE
ENVIRONMENT (STROBE) A systematic observational
method for classifying and interpreting organizational
elements that influence decision making. Based on mise-en-
scène film criticism. (5)

STRUCTURED WALKTHROUGH A systematic peer
review of the system’s programming and overall
development that points out problems and allows the
programmer or analyst to make suitable changes. (16)

SUPPLY CHAIN MANAGEMENT An organization’s
effort to integrate their suppliers, distributors, and customer
management requirements into one unified process.

Ecommerce applications can improve supply chain
management. (16)

SWIMLANES Zones used in activity diagrams to indicate
partitioning; can show which activities are done on which
platform and by which user group; can also depict system
logic. (10)

SYSTEM A collection of subsystems that are interrelated
and interdependent, working together to accomplish
predetermined goals and objectives. All systems have input,
processes, output, and feedback. Examples are a computer
information system and an organization. (2) See also closed
system, open system.

SYSTEMS ANALYST The person who systematically
assesses how businesses function by examining the inputting
and processing of data and the outputting of information with
the intent of improving organizational processes and the
quality of work life for users. (1)

SYSTEMS DEVELOPMENT LIFE CYCLE (SDLC) A
seven-phase approach to systems analysis and design that
holds that systems are best developed through the use of a
specific cycle of analyst and user activities. (1)

SYSTEMS DEVELOPMENT METHODOLOGY Any
accepted approach for analyzing, designing, implementing,
testing, maintaining, and evaluating an information system.
SDLC, agile approaches, and object-oriented systems
analysis and design are examples of methodologies. (1) See
also systems development life cycle.

SYSTEMS PROPOSAL A written proposal that
summarizes the systems analyst’s work in the business up to
that point and includes recommendations and alternatives to
solve the identified systems problems. (3)

SYSTEMS TESTING The sixth phase in the SDLC (along
with maintenance). Uses both test data and eventually live data
to measure errors, timeliness, ease of use, proper ordering of
transactions, acceptable down time, understanding procedure
manuals, and other aspects of the new system. (16)

TANGIBLE BENEFITS Advantages measurable in
dollars that accrue to the organization through the use of the
information systems. (3) See also intangible benefits,
intangible costs, tangible costs.

TANGIBLE COSTS The costs in dollars that can be
accurately projected by the systems analyst, including the
cost of computers, resources, analysts’ and programmer’s
time, and other employees’ salaries, to develop a new system.
(3) See also intangible benefits, intangible costs, tangible
benefits.

TECHNOLOGY ACCEPTANCE MODEL (TAM) A
research-based way for analysts to organize their thinking
about whether users will accept and use information

GLOSSARY 563

technology, typically including perceived usefulness and
perceived ease of use. (14)

THINGS In UML, things describe the objects of object-
oriented analysis and design. The two most often used
groupings of things are structural things and behavioral
things. (10)

THIRD NORMAL FORM (3NF) A form in which any
transitive dependencies are removed. A transitive
dependency is one in which nonkey attributes are dependent
on other nonkey attributes. (13) See also first normal form,
second normal form.

TRANSACTION PROCESSING SYSTEM (TPS) A
computerized information system developed to process large
amounts of data for routine business transactions, such as
payroll and inventory. (1)

UNIFIED MODELING LANGUAGE (UML) UML
provides a standardized set of tools to document the object-
oriented analysis and design of a software system. (10)

USABILITY A way for designers to evaluate the systems
and interfaces they create with an eye toward addressing as
many HCI concerns as they can as thoroughly as possible. (14)

USE CASE In UML, a sequence of transactions in a
system; the purpose is to produce something of value to an

actor in the system; focuses on what the system does rather
than on how it does it. The use case model is based on the
interactions and relationships of individual use cases. In a
use case, an actor using the system initiates an event that
begins a related series of interactions in the system. (10)

VALIDATION SOFTWARE Software that checks
whether data input to the information system is valid.
Although validating input is largely done through software
that is the programmer’s responsibility, it is the analyst’s
responsibility to know what common problems might
invalidate a transaction. (15)

VOICE-OVER INTERNET PROTOCOL (VOIP) The
routing of voice data over the Internet. (15)

WEBMASTER The person responsible for updating and
maintaining a Web site; often initially the systems analyst
during development of ecommerce applications. (12)

XML SCHEMAS A precise way to define the content of
an XML document; may include the exact number of times
an element can occur, the type of data within elements, limits
on the data, and the number of places to the left and right of
a decimal number. (8)

XP See agile approach and extreme programming. (6)

564 GLOSSARY

ACRONYMS

565

1NF first normal form
2NF second normal form
3NF third normal form
AJAX asynchronous JavaScript and XML
API application programming interface
ASP application service provider
B2B business-to-business
B2C business-to-consumer
CARE computer-assisted reengineering
CASE Computer-Aided Software Engineering
CHUI character-based user interface
COTS commercial off-the-shelf
CRUD create, read, update, and deleted
CSCWS computer-supported collaborative work system
CSS cascading style sheets
DBMS database management system
DDE dynamic data exchange
DFD data flow diagram
DHTML dynamic HTML
DLL dynamic link library
DSL digital subscriber line
DSS decision support system
DTD document type definition
EDI electronic data interchange
E-R entity-relationship
EIS executive information system
ERD entity-relationship diagram
ERP enterprise resource planning
ES expert system
ESS executive support system
FAQ frequently asked questions
FPC function point count
FTP file transfer protocol
GIF graphic interchange format
GUI graphical user interface
HCI human–computer interaction
HTML hypertext markup language
http:// hypertext transfer protocol
ICTS information communication technologies
ISDN Integrated Services Digital Network
ISP Internet service provider
JAD joint application design
JPEG Joint Photographic Experts Group
KDD knowledge data discovery
KWS knowledge work systems

LAN local area network
MICR magnetic ink character recognition
MIS management information system
MRP materials requirements planning
OAS office automation systems
OCR optical character recognition
OID object identifier
OLAP online analytic processing
OLE object linking and embedding
OOA object-oriented approach
OSS open source software
PERT Program Evaluation and Review Techniques
PHP hypertext preprocessor; an open source

programming language
PKI public key infrastructure
QBE query by example
RAD rapid application development
SAAS software as a service
SAN storage area network
SDLC systems development life cycle
SET secure electronic translation
SLA software license agreement
SOA service-oriented architecture
SQL structured query language
SSL secure socket layering
STROBE structured observation of the environment
TAM technology acceptance model
TPS transaction processing system
TQM total quality management
UML unified modeling language
URL uniform resource locator
VB.NET Visual Basic .NET, a Microsoft programming

environment
VOIP Voice-over Internet Protocol
VPN virtual private network
WAN wide area network
WAP wireless application protocol
WIMAX worldwide interoperability for microwave

access
WLAN wireless local area networks
WMP Windows Media Photo
WWW World Wide Web
XP extreme programming
XSLT extensible stylesheet language

transformations

INDEX

566

Note: Page numbers followed by
an italic f indicate figures.

SYMBOLS
(pound), 297
* (asterisk), 246, 304, 414, 455
[] (brackets), 232
{} (braces), 231
� (plus sign), 231, 246, 298, 383
�� �� (chevrons, guillemots),

308
� (less than), 244
� (equal sign), 231, 298
� (greater than), 244, 262, 266,

276, 455, 471
— (dash), 297
� (minus sign), 297
() (parentheses), 232, 298
/ (slash), 257

A
Abstract classes, 299, 307–08
Accuracy, 270, 506–08
Action entries, 267f, 278
Action language, 451
Actions

decision tables, 266–71
decision trees, 271–73

Active classes, 299
Activity diagrams

about, 290–92
creating, 292–94
defined, 287
repository entries for, 294
swimlanes for, 291–94

Actors
about, 36–38, 142
in behavioral diagrams, 287–88
exercises, problems for, 54
in sequence diagrams,

294–96, 300
in use case modeling, 17,

41–43, 314

Actualization utility, 547–48
Adobe Dreamweaver, 348
Agent of change, 7–8
Aggregation, 305
Agile modeling

about, 155
activities of, 168–69
core practices of, 171, 172f
development process for,

15–17, 171–75
exercises, problems for,

183–85
lessons of, 175–76
measuring impact of, 181
principles of, 168
resource control variables of,

169–71
risks inherent in, 179–81
vs. SDLC, 14, 19f, 177–79
values, principles of, 166–68
See also Prototyping

Ajax (Asynchronous JavaScript
and XML)

about, 6
defined, 349f
and input design, 387–88
and partitioning, 213
and sequence diagrams,

302–03
and Web page output, 358–60

Algebraic notation, 231–32
Alphabetic derivation coding,

486–87
American Express, 432
Americans with Disabilities

Act, 449
Animated output, 333–34
Annotational things, 312
Anomalies, in tables, 425–26
Application programming

interface (API), 468
Application service provider

(ASP), 68

Arrow symbol, 194, 295–96
Artifacts, for UML, 311–12
Artificial intelligence (AI), 3
Associations, as patterns, 431
Associations, between classes,

304–05
Asterisk (*), 246, 304, 414, 455
Asynchronous remote

replication, 545
Attributes

changing, 310–11
in classes, 282–83, 303,

306–08
data, 34
of entities, 405–08
in forms, 417–20
functional, 343
nonkey, 413
in O-O methodologies,

297–300
in queries, 470–71
in UML, 286–87

Audio output, 333–34
Auditing, of systems, 529

B
Banking, and disaster recovery,

545
Bar codes, 498
Base elements, 205
Bias, in output, 340–44
Bipolar questions, 106–07
Block sequence codes, 487
Blogs, 357
Bluetooth, 5
Body, of form, 372
Bottlenecks, 496
Boundary (interface) classes,

299
Braces ({}), 231
Brackets ([]), 232
Breadboarding, 156
Break-even analysis, 74–75

Bugs, 12–13, 170, 518
Bulletin boards, 141
Business activities, listing,

207–08, 209f
Business layer, 302
Buttons

basic, 389
in design, 380–86, 400–401
in ecommerce, 481–82
in GUIs, 460
navigational, 354, 367
for validation, 505

Buying hardware, 67

C
Cache, 354, 355
Canbea, 307f, 308
Captioning, on form, 372–74
Cascading style sheets, 354–55,

357
Case structure, 261, 263f
CASE tools. See Computer-

aided Software Engineering
(CASE) tools

Cash-flow analysis, 75
CD-ROMs, 334
Check boxes, 380
Check digit, 409, 501–03
Chevrons (����), 308
Child diagrams

in data dictionaries, 238–39
developing, 198, 211–12
vs. parent process, 199f

Class diagrams
about, 297–300
associations in, 304–05
defined, 287
enhancing, 303
example of, 288f
gen/spec, 306–09
in use case modeling, 314
whole/part relationships in,

305–06

INDEX 567

Classes
abstract, 299, 307–08
attributes, methods for,

308–11
boundary (interface), 299
control (active), 299
and CRC cards, 284–86
entity, 299
finding, 308
messages between, 308–09
for O-O analysis, 282–83
relationships between, 304–06
types of, 299

Classification, of codes, 487–89
Client-server technology, 529–31
Closedness, organizational, 26
Closed questions, 106–07, 115,

117f, 125
Clothing, 146
Cloud computing, 531–33
Clustering, as pattern, 431
Cluster sample, 133
Codes, coding

in agile development, 168–69
alphabetic derivation, 486–87
bar codes, 498
block sequence, 487
cipher, 488
classification of, 487
concealing, revealing, 488–89
defined, 485
function, 491
guidelines for, 491–93
mnemonic, 490
significant-digit subset,

489–90
simple sequence, 486
unicode, 490
using, 493

Cognitive style, 444–48
Collection, 305
Color, in display design, 389
Color blindness, 450
Command buttons, 381
Command-language interface,

455, 456f
Comments, on form, 372
Commercial off-the-shelf

software (COTS)
choosing, 68–72
evaluating for purchase,

68–71
prototyping with, 161–62
support for, 539
for Web sites, 354

Communication
in agile modeling, 167
as agile value, 14
consulting opportunity in, 46
designing dialog for, 458–61
and DFDs, 217

diagrams for, 296–97, 314
and disaster recovery

planning, 545
efficiency in, 179
and tables, graphs, 89–91
in teams, 84–85
in use case modeling, 36–38
See also Feedback;

Information gathering;
Output

Complex sample, 133
Component diagram, 312
Composition, 306
Computer-aided Software

Engineering (CASE) tools
about, 14
CPU case on, 23
impact of, 229
in structured projects,

177–79
Computer hardware, software.

See Hardware; Software
Computer-supported

collaborative work systems
(CSCWS), 4

Conditions, condition
alternatives, 266–73

Confidence level, in sampling,
134–35

Consistent design, in dialog, 461
Construx, 82
Consultant, 6
Consulting opportunities

choosing software, 70, 73
coding, 492, 494
communication problems, 46
cost, benefit analysis, 78
database design, 404
database queries, 472
data dictionary, 240
data warehousing, 430
decision table, 269
decision tree, 272
developing ecommerce site, 26
DFDs, 216–17
documentation, 524
evaluation, 548
feedback, 461
file copies, 44
form design, 377, 379
HCI, 466
hiring ecommerce help, 7
input, 390
input validation, 500
interfacing, 454, 456, 457
interviewing, 108, 110, 113
investigation for, 137
managing teams, 85
O-O analysis, 284, 313, 315
output, 335
output for, 339, 342, 348, 356

problem-solving, 58
process specifications, 264
prototyping, 159, 160,

161, 162
quality assurance,

implementation, 518
questionnaires, 120, 121
sampling, 135
STROBE, 145
structured decision, 263
systems solution, 546
testing, 528
training, 538
validity testing, 504

Content management systems
(CMS), 356–57

Context-level data flow diagram
CPU case on, 51–55
developing, 195–96, 208–10
exploding, 197f
and systems depiction, 29–30

Control (active) classes, 299
Convenience samples, 132–33
Conversion strategies,

considerations, 539–41
Cost, benefit analysis, 72–79,

546
Costar, 82
Cost concerns

as agile approach, 14
in agile modeling, 169–70
exercises on, 98
and failure, 88f
and feasibility, 63
of prototypes, 157
risks inherent in, 181
in software purchases,

68–69
tangible, intangible, 74–77

COTS. See Commercial off-the-
shelf software (COTS)

Courage, in agile modeling, 167
Cover letters, 88
CPU case

accurate data entry, 512–14
CASE tools, 23
data dictionaries, 252–58
data flow diagrams, 222–27
decision tables, 277–78
E-R diagram, 437–40
forms, 399–402
HCI, 479–83
interviewing, 128–30
Microsoft Visio, Visible

Analyst, 51–55, 100–101
O-O analysis, 320–27
output, 366–70
prototyping, 186–91
security, disaster recovery,

554–56
STROBE, 154

CRC cards, 284–86
Create, Read, Update, Delete

(CRUD), 204, 308, 309f
Credit cards, testing, 503–04
Cross-reference checks, 501
Crow’s foot symbol, 30–31,

405–06
Culture, organizational. See

Organizational culture
Customers. See Users

D
Dash (—), 268
Dashboards, 346–47
Data, logical, physical views of,

411–13
Data access layer, 302
Database design

database objectives, 403–04
exercises for, 434–36
file types for, 410–11
master file/database relation

design, 424–26
normalization in, 413–23
reality, data, metadata,

404–10
relational databases, 411–13
See also Data stores

Databases
about, 403–05
vs. data warehouses, 429
relational, 404, 411–12
retrieving, presenting data in,

426, 427f
visual analysis of, 446–48

Data capture, 136, 138–39,
494–99

Data dictionaries
about, 228–29
CPU case for, 252–58
creating, 238–41
data elements, 234–36, 248
data flows, 229–31
data stores, 236–38, 241
data structures, 231–33, 242f
and DFDs, 229–30
exercises, problems for,

249–51
input, output analysis for,

239–41
and process specifications,

265–66
and structured English, 264f
using, 242–47
and XML, 243–47

Data elements, 234–36, 248
Data entry, designing

about, 485
capture, of data, 494–99
coding for, 485–93
in ecommerce, 506–07

568 INDEX

Data entry, designing—
continued

exercises for, 508–11
quality through input

validation, 499–506
Data flow diagrams (DFD)

advantages of, 193–94
and communication, 217
CPU case for, 222–27
developing, 195–200
errors found in, 198–200, 201f
and event modeling, 205
example of, 207–13
exercises, problems for, 219–21
logical, 200–203, 212–13
partitioning, 206–07, 213
physical, 202f, 203–06,

212–13, 215f
and process specifications,

260–61
symbols used in, 194–95
and use cases, 205–06
uses of, 10

Data flows, 229–31
Data items, 408–10, 411f
Data mining, 429–32
Data mirroring, 545
Data redundancy, 425
Data repository, 229–38
Data stores

approaches to, 403
contents of, 236–38
developing, 241
symbol for, 194f, 195
See also Database design

Data structures, 231–33, 242f
Data types, 235f
Data warehouses, 429–32
Decision structure, 261, 263f,

264–65
Decision support systems

(DSS), 3
Decision tables

about, 266–67
completeness, accuracy of,

270–71
vs. decision trees, structured

English, 273
developing, 267–68
example of, 269–70, 280f

Decision trees, 271–73
Decor, lighting, 146
Deferred events, 310
Delay, processing, 463–64
Deletion anomaly, 426
Denormalization, 426–28
Deployment diagram, 312, 315
Derived elements, 205
Designing, agile approach to, 169
Desk placement, 144
DEVONthink Professional

Office, 147

Diagram 0
in data dictionaries, 238–39
drawing, 196–97, 210–11
example of, 199f
and partitioning, 214f

Diagrams
child, 198, 211–12, 238–39
communication, 296–97, 314
component, 312
data model, 416f–20f
deployment, 312, 315
enhancing, 288f
E-R, 421–22
hub connectivity, 534–35
network decomposition,

533–34
PERT, 82, 97, 101
statechart, 287–88, 309–11, 314
structure, 521f
for UML, 286–87
use case, 287–88f, 313, 314
for use case modeling, 38, 43
workstation connectivity, 535
See also Activity diagrams;

Class diagrams; Context-
level data flow diagram;
Data flow diagrams (DFD);
Diagram 0; Sequence
diagrams

Dialog, designing, 458–61
Dialog boxes, 380–81, 452–53
Diamond-shaped structure,

109, 110f
Dictionaries, data. See Data

dictionaries
Digital certificates, 544
DinoTech, 352–53, 352f, 353,

467–68
Direct changeover, 539
Disabilities, and HCI, 449–50
Disaster recovery planning,

544–46
Displays, for output, 332–33
Distributed systems

advantages, disadvantages of,
535–36

client-server technology,
529–31

cloud computing, 531–33
network modeling, 533–35

Docking cradle, 457
Documentation, and quality

assurance, 523–26
Document type definition

(DTD), 244–46, 506
Domain, in database, 413
Domain integrity, 424–25
Double square symbol, 194
Dragon Naturally Speaking, 458f
Drop-down boxes, lists

in agile modeling, 187–88
designing, 358, 387, 460

exercises for, 319, 369–70,
399, 401–02

illustrated, 495
for navigation, 383
reasons for using, 380–81
used in analysis, 320–22

DVDs, 334

E
Ecommerce

accurate data entry in, 506–07
feedback for, 465
integrating applications for,

4–5
managing projects for, 86
navigation for, 465–68
security, privacy for, 543–44

Economic feasibility, 63
Efficiency, in structured projects,

177–79
Electronic output, 334–36
Email, 334
English, structured. See

Structured English
Enterprise resource planning

(ERP) systems, 5, 28–29
Entities

attributes in, 408
classes of, 299
and context-level data flow,

29–30
in databases, 405
integrity of, 424
keys in, 409–10
records in, 408–09
relationships in, 405–08
relationships of, 30–35

Entity-relationship (E-R) model
CPU case on, 51–55
diagrams for, 406f
example of, 407–08
and record keys, 421–22
symbols for, 407f
used in systems, 30–35

Equal sign (�), 231, 298
ERP. See Enterprise resource

planning (ERP) systems
Errors. See Bugs
Ethics, and data mining,

432, 544
European Union, IT conventions

in, 441, 459, 543
Evaluation, 546–48
Event modeling, 205, 206f
Event-response charts, 382–83,

384f
Events, 309, 314
Executive summary, 89
Executive support systems

(ESS), 4
Expert Choice software, 59
Expert systems, 3

Exploration, in agile process,
15–16

Extends relationships, 37–38
Extensible Markup Language

(XML)
and data dictionaries, 243–47
and output, 357–60
providing standardization, 299
validating, 506
See also Ajax (Asynchronous

JavaScript and XML)

F
FAQ, 353
Feasibility, determining, 62–63
Feedback

about, 461
and accuracy, 506–07
after prototyping, 158
as agile approach value, 167
designing, 464–65
as system control, 25
types of, 462–64

Field, in records, 408, 501
File types, for databases, 410–11
Fill-in forms, 371, 389
Filtering, 543–44
Financial issues. See Cost

concerns
Firefox, 349
Firewall systems, 542–44
First normal form (1NF),

417–18
First-of-a-series prototype, 156f,

157
Fit, for HCI, 442–43
FOLKLORE, 523–25
Fonts, 333, 347, 375, 448
Forecasting, 72
Form-fill interfaces, 454–55
Forms

art, 523–25
bootleg, 139
business, 376–78
color for, 389
copying, 44
data capture, 100, 136–38
designing, 213–14, 372–76,

377, 496
input/output, 134, 371–72,

454–55
mark-sense, 497–98
preprinted, 331–32, 333
in structural methodology,

177–78
utility of, 547
Web, 459–60

Forty-hour workweek, 171, 176,
179

Forums, 464–65
Frequently asked questions

(FAQ), 353

INDEX 569

Full systems testing, 527–28
Function codes, 491
Funnel structure, 109

G
Gadgets, 347
Gantt charts, 79–80, 96–97
Generalization, 306
Generalization/Specialization

(Gen/Spec) diagrams,
306–09

Generalizes relationship, 38
General Motors, 432
Goals, 85–86, 104
Goal utility, 548
Gradual conversion, 540
Graphical user interface (GUI)

design
about, 456–57
and data capture, 495
defined, 379
design of, 380–82
menus for, 454

Graphs, graphics
and bias, 340–41
in screen design, 345, 346f
use of, 90–91
for Web sites, 354

Greater than (�) symbol, 244,
262, 266, 276, 455, 471

Group decision support systems
(GDSS), 3–4

Guard condition, 309
Guillemots (����), 308
Gurus, 168

H
Handbooks, policy, 141
Handheld devices, 348, 375
Hardware, 253–54. See also

Software
Heading, of form, 372
Hearing, and HCI, 448, 450
Help options, 464
Hidden fields, 382
Hierarchical database, 412
Hierarchical links, 466
HTML, 243–44, 348,

349, 355f
Hub connectivity diagram,

534–35
Human-Computer Interaction

(HCI)
about, 9, 11
designing for, 441–42
determining needs of, 10
dialog for, 458–61
and ecommerce, 465–68
exercises for, 476–78
and feedback, 461–65
and fit, performance, well-

being, 442–43

good practice for, 450–51
interfaces for, 451–58
in interviewing, 104
limitations, disabilities, and

design, 449–50
mashups, 468
physical considerations in,

448–49
and queries, 468–74
and technology acceptance

model (TAM), 443–44
and usability, 444–51
and visual database analysis,

446–48
See also Communication

Human information overload,
179

Humility, in agile modeling,
167–68

Humor, in documents, 140–41
Hypercase experiences

about, 20
analysis strategies, 47
database design, 433
data elements, 248
data entry, 507–08
DFDs, 218
diagramming, 317
FOLKLORE, 525
implementation, 551
input, 393–94
interfacing, 475
interviewing, 112
investigation, 141
output, 360
project management, 84, 92
prototyping, 182
questionnaires, 123
STROBE, 149
structured English, 274

Hyperlinks, 464

I
Icons, 378–79
Identification, access, on form,

372
Identification number (ID), 230,

234, 237, 299
IF-THEN-ELSE statements

in decision table, 266
illustrated, 262f, 263f, 264f
as structured English, 261,

265
used in validation, 505

IF-THEN statements, 267, 272
Image maps, 381
Implementation phase, of RAD,

164–65
Includes relationships, 37
Information, 1, 146, 179, 487–89
Information gathering

CPU case on, 154

exercises, problems for,
124–30, 150–52

investigation, 136–41
joint application design

(JAD), 111–14
observation, 141–48
sampling, 131–36
See also Interviewing;

Questionnaires
Information systems

analysis, design needs in, 6
choosing, 19
integrating technologies for,

4–5
life cycle, of systems

development, 8–13
object-oriented (O-O)

analysis, design, 17–19
role of analyst in, 6–8
types of, 2–4
utility approach to evaluation,

546–48
Inheritance, 283–84, 306–07
Input

criteria for, 371
data flows, 260
display, web form design,

376–89
exercises, problems for,

394–98
feedback for, 462–63
form design, 371–76
and GUIs, 379–82
icons for, 378–79
intranet, internet design, 389,

391
messages, 309
See also Output

Input/output forms, 454–55
Insert anomoly, 426
Instantiation, 282
Instructions, on form, 372
Intangible benefits, 73–74
Intangible costs, 74
Integrity constraints, 424–25
Interface classes, 299
Interface data flow, 198
Interfaces

command-language, 455, 456f
evaluating, 458
form-fill (input/output),

454–55
graphical user, 456–57
menus, 453–54
natural-language, 451–52
question-and-answer, 452–53
stylus, 457
touch-sensitive, 457–58
voice recognition, 458

Interface time, 177–78
Interviewing

about, 103–04

closed, bipolar questions,
106–07

CPU case on, 128–30
open-ended questions for,

105–06
preparing for, 104–05
probes, 107
report for, 109–10
sequence of questions for,

107–09
Intuitive navigation, 465
Invalid values, testing for, 501
Inventory, of hardware, 64
Investigation, 136–41
Isa, 307f, 308
Isakinda, 307f, 308
Iterations, 17, 261, 263f, 265

J
JAD, 111–14, 127
JavaScript

and Ajax, 6, 302–03, 349,
358–60

turning on, 387
in web page layout, 355

Joint application design (JAD),
111–14, 127

Joomla!, 357

K
Keyboards, 449, 496
Keys, record

about, 409–10
in E-R diagrams, 408,

421–22
in normalization, 413–23
symbols for, 252
unique vs. primary, 424
See also Primary keys

Knowledge data discovery
(KDD), 429–32

Knowledge work systems, 3

L
Leasing hardware, 67
Less than (�) symbol, 244
Lighting, decor, 146
Limitations, and HCI, 449–50
Link testing, 527
List box, 380
Listening, agile approach to, 169
Local area network (LAN), 531
Location, of office, 143–44
Luhn formula, 503–04

M
MAC appeal

1Password, 392
about, 12
Bento, 425
DEVONagent, 467
FileMaker Pro, 425

570 INDEX

MAC appeal—continued
Freeway Pro, 351
OmniFocus, 173
OmniGraffle, 35
OmniPlan, 83
Things, 520
Yojimbo, 147

Magnetic ink character
recognition (MICR), 497

Maintenance, of systems,
528–29

Manageable module, 159
Management information

systems (MIS), 3
Managerial planning and control,

43–44
Manuals, 141
Many-to-many (M:N)

relationships, 405–06, 423,
426–27

Mark-sense forms, 497–98
Mashups, 468
Master files, 410, 424–26
Materials requirements planning

(MRP), 28
Mcommerce, 5
Memos, 140–41
Menus, 453–54
Menus, rollover, 466
Message, defining, 300
Message box, 381
Metadata, 404–10, 411f
Metaphors, 140–41, 337,

541–42
Method

defining, 300
determining, 308–11, 314
and output, 330–40
overloading, 298–99
standard and custom, 298
in UML class, 283

MICR (magnetic ink character
recognition), 497

Microsoft Excel, 444–46
Microsoft Expression Web, 348
Microsoft Visio

CPU case on, 51–55, 100–101
illustrated, 353f
vs. OmniGraffle, 35
uses of, 14

Middle management, 44
Minispecs. See Process

specifications
Minus sign (�), 297
Mnemonic codes, 490
Mobile system integration, 5
Modular conversion, 540
Modular program design,

520–22
Money. See Cost concerns
Monitoring, of employees, 543
Motivation, 86

N
Natural-language interface,

451–52
Navigation, web, 355–56,

465–68
Navigation bar, 467
Network database, 412
Network decomposition

diagram, 533–34
Network modeling, 533–35
Nonoperational prototype,

156f, 157
Normalization

and denormalization, 426–28
E-R diagrams in, 421–22
examples of, 414–17
forms for, 417–21
steps of, 413–14

Notebook computer, 457

O
Object identifier (OID), 410
Object-oriented approach

(OOA), 10
Object-oriented (O-O) analysis,

design
about, 17–19, 281
class diagrams for, 297–300
classes for, 282–83
and CRC cards, 284–86
exercises, problems for,

318–19, 320–27
inheritance in, 283–84
object, defined, 282
RAD as, 163–66
sequence diagrams for, 287,

288f, 294–96, 300–309
use case modeling for,

287–90
Objects, 309–10
Object Think statements, 284–86
Observation, 142–48
OCLC (online computer library

center), 495
OCR (optical character

recognition) 496
Office automation systems

(OAS), 2–3
Office equipment, 145–46
OLAP (online analytic

processing), 429
OmniGraffle, 35
Omniplan, 83
One-to-many (1:M)

relationships, 405–06,
422–23

One-to-one (1:1) relationships,
405–06, 426–27

Online analytic processing
(OLAP), 429

Online computer library center
(OCLC), 495

Onsite customer, 171, 176
Open-ended questions

about, 105–06
anticipating response for, 115
exercises for, 125
illustrated, 116f, 117f

Open-ended rectangle symbol,
194f, 195

Openness, organizational, 26
Open source software (OSS), 5
Operational control, 43–44
Operational feasibility, 63
Optical character recognition

(OCR), 496
Option buttons, 380
Organizational culture, 24,

45–46, 180
Organizational systems

case modeling for, 35–43
context-level data flow for,

29–30
culture in, 45–46
and the entity-relationship

model, 30–35
and ERP, 28–29
interrelatedness,

interdependence of, 25–26
and management levels,

43–45
perspective for, 27–28
statechart diagrams for,

309–11
understanding, 24
virtual, 26–27

Output
bias, 340–44
as CD-ROMs, DVDs, 334
choosing technology for,

336–40
content and method of,

330–40
data flows, 260
defined, 329
designing printed, 341, 343
design objectives of, 329–30
displays for, 332–33,

344–47
electronic, 334–36
exercises, problems for,

361–65
external vs. internal, 331
messages, 309
printers for, 331–32
production and XML,

357–60
as push/pull technology, 336
quality assurance,

implementation for, 526
as RSS feeds, 335
as video, audio, animation,

333–34
See also Input

P
Packages, 311–12
Pair programming, 171,

175–76
Paper, for output, 343
Parallel conversion, 540
Parentheses (()), 232, 298
Parent process, 198, 199f
Partial dependencies, 413–14
Partitioning, 206–07, 213–17
Passwords, 542
Patched-up prototype, 156
Patterns, identifying, 431
Payback period, 75, 77
PeopleSoft, 162
Perceptual sensitivity, 450
Performance, for HCI, 443
Persistence layer, 302
PERT diagrams, 80–82,

97, 101
Pivot tables, 444–46
PKI (public key infrastructure),

544
Place utility, 547
Planning game, 16–17
Playscript, 142, 143b
Plus sign (�), 231, 246, 298–99,

383
Point-and-click interface. See

Graphical user interface
(GUI) design

Polymorphism, 307
Possession utility, 547
Posters, 141
Pound symbol (#), 297
Presentation layer, 302
Present value analysis, 75–77
Primary keys

as data structure element, 238
in records, 409–10, 417,

419–26
stored in cookies, 302
symbol for, 252

Primitive process, 198
Printers, as output, 331–32
Prioritization, 59
Privacy, and ecommerce, 544
Probes, 107
Problem definition, 57–61
Problem solving, 57–61
Procedure manuals, 523
Process specifications

about, 259–60
data dictionary for, 265–66
exercises, problems for, 274,

279–80
format for, 260–61
goals of, 260
not required, 260

Productionizing, 17
Program Evaluation and Review

Techniques (PERT), 80–82

INDEX 571

Programmers, programming
and feedback, 167
language for, 6
productivity of, 316
rights of, 181
See also Object-oriented

(O-O) analysis, design;
Pair programming

Project management
about, 56
activity planning, control,

77–82
addressing complexity of, 82
analysis, design activities in,

83–88
charter for, 87
cost, benefit analysis, 72–77
of ecommerce projects, 86
exercises on, 92, 94–98
failure of, 87–88
feasibility of, 62–63
and hardware, software needs,

63–72
initiation of, 56–62
selection of, 61–62
systems proposal for, 88–91
using Gantt chart scheduling,

79–80
using PERT diagrams, 80–82
See also Team management

Props, office, 145–46
Prototyping

about, 155–56
advantages, disadvantages of,

160–61
and COTS software, 161–62
CPU case for, 186–91
developing, 158–60
exercises, problems for,

183–85
kinds of, 156–57
as SDLC alternative, 157–58
users’ role in, 159–63
See also Agile modeling

Proximity cards, 498
Public key infrastructure (PKI),

544
Pull technology, 5, 336
Purposive sample, 133
Push technology, 336
Pyramid structure, 108–09

Q
QBE (query by example),

471–73
Qualitative documents,

140–41
Quality assurance,

implementation
about, 515
and agile development, 170
auditing for, 529

and disaster recovery
planning, 544–46

and distributed systems,
529–36

documentation for, 523–26
evaluating corporate Web

sites, 548–50
evaluation, 546–48
exercises for, 551–54
and maintenance, 528–29
and organizational metaphors,

541–42
and security concerns, 542–44
and system conversion,

539–41
testing process for, 526–28
and Total quality management

(TQM), 516–23
and user training, 536–39

Quantitative documents, 136–39
Queries

designing, 468–69
by example (QBE), 471–73
structured language for (SQL),

473–74
types of, 469–71

Questionnaires
about, 114
administering, 122
designing, 119, 121
open-ended questions for, 115,

116f
planning for, 114–15
using scales for, 118–19
word choice for, 115–16, 118

QuickBooks Pro, 73
QWERTY keyboards, 449

R
Radio buttons. See Buttons
Radio frequency identification

(RFID), 498–99
Range, testing for, 501
Rapid application development

(RAD), 163–66
Records, for investigation, 136,

138f
Rectangle symbol

in class diagrams, 297
in E-R diagrams, 407f
open-ended questions for,

194f, 195
uses of, 194–95

Referential integrity, 424
Relational databases, 404,

411–12
Relationships, in entities,

405–08
Renting hardware, 67
Report files, 411
Reports, for investigation, 136,

137f

Reports, in VA, 254–55
Repository, 294
Requirements planning phase, of

RAD, 164
Resources, in agile approach,

176
Response, 205
RFID (radio frequency

identification), 498–99
Risks, of innovation, 179–81
Rollover menus, 466
RSS feeds, 335
Ruby on Rails language, 6

S
SaaS (software as a service),

531–33
Sampling, 132–36
SANs (storage area networks),

545
Scales, 118–19
Scheduling, and activity

planning, 79–82
Schema, 246–47, 412, 506
Scope, agile approach to, 170–71
Scrum, 174–75
Search functions, 467–68
Second normal form (2NF), 419
Secure electronic translation

(SET), 544
Secure socket layering (SSL),

544
Security

about, 542
behavioral, 543
and DFD partition, 207, 215
and ecommerce, 543–44
logical, 542–43
physical, 542

Selected features prototype,
156f, 157

Self-join relationship, 407
Self-validating codes (check

digits), 501–03
Sequence diagrams

about, 294–96
classes used in, 300–302
for consulting opportunity,

313
defined, 287
enhancing, 300–303
example of, 288f
layers used in, 302–03
working with, 314

Sequences, as patterns, 431
Sequential structures, 261,

263f, 264
Service oriented architecture

(SOA), 5, 522–23, 533
SET (secure electronic

translation), 544
Shopping cart, 205, 391

Short releases, 171, 175
Shredding, of documents, 543
Signature, verification, of form,

372
Significant-digit subset codes,

489–90
Signs, 141
Simple sample, 133
Simple sequence code, 486
Simplicity, in agile modeling,

167
Site map, 466
Six Sigma, 516, 517f
Skins, on Web sites, 390
Slash (/), 257
Sliders, 381
SOA. See Service oriented

architecture (SOA)
Software

choosing, 68–72
custom, 68–69
exercises, problems for,

256–57
for form design, 375
forums for, 464–65
outsourcing, 71
records, elements for,

252–53
as a service (SaaS), 531–33
See also Commercial off-the-

shelf software (COTS);
Hardware; individual
programs, e.g. Expert
Choice; Input; MAC
appeal; Output

Speech input, 450
Spin buttons, 381
Spiral model, 18–19
Sprint, 175
SQL (structured query

language), 473–74
SSL (secure socket layering),

544
Statechart diagram, 287, 288f,

309–11, 314
Stereotypes, 300
Stickiness, of Web sites, 353
Storage. See Data stores
Storage area networks (SANs),

545
Stories, of users, 172–74, 175f
Strategic management, 45
Stratified sample, 133
String testing, 527
STROBE. See Structured

observation of the
environment (STROBE)

Structure chart, 521–22
Structured decisions

choosing technique for, 273
and decision tables, 266–71
and decision trees, 271–73

572 INDEX

Structured decisions—continued
exercises, problems for,

275–76, 279–80
and structured English, 261–65

Structured English, 261–65,
266f, 273–74

Structured observation of the
environment (STROBE),
142–49, 152, 154

Structured walkthroughs,
517–18, 519f

Stylus, 457
Subcultures, organizational,

45–46, 49
Supporting expert, 6–7
Survey Monkey, 122
Swimlanes, 291–94
Symbols, used in STROBE,

147–48
Synchronous remote replication,

545
Systematic sample, 133
Systems analysis, 6, 228–58
Systems analyst

duties of, 1, 10
qualities of, 6
rights of, 181
roles of, 6–8
skills needed by, 20

Systems development life cycle
(SDLC)

vs. agile modeling, 14–17,
19f, 177–79

CASE tools for, 14
and HCI, 9
vs. O-O approach, 17–19
phases of, 8–13
prototyping as alternative to,

157–58
and RAD comparison, 165–66

Systems maintenance, 12–13, 17
Systems proposal, 10–11, 88–91

T
Tab control dialog box, 380
Tableau Software, 446–48
Table files, 410
Tables, 89–90, 413
Tablet PC, 457
TAM (technology acceptance

model), 443–44
Tangible benefits, 72–73
Tangible costs, 74
Tasks, and HCI, 442–43
Team management, 83–86
Technical feasibility, 63
Technology acceptance model

(TAM), 443–44
Templates, 352
Testing, 169, 526–28
Text areas, 381
Text boxes, 380

Third normal form (3NF),
420–21

Three-clicks rule, 356, 378
Timeboxing, 179
Time/timing

agile approach to, 169
for building prototypes, 159
and deferred events, 310
as defined problem, 60–63
and DFD partition, 206–07
efficiency strategies, 177–79
estimating, 79
and failure, 88f
and interviewing, 104–05, 108
and output, 330
in physical DFD, 205
risks inherent in, 180
saving, 113
in sequence diagrams, 295
slack, 80–81, 92
triggers for, 41

Time utility, 547
Top-down systems design,

518–20
Total quality management

(TQM)
modular approach for, 520–22
responsibility for, 516–17
service oriented architecture

(SOA) for, 522–23
and Six Sigma, 516, 517f
structured walkthroughs for,

517–18, 519f
and top-down systems design,

518–20
Totals, on form, 372
Touch, and HCI, 448–49
Touch-sensitive display, 457–58
TQM. See Total quality

management (TQM)
Training, 536–39
Transaction files, 410–11
Transaction processing systems

(TPS), 2
Transitive dependencies, 413–14
Trends, as pattern, 431
Trends, forecasting, 72
Trigger, 205
Tuple, in database, 413

U
UML. See Unified modeling

language (UML)
Unicode, 490
Unified modeling language

(UML)
about, 281
class for, 282–83
communication diagrams for,

296–97
concepts, diagrams for, 286–87
inheritance in, 283–84

packages, artifacts for, 311–12
phases of, 17–19
and use case modeling,

287–90
using for modeling, 315–16
working with, 313–15

United States, IT conventions in,
441, 543, 545

Unnormalization, 413–23
Update anomaly, 426
Usability, 444–48
Use case diagram, 287, 288f,

313, 314
Use case modeling

CPU case on, 51–55
creating descriptions for, 43
defined, 35–36
defining, 314
and DFDs, 205–06
diagrams for, 38, 43
form for, 208f
levels for, 39–43
as O-O technique, 287–90
packages, artifacts for, 311–12
during problem solving, 61
relationships in, 36–38
scenarios for, 38–39, 49
symbols for, 36
system scope for, 38

Use case scenario, 287, 288f,
290f, 296

User action, minimal, 459–60
Users

accuracy of, 506–07
cognitive styles of, 444–48
consulting with, 41
designing dialog for, 458–61
designing output for, 330
and DFD partition, 206
disaster planning recovery for,

545
and evaluation, 546
feedback for, 461–65
and information overload, 179
interfaces for, 160, 451–58
interviewing, 59, 100–101
and JAD, 111
of output technology, 336–38
and prototypes, 157–64
reactions of, 181
security, privacy for, 543–44
stories of, 172–74, 175f
and systems, 3–14
training for, 536–39
See also Human-Computer

Interaction (HCI)
User view, 411–12

V
Validation

codes for, 493
as data element, 236

of input data, transactions,
500–504

of input transactions, 500
process of, 505–06

Values, in agile approach, 176
Variable-length record, 409
Vendor support, 67–68, 71–72
Video output, 333–34
Virtualized resources, 531
Virus protection, 543
Visible Analyst (VA)

CPU case on, 51–55, 100–101
to create classes, 299
exercise on, 252–58, 279–80
uses of, 14

Vision, and HCI, 448, 449
Visual Page, 355f
VM Fusion, 12

W
Web Developer, 349
Web logs, 357
Web pages, dynamic, 383, 386,

395
Web pages, three-dimensional,

385–87
Web sites

corporate, 141
designing, 348–56
maintaining, 356–57
partitioning, 213–17
promotion for, 356
skins for, 390
vocabulary for, 349f

Web systems, 4–5
Webtrends, 548
Well-being, for HCI, 443
Whole/part relationships,

305–06
Wide area network (WAN), 531
Widgets, 347
Wireless fidelity (Wi-Fi)

networks, 5, 339–40, 531
Wireless local area networks

(WLANs), 5
Wireless system integration, 5
Wizards, 464
Workloads, estimating, 64–65
Workshop phase, of RAD, 164
Workstation connectivity

diagram, 535
WYSIWYG, 343

X
XML. See Extensible Markup

Language (XML)

Z
Zero-to-many relationship,

406–07
Zero-to-one relationship, 406–07
Zero-to-zero relationship, 406–07

	Cover������������
	Title Page�����������������
	Copyright����������������
	CONTENTS
	PART I: SYSTEMS ANALYSIS FUNDAMENTALS
	1 SYSTEMS, ROLES, AND DEVELOPMENT METHODOLOGIES
	Types of Systems
	Integrating Technologies for Systems
	Need for Systems Analysis and Design
	Roles of the Systems Analyst
	Consulting Opportunity 1.1 Healthy Hiring: Ecommerce Help Wanted
	The Systems Development Life Cycle
	MAC APPEAL
	Using Case Tools
	The Agile Approach
	Object-Oriented Systems Analysis and Design
	Choosing Which Systems Development Method to Use
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 1
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 1: The Case Opens

	2 UNDERSTANDING AND MODELING ORGANIZATIONAL SYSTEMS
	Organizations as Systems
	Consulting Opportunity 2.1 The E in Vitamin E Stands for Ecommerce
	Depicting Systems Graphically
	MAC APPEAL
	Use Case Modeling
	Levels of Management
	Consulting Opportunity 2.2 Where There’s Carbon, There’s a Copy
	Organizational Culture
	Consulting Opportunity 2.3 Pyramid Power
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 2
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 2: Picturing the Relationships

	3 PROJECT MANAGEMENT
	Project Initiation
	Consulting Opportunity 3.1 The Sweetest Sound I’ve Ever Sipped
	Determining Feasibility
	Ascertaining Hardware and Software Needs
	Consulting Opportunity 3.2 Veni, Vidi, Vendi, or, I Came, I Saw, I Sold
	Identifying, Forecasting, and Comparing Costs and Benefits
	Consulting Opportunity 3.3 We’re Off to See the Wizards
	Activity Planning and Control
	Consulting Opportunity 3.4 Food for Thought
	Managing the Project
	MAC APPEAL
	Managing Analysis and Design Activities
	HYPERCASE[sup(®)] EXPERIENCE 3.1
	Consulting Opportunity 3.5 Goal Tending
	The Systems Proposal
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 3.2
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 3: Getting to Know U

	PART II: INFORMATION REQUIREMENTS ANALYSIS
	4 INFORMATION GATHERING: INTERACTIVE METHODS
	Interviewing
	Consulting Opportunity 4.1 Strengthening Your Question Types
	Consulting Opportunity 4.2 Skimming the Surface
	Joint Application Design
	HYPERCASE[sup(®)] EXPERIENCE 4.1
	Consulting Opportunity 4.3 A Systems Analyst, I Presume?
	Using Questionnaires
	Consulting Opportunity 4.4 The Unbearable Questionnaire
	Consulting Opportunity 4.5 Order in the Courts
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 4.2
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 4: I’ll Listen Now, Ask Questions Later

	5 INFORMATION GATHERING: UNOBTRUSIVE METHODS
	Sampling
	Consulting Opportunity 5.1 Trapping a Sample
	Investigation
	Consulting Opportunity 5.2 A Rose by Any Other Name . . . Or Quality, Not Quantities
	HYPERCASE[sup(®)] EXPERIENCE 5.1
	Observing a Decision Maker’s Behavior
	Observing the Physical Environment
	Consulting Opportunity 5.3 Don’t Bank on Their Self-Image or Not Everything Is Reflected in a Mirror
	MAC APPEAL
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 5.2
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 5: Seeing Is Believing

	6 AGILE MODELING AND PROTOTYPING
	Prototyping
	Developing a Prototype
	Consulting Opportunity 6.1 Is Prototyping King?
	Consulting Opportunity 6.2 Clearing the Way for Customer Links
	Consulting Opportunity 6.3 To Hatch a Fish
	Consulting Opportunity 6.4 This Prototype Is All Wet
	Rapid Application Development
	Agile Modeling
	MAC APPEAL
	Comparing Agile Modeling and Structured Methods
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 6
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 6: Reaction Time

	PART III: THE ANALYSIS PROCESS
	7 USING DATA FLOW DIAGRAMS
	The Data Flow Approach to Human Requirements Determination
	Developing Data Flow Diagrams
	Logical and Physical Data Flow Diagrams
	A Data Flow Diagram Example
	Partitioning Web Sites
	Consulting Opportunity 7.1 There’s No Business Like Flow Business
	Communicating Using Data Flow Diagrams
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 7
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE: EPISODE 7: Just Flowing Along

	8 ANALYZING SYSTEMS USING DATA DICTIONARIES
	The Data Dictionary
	The Data Repository
	Creating the Data Dictionary
	Consulting Opportunity 8.1 Want to Make It Big in the Theatre? Improve Your Diction(ary)!
	Using the Data Dictionary
	HYPERCASE[sup(®)] EXPERIENCE 8
	SUMMARY
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 8: Defining What You Mean

	9 PROCESS SPECIFICATIONS AND STRUCTURED DECISIONS
	Overview of Process Specifications
	Structured English
	Consulting Opportunity 9.1 Kit Chen Kaboodle, Inc.
	Consulting Opportunity 9.2 Kneading Structure
	Decision Tables
	Consulting Opportunity 9.3 Saving a Cent on Citron Car Rental
	Decision Trees
	Consulting Opportunity 9.4 A Tree for Free
	Choosing a Structured Decision Analysis Technique
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 9
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 9: Tabling a Decision

	10 OBJECT-ORIENTED SYSTEMS ANALYSIS AND DESIGN USING UML
	Object-Oriented Concepts
	Consulting Opportunity 10.1 Around the World in 80 Objects
	CRC Cards and Object Think
	The Unified Modeling Language (UML) Concepts and Diagrams
	Use Case Modeling
	Activity Diagrams
	Consulting Opportunity 10.2 Recycling the Programming Environment
	Sequence and Communication Diagrams
	Class Diagrams
	Enhancing Sequence Diagrams
	Enhancing Class Diagrams
	Statechart Diagrams
	Packages and Other UML Artifacts
	Consulting Opportunity 10.3 Developing a Fine System That Was Long Overdue: Using Object-Oriented Analysis for the Ruminski Public Library System
	Putting UML to Work
	Consulting Opportunity 10.4 C-Shore+ +
	The Importance of Using UML for Modeling
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 10
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 10: Classy Objects

	PART IV: THE ESSENTIALS OF DESIGN
	11 DESIGNING EFFECTIVE OUTPUT
	Output Design Objectives
	Relating Output Content to Output Method
	Consulting Opportunity 11.1 Your Cage or Mine?
	Consulting Opportunity 11.2 A Right Way, a Wrong Way, and a Subway
	Realizing How Output Bias Affects Users
	Consulting Opportunity 11.3 Should This Chart Be Barred?
	Designing Output for Displays
	Consulting Opportunity 11.4 Is Your Work a Grind?
	Designing a Web Site
	MAC APPEAL
	Consulting Opportunity 11.5 A Field Day
	Output Production and XML
	HYPERCASE[sup(®)] EXPERIENCE 11
	SUMMARY
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 11: Reporting on Outputs

	12 DESIGNING EFFECTIVE INPUT
	Good Form Design
	Good Display and Web Forms Design
	Consulting Opportunity 12.1 This Form May Be Hazardous to Your Health
	Consulting Opportunity 12.2 Squeezin’ Isn’t Pleasin’
	Intranet and Internet Page Design
	Consulting Opportunity 12.3 It’s Only Skin Deep
	MAC APPEAL
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 12
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 12: Forming Screens and Screening Forms

	13 DESIGNING DATABASES
	Databases
	Consulting Opportunity 13.1 Hitch Your Cleaning Cart to a Star
	Data Concepts
	Normalization
	Guidelines for Master File/Database Relation Design
	MAC APPEAL
	Making Use of the Database
	Denormalization
	Data Warehouses
	Consulting Opportunity 13.2 Storing Minerals for Health, Data for Mining
	Consulting Opportunity 13.3 Losing Prospects
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 13
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECT
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 13: Back to Data Basics

	14 HUMAN-COMPUTER INTERACTION
	Understanding Human-Computer Interaction
	Usability
	Consulting Opportunity 14.1 School Spirit Comes in Many Sizes
	Types of User Interface
	Consulting Opportunity 14.2 I’d Rather Do It Myself
	Consulting Opportunity 14.3 Don’t Slow Me Down
	Consulting Opportunity 14.4 That’s Not a Lightbulb
	Guidelines for Dialog Design
	Consulting Opportunity 14.5 Waiting to Be Fed
	Feedback for Users
	Special Design Considerations for Ecommerce
	Consulting Opportunity 14.6 When You Run a Marathon,It Helps to Know Where You’re Going
	MAC APPEAL
	Mashups
	Designing Queries
	Consulting Opportunity 14.7 Hey, Look Me Over (Reprise)
	SUMMARY
	KEYWORDS AND PHRASES
	HYPERCASE[sup(®)] EXPERIENCE 14
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 14: Up to the Users

	PART V: QUALITY ASSURANCE AND IMPLEMENTATION
	15 DESIGNING ACCURATE DATA ENTRY PROCEDURES
	Effective Coding
	Consulting Opportunity 15.1 It’s a Wilderness in Here
	Consulting Opportunity 15.2 Catching a Summer Code
	Effective and Efficient Data Capture
	Consulting Opportunity 15.3 To Enter or Not to Enter: That Is the Question
	Ensuring Data Quality Through Input Validation
	Consulting Opportunity 15.4 Do You Validate Parking?
	Accuracy Advantages in Ecommerce Environments
	HYPERCASE[sup(®)] EXPERIENCE 15
	SUMMARY
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 15: Entering Naturally

	16 QUALITY ASSURANCE AND IMPLEMENTATION
	The Total Quality Management Approach
	Consulting Opportunity 16.1 The Quality of MIS Is Not Strained
	MAC APPEAL
	Documentation Approaches
	Consulting Opportunity 16.2 Write Is Right
	HYPERCASE[sup(®)] EXPERIENCE 16.1
	Testing, Maintenance, and Auditing
	Consulting Opportunity 16.3 Cramming for Your Systems Test
	Implementing Distributed Systems
	Training Users
	Consulting Opportunity 16.4 You Can Lead a Fish to Water . . . But You Can’t Make It Drink
	Conversion to a New System
	Security Concerns for Traditional and Web-Based Systems
	Consulting Opportunity 16.5 The Sweet Smell of Success
	Evaluation
	Consulting Opportunity 16.6 Mopping Up with the New System
	Evaluating Corporate Web Sites
	SUMMARY
	HYPERCASE[sup(®)] EXPERIENCE 16.2
	KEYWORDS AND PHRASES
	REVIEW QUESTIONS
	PROBLEMS
	GROUP PROJECTS
	SELECTED BIBLIOGRAPHY
	CPU CASE EPISODE 16: Semper Redundate

	GLOSSARY
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	ACRONYMS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

